首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We tested the ability of cellular oncogene (c-onc) probes to identify F1 hybrids and the lineage of known backcrosses within the fish genus Morone. Total DNA was isolated from five to 14 individuals per North American Morone species (striped bass, white bass, white perch, and yellow bass). The DNA was digested with two restriction enzymes, Eco RI and Hin dIII, Southern blotted, and hybridized to six different c-onc probes including v-abl, v-erb B, c-myc, c-H-ras, c-K-ras, and v-src. We found fixed genotypic differences among the four species for all six probes in single restriction enzyme digests. The heritability of these nuclear DNA genotypes was evaluated in hatchery-produced F1 Morone hybrids (striped bass x white bass and striped bass x white perch) tested with the six informative single probe/restriction enzyme combinations. All F1 individuals exhibited heterozygosity in all diagnostic nuclear DNA fragments, confirming the Mendelian inheritance of these genotypes in these fish. Furthermore, analysis of these nuclear DNA genotypes in hatchery-produced backcrosses of F1 hybrids striped bass x (white bass x striped bass) detected both recombinant and parental genotypes at all six polymorphic c-onc sequences. The lineage of suspected Morone hybrids of unknown descent collected from Lewis Smith Lake, Alabama, and from the Occoquan River, Virginia, was determined using the c-onc probes. Our results suggest that c-onc probes are suitable markers to unequivocally identify F1 hybrids and backcrosses and to quantify introgression in natural populations of fishes. The addition of RFLP analysis of mtDNA provided a complete ancestral history of individual fish.  相似文献   

2.
Most larger individuals of migratory striped bass Morone saxatilis from the two major Atlantic coast stocks, the Chesapeake Bay and Hudson River, appear to winter in mid‐Atlantic coastal waters. But it is not known whether they exhibit differential wintertime distributions in accordance with the latitudinal differences in locations of these two estuaries. Mixed‐stock analyses were conducted based on mitochondrial DNA and nuclear DNA genotypic frequencies on wintertime collections of striped bass from coastal waters. No significant differences (P > 0.05) were seen in the proportions of striped bass from the two stocks between collections made from the Delaware Bay mouth and Cape Hatteras in 1997. However, there was a substantially higher Hudson contribution to a 1995 collection from coastal New Jersey (0.349, SD = 0.136) than to the combined 1997 Delaware Bay mouth and Cape Hatteras collection (0.157, SD = 0.072), suggesting this question deserves further study. Additionally, use of the original four reference samples from Chesapeake Bay tributaries (Choptank, Potomac, Rappahannock, Upper Bay) proved adequate alone in characterizing the Chesapeake Bay stock in simulations in which additional tributary collections (Nanticoke, Patuxent, Pocomoke) were added.  相似文献   

3.
Quantitative real time PCR (qPCR) is commonly used to determine cell mitochondrial DNA (mtDNA) copy number. This technique involves obtaining the ratio of an unknown variable (number of copies of an mtDNA gene) to a known parameter (number of copies of a nuclear DNA gene) within a genomic DNA sample. We considered the possibility that mtDNA:nuclear DNA (nDNA) ratio determinations could vary depending on the method of genomic DNA extraction used, and that these differences could substantively impact mtDNA copy number determination via qPCR. To test this we measured mtDNA:nDNA ratios in genomic DNA samples prepared using organic solvent (phenol–chloroform–isoamyl alcohol) extraction and two different silica-based column methods, and found mtDNA:nDNA ratio estimates were not uniform. We further evaluated whether different genomic DNA preparation methods could influence outcomes of experiments that use mtDNA:nDNA ratios as endpoints, and found the method of genomic DNA extraction can indeed alter experimental outcomes. We conclude genomic DNA sample preparation can meaningfully influence mtDNA copy number determination by qPCR.  相似文献   

4.
Striped bass Morone saxatilis populations in drainages along the Gulf of Mexico coast (Gulf) were depleted in the 1950s and 1960s, probably because of anthropogenic influences. It is believed that only the Apalachicola-Chattahoochee-Flint (A-C-F) river system continually supported a naturally reproducing population of Gulf lineage. Striped bass juveniles of Atlantic coast (Atlantic) ancestry were introduced to restore population abundances in the A-C-F from the late 1960s to the mid 1970s and in many other Gulf rivers from the 1960s to the present. We previously identified mtDNA polymorphisms that were unique to ? 60% of striped bass from the A-C-F and which confirmed the continued successful natural reproduction of striped bass of Gulf maternal ancestry within the system. However, the genetic relatedness of the extant A-C-F population to ‘pure’ Gulf striped bass was not addressed. In this study, we determined the frequency of a diagnostic mtDNA XbaI polymorphism in samples of ‘pure’ Gulf striped bass that were collected from the A-C-F prior to the introduction of Atlantic fish, that were obtained from museum collections, and that were originally preserved in formalin. PCR primers were developed that allowed for amplification of a 191-bp mtDNA fragment that contained the diagnostic XbaI restriction site. Using RFLP and direct sequence analyses of the PCR amplicons, we found no significant differences in mtDNA XbaI genotype frequencies between the archived samples and extant A-C-F samples collected over a 15-year period. This indicates that significant maternally mediated introgression of Atlantic mtDNA genomes into the A-C-F gene pool has not occurred. Additionally, we found no evidence of the unique Gulf mtDNA genotype in striped bass from extant populations in Texas, Louisiana and the Mississippi River. These results highlight the importance of the A-C-F as a repository of striped bass to restore extirpated Gulf populations and the potential use of museum collections in retrospective population studies.  相似文献   

5.
C. M. Bowman 《Planta》1986,167(2):264-274
The possibility of estimating the proportion of chloroplast DNA (ctDNA) and nuclear DNA (nDNA) in nucleic-acid extracts by selective digestion with the methylation-sensitive restriction enzyme PstI, was tested using leaf extracts from Spinacia oleracea and Triticum aestivum. Values of ctDNA as percentage nDNA were estimated to be 14.58%±0.56 (SE) in S. oleracea leaves and 4.97%±0.36 (SE) in T. aestivum leaves. These estimates agree well with those already reported for the same type of leaf material. Selective digestion and quantitative dot-blot hybridisation were used to determine ctDNA as percentage nDNA in expanded leaf tissue from species of Triticum and Aegilops representing three levels of nuclear ploidy and six types of cytoplasm. No significant differences in leaf ctDNA content were detected: in the diploids the leaf ctDNA percentage ranged between 3.8% and 5.1%, and in the polyploids between 3.5% and 4.9%. Consequently, nuclear ploidy and nDNA amount were proportional to ctDNA amount (r(19)=0.935, P>0.01) and hence to ctDNA copy number in the mature mesophyll cells of these species. There was a slight increase in ctDNA copy numbers per chloroplast at higher ploidy levels. The balance between numbers of nuclear and chloroplast genomes is discussed in relation to polyploidisation and to the nuclear control of ctDNA replication.Abbreviations ctDNA chloroplast DNA - nDNA nuclear DNA - RuBPCase ribulose-1,5-bisphosphate carboxylase - DAPI 4,6-diamidine-2-phenylindole  相似文献   

6.
7.
8.
Aim To better understand the historical biogeography of the true seals, Phocidae, by combining nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) in a divergence time analysis using multiple fossil calibrations. Location Arctic, Antarctic, Pacific and Atlantic Oceans, Lake Baikal, Caspian Sea. Methods Fifteen nuclear genes totalling 8935 bp plus near‐complete mitochondrial genome sequences were used in a Bayesian divergence time analysis, incorporating eight soft‐bound fossil calibrations across the phylogeny. All species of true seals were included, plus the walrus, three otariids and seven carnivore outgroups. The majority of the nuclear sequences and four phocid mitochondrial genomes (plus three non‐phocid mitochondrial genomes) were newly generated for this study using DNA extracted from tissue samples; other sequences were obtained from GenBank. Results Using multiple nuclear genes and multiple fossil calibrations resulted in most divergence time estimations within Phocidae being much more recent than predicted by other molecular studies incorporating only mtDNA and using a single calibration point. A new phylogenetic hypothesis was recovered for the Antarctic seals. Main conclusions Incorporating multiple nuclear genes and fossil calibrations had a profound effect on the estimated divergence times. Most estimated divergences within Phocinae (Arctic seals) correspond to Arctic oceanic events and all occur within the last 12 Myr, a time when the Arctic and Atlantic oceans were freely exchanging and perennial Arctic sea ice existed, indicating that the Arctic seals may have had a longer association with ice than previously thought. The Monachinae (‘southern’ seals) split from the Phocinae c. 15 Ma on the eastern US coast. Several early trans‐Atlantic dispersals possibly occurred, leaving no living descendants, as divergence estimates suggest that the Monachus (monk seal) species divergences occurred in the western Atlantic c. 6 Ma, with the Mediterranean monk seal ancestor dispersing afterwards. The tribes Lobodontini (Antarctic seals) and Miroungini (elephant seals) are also estimated to have diverged in the eastern Atlantic c. 7 Ma and a single Lobodontini dispersal to Antarctica occurred shortly afterwards. Many of the newly estimated dates are used to infer how extinct lineages/taxa are allied with their living relatives.  相似文献   

9.
Aim To reconstruct the phylogenetic relationships of the four species of the genus Sarda (Sarda sarda, Sarda orientalis, Sarda australis and Sarda chilensis) and their phylogeographic history in the context of historical and ecological biogeography. Also, to reconstruct within‐species phylogenetic relationships to test whether the North Atlantic and Mediterranean populations of Atlantic bonito (S. sarda) warrant subspecies status, and the validity of the allopatric northern and southern populations of eastern Pacific bonito (S. chiliensis), recognized as S. chiliensis lineolata and S. chiliensis chiliensis. Location Representative samples of all four Sarda species collected world‐wide were analysed. Methods Phylogenetic inference was carried out with neighbour‐joining, maximum parsimony and maximum likelihood, employing nucleotide sequences of the mitochondrial DNA (mtDNA) control region I (CR‐I) and of the single‐copy nuclear DNA (nDNA) Tmo‐4c4 gene. Analysis of molecular variance was used on the mtDNA data to estimate the extent of geographic population structuring. Results Gene trees derived from mtDNA and nDNA data yielded concordant phylogenies that support the monophyly of the genus Sarda. The following sibling pairs received strong statistical support: striped bonito (S. orientalis) with Australian bonito (S. australis), and Atlantic bonito (S. sarda) with eastern Pacific bonito (S. chiliensis). Furthermore, the origin of S. sarda mtDNA is paraphyletic with respect to S. chiliensis, and these results are indicative of introgression. The analysis of Tmo‐4c4 sequences corroborates the ancestral hybridization between these allopatric species. Comparisons of north‐west Atlantic and Mediterranean populations of S. sarda using mtDNA CR‐I data revealed substantial genetic differentiation. By contrast, no differences between the putative northern and southern allopatric subspecies of S. chiliensis were detected. Main conclusions The monophyly of the genus Sarda as indicated by morphology is corroborated using both molecular markers. However, molecular phylogenies depicted a paraphyletic relationship between S. sarda and S. chiliensis. This phylogeographical relationship is better explained by an ancestral introgression facilitated by trans‐Arctic contact during the Pleistocene. The pronounced genetic differentiation between S. sarda samples from the north‐west Atlantic and the Mediterranean is consistent with the differentiation of these two regions, but not with the amphi‐Atlantic speciation hypothesis. Finally, the S. chiliensis lineolata and S. chiliensis chiliensis subspecies status is not supported by the molecular data.  相似文献   

10.
Comparative analyses of nuclear and organelle genetic markers may help delineate evolutionarily significant units or management units, although population differentiation estimates from multiple genomes can also conflict. Striped bass (Morone saxatilis) are long-lived, highly migratory anadromous fish recently recovered from a severe decline in population size. Previous studies with protein, nuclear DNA and mitochondrial DNA (mtDNA) markers produced discordant results, and it remains uncertain if the multiple tributaries within Chesapeake Bay constitute distinct management units. Here, 196 young-of-the-year (YOY) striped bass were sampled from Maryland's Choptank, Potomac and Nanticoke Rivers and the north end of Chesapeake Bay in 1999 and from Virginia's Mataponi and Rappahannock Rivers in 2001. A total of 10 microsatellite loci exhibited between two and 27 alleles per locus with observed heterozygosities between 0.255 and 0.893. The 10-locus estimate of R(ST) among the six tributaries was -0.0065 (95% confidence interval -0.0198 to 0.0018). All R(ST) and all but one theta estimates for pairs of populations were not significantly different from zero. Reanalysis of Chesapeake Bay striped bass mtDNA data from two previous studies estimated population differentiation between theta=-0.002 and 0.160, values generally similar to mtDNA population differentiation predicted from microsatellite R(ST) after adjusting for reduced effective population size and uniparental inheritance in organelle genomes. Based on mtDNA differentiation, breeding sex ratios or gene flow may have been slightly male biased in some years. The results reconcile conflicting past studies based on different types of genetic markers, supporting a single Chesapeake Bay management unit encompassing a panmictic striped bass breeding population.  相似文献   

11.
Geographic surveys of allozymes, microsatellites, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) have detected several genetic subdivisions among European anchovy populations. However, these studies have been limited in their power to detect some aspects of population structure by the use of a single or a few molecular markers, or by limited geographic sampling. We use a multi-marker approach, 47 nDNA and 15 mtDNA single nucleotide polymorphisms (SNPs), to analyze 626 European anchovies from the whole range of the species to resolve shallow and deep levels of population structure. Nuclear SNPs define 10 genetic entities within two larger genetically distinctive groups associated with oceanic variables and different life-history traits. MtDNA SNPs define two deep phylogroups that reflect ancient dispersals and colonizations. These markers define two ecological groups. One major group of Iberian-Atlantic populations is associated with upwelling areas on narrow continental shelves and includes populations spawning and overwintering in coastal areas. A second major group includes northern populations in the North East (NE) Atlantic (including the Bay of Biscay) and the Mediterranean and is associated with wide continental shelves with local larval retention currents. This group tends to spawn and overwinter in oceanic areas. These two groups encompass ten populations that differ from previously defined management stocks in the Alboran Sea, Iberian-Atlantic and Bay of Biscay regions. In addition, a new North Sea-English Channel stock is defined. SNPs indicate that some populations in the Bay of Biscay are genetically closer to North Western (NW) Mediterranean populations than to other populations in the NE Atlantic, likely due to colonizations of the Bay of Biscay and NW Mediterranean by migrants from a common ancestral population. Northern NE Atlantic populations were subsequently established by migrants from the Bay of Biscay. Populations along the Iberian-Atlantic coast appear to have been founded by secondary waves of migrants from a southern refuge.  相似文献   

12.
The striped bass (Morone saxatilis) and its relatives (genus Morone) are of great importance to fisheries and aquaculture in North America. As part of a collaborative effort to employ molecular genetics technologies in striped bass breeding programs, we previously developed nearly 500 microsatellite markers. The objectives of this study were to construct a microsatellite linkage map of striped bass and to examine conserved synteny between striped bass and three-spined stickleback (Gasterosteus aculeatus). Of 480 microsatellite markers screened for polymorphism, 289 informative markers were identified and used to genotype two half-sib mapping families. Twenty-six linkage groups were assembled, and only two markers remain unlinked. The sex-averaged map spans 1,623.8 cM with an average marker density of 5.78 cM per marker. Among 287 striped bass microsatellite markers assigned to linkage groups, 169 (58.9%) showed homology to sequences on stickleback chromosomes or scaffolds. Comparison between the stickleback genome and the striped bass linkage map revealed conserved synteny between these two species. This is the first linkage map for any of the Morone species. This map will be useful for molecular mapping and marker-assisted selection of genes of interest in striped bass breeding programs. The conserved synteny between striped bass and stickleback will facilitate fine mapping of genome regions of interest and will serve as a new resource for comparative mapping with other Perciform fishes such as European sea bass (Dicentrarchus labrax), gilthead sea bream (Sparus aurata), and tilapia (Oreochromis ssp.).  相似文献   

13.
Mitochondrial DNA quantification by qPCR is used in the context of many diseases and toxicity studies but comparison of results between laboratories is challenging. Through two multigroup distributions of DNA samples from human cell lines, the MITONAUTS group anonymously compared mtDNA/nDNA quantification across nine laboratories involved in HIV research worldwide. Eight of the nine sites showed significant correlation between them (mean raw data R(2)=0.664; log(10)-transformed data R(2)=0.844). Although mtDNA/nDNA values were well correlated between sites, the inter-site variability on the absolute measurements remained high with a mean (range) coefficient of variation of 71 (37-212) %. Some variability appeared cell line-specific, probably due to chromosomal alterations or pseudogenes affecting the quantification of certain genes, while within cell line variability was likely due to differences in calibration of the standard curves. The use of two mtDNA and two single copy nDNA genes with highly specific primers to quantify each genome would help address copy number variants. Our results indicate that sample shipment must be done frozen and that absolute mtDNA/nDNA ratio values cannot readily be compared between laboratories, especially if assessing cultured cell mtDNA content. However, within laboratory and relative mtDNA/nDNA comparisons between laboratories should be reliable.  相似文献   

14.
Striped bass (Morone saxatilis) is economically important in the US due to its value as an aquaculture species and in supporting commercial and recreational fisheries, especially those off the Atlantic coast and in the Gulf of Mexico. Modern strategies for managing fishery populations and aquaculture broodstocks employ the use of molecular genetic markers to identify individuals, assign parentage, and characterize population genetic structure and levels of inbreeding and migration. As part of a collaborative effort to utilize molecular genetic technologies in striped bass breeding programs we generated microsatellite markers for use in population genetic studies, broodstock selection and management strategies, and the construction of a genetic map. We developed 345 new microsatellite markers for striped bass, a subset (n=71) of which was characterized by genotyping samples from two striped bass broodstock populations to evaluate marker polymorphism, percent heterozygosity, Hardy–Weinberg equilibrium (HWE), linkage disequilibrium (LD) and utility for population genetic studies.  相似文献   

15.
In order to obtain single T-DNA copy transgenic rice, we have established a quick method to estimate the T-DNA copy number in transgenic rice using inverse PCR (IPCR). IPCR was used to amplify junction fragments, i.e. plant genomic DNA sequences flanking the known T-DNA sequences, which will help to estimate the T-DNA copy number in transgenic rice. We have analyzed 20 transgenic plants of 15 transgenic lines. Most plants (12) contain one integrated T-DNA copy per genome, 3 plants contain two and 1 plant contains 3 copies. In 4 transgenic plants no T-DNA copies could be detected using this method. The IPCR results were further tested by Southern analysis and sequence analysis.  相似文献   

16.
为了获得单个T-DNA插入拷贝的植株, 我们建立了一套利用Inverse PCR(IPCR)快速检测转基因水稻中T-DNA拷贝数的方法。用IPCR的方法可以扩增出与已知T-DNA序列相邻的水稻基因组DNA未知序列,由此推测转基因水稻植株中T-DNA的拷贝数。我们共对15个转化株系20棵不同植株的DNA进行了IPCR检测。其中12株表现为T-DNA单拷贝插入,3株为双拷贝插入,1株为三拷贝插入。另外4株未检测到T-DNA插入拷贝。IPCR分析结果经过Southern杂交和测序的验证。  相似文献   

17.
Homologies between nuclear and plastid DNA in spinach   总被引:3,自引:0,他引:3  
Summary Homologies between spinach nuclear (n) DNA and Chloroplast (pt) DNA, have been detected with a clone bank of spinach ptDNA as hybridization probes to restriction fragments of nDNA prepared from purified root nuclei. Every cloned fragment of ptDNA showed homologies to discrete restriction fragments of nDNA, different from those of ptDNA, indicating integration of these homologies into nDNA. While most ptDNA clones were relatively large and probably contained several genes, sequence homologies were also found to the cloned plastid gene for RuBP carboxylase and the subunit of ptATPase. Many of the homologies in nDNA occur in regions of the genome that are highly methylated and are not digested by the methylation sensitive restriction endonucleases HpaII and MspI. In contrast these enzymes cleave ptDNA into small fragments which allows the nDNA homologies to be distinguished in total root DNA. The sequence homologies observed were not due to contaminating non nuclear sequences as shown by hybridization to mitochondrial (mt) and bacterial DNAs. The total amount of homology to ptDNA in nDNA is equivalent to about five copies of the plastome per haploid nuclear genome. The homologies generally appear to be in individual segments of less than 2 kbp in length, integrated into several different places in the genome.On sabbatical leave from Department of Botany, University College, Dublin, Ireland  相似文献   

18.
19.
Genetic variation has been difficult to detect in striped bass (Morone saxatilis). Therefore, we identified and characterized 13 microsatellite loci to provide additional genetic markers for striped bass. Microsatellites were identified by screening a striped bass genomic library or by using primers developed for European sea bass (Dicentrarchus labrax) microsatellite loci. We found that 6 of the 13 microsatellite loci were polymorphic in DNA samples obtained from wild populations of striped bass. The number of alleles per locus varied from 3 to 12, and the observed heterozygosities ranged from 0.55 to 0.78. These results indicate that microsatellite loci provide more alleles and higher heterozygosities than other genetic markers developed for striped bass. Received November 9, 1999; accepted February 11, 2000.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号