首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
实验利用焦锑酸钾法对豚鼠精子在发生及顶体反应过程中的Ca~(2+)定位作了较详细的研究。在精母细胞及精子细胞上都有Ca~(2+)分布,但睾丸中的精子上则无Ca~(2+)。成熟精子中Ca~(2+)主要定位于顶体帽的整个腹面及背面的两个特定区域。发生顶体反应的精子上Ca~(2+)则位于顶体外膜上或囊泡内,已发生顶体反应的精子中Ca~(2+)则位于顶体内膜上。  相似文献   

2.
《The Journal of cell biology》1987,105(4):1663-1670
Gamete recognition in the mouse is mediated by galactosyltransferase (GalTase) on the sperm surface, which binds to its appropriate glycoside substrate in the egg zona pellucida (Lopez, L. C., E. M. Bayna, D. Litoff, N. L. Shaper, J. H. Shaper, and B. D. Shur, 1985, J. Cell Biol., 101:1501-1510). GalTase has been localized by indirect immunofluorescence to the dorsal surface of the anterior sperm head overlying the intact acrosome. Sperm binding to the zona pellucida triggers induction of the acrosome reaction, an exocytotic event that results in vesiculation and release of the outer acrosomal and overlying plasma membranes. Consequently, we examined the fate of sperm surface GalTase after the acrosome reaction. Contrary to our expectations, surface GalTase is not lost during the acrosome reaction despite the loss of its membrane domain. Rather, double-label indirect immunofluorescence assays show that GalTase is redistributed to the lateral surface of the sperm, coincident with the acrosome reaction. This apparent redistribution of GalTase was confirmed by direct enzymatic assays, which show that 90% of sperm GalTase activity is retained during the acrosome reaction. No GalTase activity is detectable on plasma membrane vesicles released during the acrosome reaction. In contrast, removal of plasma membranes by nitrogen cavitation releases GalTase activity from the sperm surface, showing that GalTase redistribution requires a physiological acrosome reaction. The selective redistribution of GalTase to a new membrane domain from one that is lost during the acrosome reaction suggests that GalTase is repositioned for some additional function after initial sperm-zona binding.  相似文献   

3.
The effect of vesicles of purified egg yolk phosphatidylcholine on the fertilizing capacity and acrosome breakdown of amphibian spermatozoa was studied. When Bufo arenarum spermatozoa were incubated with either small unilamellar vesicles (prepared by sonication) or with large unilamellar vesicles (prepared by reverse-phase evaporation) a decrease in the fertilizing capacity of spermatozoa was found. At the same phosphatidylcholine concentration, large unilamellar vesicles were more inhibitory than small unilamellar vesicles. The inhibition was dependent upon the phospholipid concentration and the length of the incubation period. Small unilamellar vesicles did not modify the time course of acrosome breakdown in Leptodactylus chaquensis , while large unilamellar vesicles markedly accelerated the rate of acrosome breakdown. In both biossays, the charge of the vesicles (made either positive or negative by the addition of 5% stearylamine or 5% phosphatidic acid) did not influence their biological effect. Multilamellar vesicles did not alter the fertilizing capacity nor the acrosome breakdown. We conclude that the size and the structure of the vesicles are important parameters in determining the inhibitory capacity of phosphatidyl choline on amphibian fertilization.  相似文献   

4.
In order to study the acrosome reaction in boar, spermatozoa were incubated in a calcium-containing medium in the presence of the calcium ionophore A23187. The time course of the acrosome reaction was assessed by phase-contrast microscopy and correlated with the movement characteristics of the spermatozoa determined by means of multiple-exposure photography (MEP). Different stages of the acrosome reaction could be observed by indirect immunofluorescence using an antibody fraction raised in rabbits against the isolated outer acrosomal membrane (OAM). At the start of the acrosome reaction, a bright fluorescence located exclusively at the acrosomal cap of the sperm head could be observed, whereas after 60-120 min, the fluorescence vanished, indicating the complete loss of the OAM. However, to gain more insight into the stages of the plasma membrane and OAM during the acrosome reaction, immunoelectron-microscopical studies were performed using anti-OAM antibodies detected by the protein-A gold method. Ultrathin sections and total preparations in combination with transmission electron microscopy (TEM) confirmed, that boar spermatozoa start their acrosome reaction by a vesiculation of the plasma membrane, thus exposing the heavily labelled OAM, which is then lost as sheets or large vesicles. The newly exposed inner acrosomal membrane did not show any labelling with gold, thereby indicating clear differences in the antigenicity of both acrosomal membranes.  相似文献   

5.
Summary In order to study the acrosome reaction in boar, spermatozoa were incubated in a calcium-containing medium in the presence of the calcium ionophore A23187. The time course of the acrosome reaction was assessed by phasecontrast microscopy and correlated with the movement characteristics of the spermatozoa determined by means of multiple-exposure photography (MEP). Different stages of the acrosome reaction could be observed by indirect immunofluorescence using an antibody fraction raised in rabbits against the isolated outer acrosomal membrane (OAM). At the start of the acrosome reaction, a bright fluorescence located exclusively at the acrosomal cap of the sperm head could be observed, whereas after 60–120 min, the fluorescence vanished, indicating the complete loss of the OAM. However, to gain more insight into the stages of the plasma membrane and OAM during the acrosome reaction, immunoelectron-microscopical studies were performed using anti-OAM antibodies detected by the protein-A gold method. Ultrathin sections and total preparations in combination with transmission electron microscopy (TEM) confirmed, that boar spermatozoa start their acrosome reaction by a vesiculation of the plasma membrane, thus exposing the heavily labelled OAM, which is then lost as sheets or large vesicles. The newly exposed inner acrosomal membrane did not show any labelling with gold, thereby indicating clear differences in the antigenicity of both acrosomal membranes.  相似文献   

6.
Spermatids and epididymal spermatozoa from wild burrowing hystricognate rodents were examined. Structural defects affected the acrosome, the nucleus and the tail, and were similar to those found in the developing germ cells and spermatozoa from domestic mammals and man. The acrosome vesiculation of epididymal spermatozoa from hystricognate rodents might not be necessarily an abnormality and may represent a step in the acrosome reaction. Major abnormalities, such as invagination of the acrosome granule, incorporation of lytic vesicles into the forming acrosome, detachment of the acrosome from the flat surfaces of the nucleus, invagination of the nuclear envelope, and the occurrence of multinucleated and multitailed elements may be caused by a variety of factors, but those related to seasonal reproduction (breeding season) should not be neglected.  相似文献   

7.
The ultrastructure of the spontaneous acrosome reaction in ram spermatozoa has been compared with that induced by the ionophore, A23187. The spontaneous event was dependent on incubation for 4 h, on the temperature, and on dilution. Apart from the more rapid occurrence of the ionophore-induced event, the mean diameter and distribution of vesicle size was also different. The ionophore-induced vesicles were larger, more irregular, and heterogeneous in size compared with those occurring in the spontaneous acrosome reaction (average diameter 84 nm vs. 60 nm in the spontaneous acrosome reaction). These observations are interpreted in relation to capacitation.  相似文献   

8.
ChangesofConAReceptorSitesonMammalianSpermsduringCapacitationandAcrosomeReactionDUANChong-wen(段崇文),CHENDa-yuan(陈大元)(StateKeyL...  相似文献   

9.
The role of microtubule-based trafficking in acrosomal biogenesis was examined by studying the effects of colchicine on spermiogenesis. In electron micrographs of untreated cap-phase mouse spermatids, coated vesicles were always seen on the apex and caudal margins of the developing acrosomal cap. The increase in volume and the accumulation of materials in the acrosome during the Golgi and cap phases were observed to occur via fusion of vesicles at various sites on the growing acrosome. By studying the acid phosphatase localization pattern and colchicine-treated spermatids, the role of clathrin-coated vesicles became clear. Coated vesicle formation at the caudal margin of the acrosome appeared to be responsible for the spreading and shaping of the acrosome over the surface of the nucleus and also established distinct regional differences in the acrosome. In colchicine-treated spermatids, the Golgi apparatus lost its typical membranous stack conformation and disintegrated into many small vesicles. Acrosome formation was retarded, and there was discordance of the spread of the acrosomal cap with that of the modified nuclear envelope. Many symplasts were also found because of the breakdown of intercellular bridges. Colchicine treatment thus indicated that microtubule-dependent trafficking of transport vesicles between the Golgi apparatus and the acrosome plays a vital role in acrosomal biogenesis. In addition, both anterograde and retrograde vesicle trafficking are extensively involved and seem to be equally important in acrosome formation. This work was supported by grants 83-0211-B-002-184 and 93-2320-B-320-012 from the National Science Council, Taiwan, Republic of China.  相似文献   

10.
The Acrosome Reaction Induced by Dimethylsulfoxide in Sea Urchin Sperm   总被引:1,自引:1,他引:0  
The acrosome reaction in sea urchin sperm, as judged by disappearance of the acrosomal vesicles in Nomarski optics, was induced by dimethylsulfoxide (DMSO) at concentration above 0.1% in normal artificial sea water. The number of the acrosome-reacted spermatozoa increased in proportion to DMSO concentration. The DMSO-induced acrosome reaction, as well as the jelly water- or A23187-induced one, was inhibited by nifedipine and hardly occurred in Ca2+-free artificial sea water. However, the DMSO-induced acrosome reaction was found in a few number of spermatozoa in the presence of Ca2+at above 0.5 mM, though the jelly water- or A23187-induced acrosome reaction did not occur at external Ca2+levels lower than 1 mM. Dependency of the acrosome reaction by DMSO on external Ca2+is somewhat lower than that of the reaction by jelly water. In Ca2+-free artificial sea water, the acrosomal regions of DMSO-treated spermatozoa attached to their own tails. In some cases, spermatozoa thus treated with DMSO in Ca2+free artificial sea water caused formation of fertilization membrane in a few number of eggs kept in Ca2+-free artificial sea water. Even in the absence of extermal Ca2+, preliminary step of the acrosome reaction seems to be completed probably by DMSO-induced weak Ca2+-mobilization in spermatozoa.  相似文献   

11.
Summary Ejaculated bull spermatozoa (SZ) were washed and incubated with a cationic surface active agent, Hyamine 2389, and centrifuged using 2-step discontinuous sucrose density gradient. The washed SZ, Hyamine-treated SZ and subcellular spermatozoal fractions obtained after centrifugation were prepared for electron microscopy. The washing did not cause any major structural changes in SZ. The Hyamine treatment of SZ disrupted the outer acrosome membranes. The anterior part of acrosome (the acrosomal cap) was detached retaining its integrity, or forming vesicles by fusing with the cell membrane as in true acrosome reaction. Because of this structural similarity in vesicle formation, Hyamine is assumed to be a suitable experimental initiator for acrosome reaction. The loosened acrosomal membranes were harvested almost totally by the centrifugation. The acrosomes were seen as loosened U-shaped unbroken acrosomal caps or as vesicles with fuzzy acrosomal material. The lightest particles were vesicles consisting of smooth membranes, formed evidently of sperm cell membrane. A negligible amount of fibrous sheaths were also among acrosomal membranes but no other sperm parts were encountered.The authors are thankful to Mrs. Marita Aaltonen, Mrs. Sirpa From, Miss Ulla Mäntylä, Mr. Mauno Lehtimäki and Mr. Urpo Reunanen for their skilful technical assistance.  相似文献   

12.
Mammalian spermatozoa must complete an acrosome reaction prior to fertilizing an oocyte. The acrosome reaction is a unique exocytotic event involving a series of prolonged membrane fusions that ultimately result in the production of membrane vesicles and release of the acrosomal contents. This event requires the concerted action of a large number of fusion-competent signaling and scaffolding proteins. Here we show that two different members of the dynamin GTPase family localize to the developing acrosome of maturing mouse germ cells. Both dynamin 1 and 2 also remain within the periacrosomal region of mature mouse spermatozoa and are thus well positioned to regulate the acrosome reaction. Two pharmacological inhibitors of dynamin, dynasore and Dyngo-4a, blocked the in vitro induction of acrosomal exocytosis by progesterone, but not by the calcium ionophore A23187, and elicited a concomitant reduction of in vitro fertilization. In vivo treatment with these inhibitors also resulted in spermatozoa displaying reduced acrosome reaction potential. Dynamin 1 and 2 phosphorylation increased on progesterone treatment, and this was also selectively blocked by dynasore. On the basis of our collective data, we propose that dynamin could regulate specific membrane fusion events necessary for acrosomal exocytosis in mouse spermatozoa.  相似文献   

13.
Soluble N-ethylmalameide-sensitive factor attachment protein receptor (SNARE) proteins are present in mammalian sperm and could be involved in critical membrane fusion events during fertilization, namely the acrosome reaction. Vesicle-associated membrane protein/synaptobrevin, a SNARE on the membrane of a vesicular carrier, and syntaxin 1, a SNARE on the target membrane, as well as the calcium sensor synaptotagmin I, are present in the acrosome of mammalian sperm (human, rhesus monkey, bull, hamster, mouse). Sperm SNAREs are sloughed off during the acrosome reaction, paralleling the release of sperm membrane vesicles and acrosomal contents, and SNARE antibodies inhibit both the acrosome reaction and fertilization, without inhibiting sperm-egg binding. In addition, sperm SNAREs may be responsible, together with other sperm components, for the asynchronous male DNA decondensation that occurs following intracytoplasmic sperm injection, an assisted reproduction technique that bypasses normal sperm-egg surface interactions. The results suggest the participation of sperm SNAREs during membrane fusion events at fertilization in mammals.  相似文献   

14.
We describe a new cytochemical method for ultrastructural localization of intracellular calcium stores. This method uses fluoride ions for in situ precipitation of intracellular calcium during fixation. Comparisons made using oxalate, antimonate, or fluoride showed that fluoride was clearly superior for intracellular calcium localization in eggs of the sea urchin Strongylocentrotus purpuratus. Whereas oxalate generally gave no intracellular precipitate and antimonate gave copious but random precipitate, three prominent calcium stores were detected using fluoride: the tubular endoplasmic reticulum, the cortical granules, and large, clear, acidic vesicles of unknown function. The mitochondria of these eggs generally showed no detectable calcium deposits. X-ray spectra confirmed the presence of calcium in the fluoride precipitates, although in some cases magnesium was also detected. Rat skeletal muscle and sea urchin sperm were used to test the reliability of the fluoride method for calcium localization. In rat skeletal muscle, most fluoride precipitate was confined to the sarcoplasmic reticulum. Using sea urchin sperm, which transport calcium into the mitochondria after exposure to egg jelly to induce the acrosome reaction, the expected result was also obtained. Before the acrosome reaction, sperm mitochondria contain no detectable calcium-containing precipitate. Within 4 min after induction of the acrosome reaction, the expected result was also obtained. Before the acrosome reaction, sperm mitochondria displayed many foci of calcium-containing precipitate. The use of fluoride for intracellular calcium localization therefore appears to be a substantial improvement over previous cytochemical methods.  相似文献   

15.
Changes in the plasma membrane permeability of echinoderm sperm play a fundamental role in the acrosome reaction. During the reaction there is an increase in intracellular Ca2+ and Na+ and an efflux of H+ and K+. We have formed bilayers at the tip of patch pipets from a mixture of lipid vesicles and sea urchin sperm plasma membranes (12-50 microgram protein/ml). We observed three types of K+ channels (conductances: 22, 46, and 82 pS), two of which are partially blocked by TEA, and one Cl- channel (148 pS). The presence of K+ channels in sperm plasma membranes is consistent with the inhibition by TEA of the acrosome reaction in whole sperm and the membrane potential change that occurs during the reaction.  相似文献   

16.
Calcium was identified by a pyroantimonate-osmium fixation technique in ram spermatozoa undergoing a spontaneous acrosome reaction induced by incubation of diluted semen at 39°C. Intracellular calcium was only detected in diluted spermatozoa and increased in amount and distribution over 4 hr At 4 hr, the majority of the spermatozoa displayed ultrastructural evidence of an acrosome reaction. Calcium was initially evident on the outer acrosomal membrane in multiparticulate clusters, which were seen to be located on scalloped crests of acrosomal membrane as fusion developed; it was also located in the region of the acrosomal ridge beneath the outer acrosomal membrane. Vesiculation commenced just anterior to the equatorial segment and proceeded anteriorly. As vesiculation advanced, calcium particles became associated with the periphery of the vesicles attached in the region of the fusion between the two membranes, but were never seen inside the vesicles. The equatorial segment was not labelled until much later in the reaction, at which time calcium particles were also evident on the nuclear membrane; vesiculation of the equatorial segment was also noted at this time. Dense labelling of the postacrosomal dense lamina was seen in all incubated spermatozoa. At the anterior margin of this structure the labelling was seen to be in a “sawtooth” arrangement. The disposition of the calcium both temporally and spatially is discussed in relation to its possible mechanisms in bringing about membrane fusion. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Spermatozoa of the hagfishes Eptatretus burgeri and Eptatretus stouti, caught in the sea near Japan and North America, respectively, were found to undergo the acrosome reaction, which resulted in the formation of an acrosomal process with a filamentous core. The acrosomal region of spermatozoa of E. stouti exhibited immunofluorescent labeling using an actin antibody. The midpiece also labeled with the antibody. The acrosomal region showed a similar labeling pattern when sperm were probed with tetramethylrhodamine isothyocyanate (TRITC)-phalloidin; the midpiece did not label. Following induction of the acrosome reaction with the calcium (Ca2+) ionophore ionomycin, TRITC-phalloidin labeling was more intense in the acrosomal region, suggesting that the polymerization of actin occurs during formation of the acrosomal process, as seen in many invertebrates. The potential for sperm to undergo acrosomal exocytosis was already acquired by late spermatids. During acrosomal exocytosis, the outer acrosomal membrane and the overlying plasma membrane disappeared and were replaced by an array of vesicles; these resembled an early stage of the acrosome reaction in spermatozoa of higher vertebrates in which no formation of an acrosomal process occurs. It is phylogenetically interesting that such phenomena occur in spermatozoa of hagfish, a primitive vertebrate positioning between invertebrates and high vertebrates.  相似文献   

18.

Background  

The presence of small membranous particles characterizes the male genital fluids of different mammalian species. The influence of semen vesicles, denominated prostasomes, on sperm functional properties has been well documented in humans, but their biological activity is scarcely known in other species. The present work investigated prostasome-like vesicles in pig semen for their ability to interact with spermatozoa and to affect acrosome reaction.  相似文献   

19.
The spermatozoa of the musk shrew, Suncus murinus, have a fan-like giant acrosome with a diameter of approximately 20 mm. The aim of this study was to investigate how this giant acrosome is constructed in the musk shrew spermatid and, in particular, how the Golgi apparatus involved in acrosome formation behaves. The behaviour of the Golgi apparatus was monitored by confocal laser scanning microscopy with antibody against a Golgi-associated Rab6 small GTPase. In the early Golgi phase, small Golgi units, the Golgi satellites, localized as a large aggregate in the juxtanuclear cytoplasm. As acrosome formation progressed, the Golgi satellites gradually dispersed, associated with proacrosomal vesicles and an acrosomal vesicle, and finally became distributed as multiple small units over the whole surface of an acrosomal cap in the round spermatid. The mode of acrosome formation in musk shrews was distinctly different from that in rats and mice, in which the Golgi apparatus remains as a single unit throughout acrosome formation. In musk shrews, the proacrosomal vesicles formed successively by the Golgi satellites coalesced, one after another, into a potential acrosomal vesicle. This process may result in further enlargement of the acrosome. The results of the present study indicate that Golgi satellites are necessary for the biogenesis and development of the giant acrosome in musk shrew spermatozoa.  相似文献   

20.
The morphological and biochemical characteristics of the acrosome depart well from any other vesicles in somatic cells, making it one of a kind amongst secretory vesicles. The components of the acrosome include a mixture of unique enzymes like acrosin and other enzymes that when present in somatic cells are commonly found in lysosomes, peroxisomes, and even in the cytoplasm. Several observations have pointed out that acrosomal biogenesis has unique features not previously described in secretory vesicle biogenesis of somatic cells. In this review we discuss the evidence supporting a molecular link between the machinery involved in lysosome and acrosome biogenesis, link which may help account for the acrosome unique composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号