首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 98 毫秒
1.
冯北元  徐慕禹 《动物学报》1992,38(4):446-447
哺乳类精子需要经过获能及顶体反应才能使卵子受精,现在已经明确细胞外 Ca~(2+)离子对顶体反应是必需的(Yanagimachi and Usui,1974),但迄今对 Ca~(2+)离子调控顶体反应的生化过程还很不清楚。 顶体反应是在质膜与顶体外膜之间发生囊泡化作用的过程,因此对顶体反应分子机理的了解,必须对精子膜的物理及生化性质有清楚的认识,这方面的研究指出,精子膜电位的变化似乎并非调控离子交换的机制(Rink,1977),精子膜上的电位闸门通道也可能不参与 Ca~(2+)离子的内流(Roldan et  相似文献   

2.
三疣梭子蟹精子顶体反应前后胞内Ca~(2+)的变化   总被引:1,自引:0,他引:1  
应用激光扫描共聚焦显微镜(LSCM)和Fluo-3/AM荧染技术对三疣梭子蟹精子顶体反应前后的胞内Ca2 变化进行了观察和检测.结果显示,在精子顶体反应过程中,胞内Ca2 主要分布在细胞核、穿孔器和胞质膜残存处,胞内Ca2 浓度([Ca2 ]I)总体上呈现先上升后下降的趋势.顶体反应前精子的平均荧光强度为35.95±5.71;穿孔器前伸、顶体囊膜翻转阶段精子的平均荧光强度为66.80±7.35;顶体囊膜脱落、顶体丝形成阶段精子的平均荧光强度为3.87±2.82;上述各阶段间精子荧光强度有极显著差异(P<0.01).顶体反应穿孔器前伸、顶体囊膜翻转阶段的精子相比顶体反应前精子,[Ca2 ]I显著提高;而在顶体囊膜脱落、顶体丝形成阶段,[Ca2 ]I则急剧下降,只在顶体丝基部胞质膜残存处有微量Ca2 存在.初步探讨了三疣梭子蟹精子顶体反应前后胞内Ca2 变化的功能.  相似文献   

3.
三疣梭子蟹精子顶体反应过程中的形态和结构变化   总被引:10,自引:0,他引:10  
朱冬发  王春琳  余红卫  周帅 《动物学报》2004,50(5):800-807,i001,i002
用离子载体A2 3187和卵水人工诱导三疣梭子蟹精子的顶体反应 ,分别获得 75 33%和 84 83%的顶体反应率。应用光镜和电镜技术观察了顶体反应前后精子形态和结构的变化。未处理精子呈陀螺形 ,由顶体、核杯和 5 - 10条核辐射臂组成。顶体包括顶体囊和顶体管。顶体囊的伞形头帽拥有约 70条辐射肋。连续发生的精子顶体反应过程被人为地分为四个阶段 :(1)头帽鼓起 ;(2 )顶体囊外翻 ;(3)穿孔器前伸 ,顶体囊膜翻转 ;(4 )顶体囊膜脱落 ,顶体丝形成。直到第四阶段才观察到钉状精子的辐射臂开始收缩。探讨了辐射臂和穿孔器前冲在精子入卵中的功能  相似文献   

4.
小鼠附睾头精子,其头部Ca~(2 )在顶体前区顶体外膜内侧结合最多,Ca~(2 )沉淀反应颗粒于该处呈连续层状。附睾头豚鼠精子其头部结合Ca~(2 )含量很少,且主要结合于顶体前区腹面顶体外膜内侧。小鼠附睾体和附睾尾精子Ca~(2 )的分布特征基本上和附睾头精子相同。但豚鼠附睾尾精子顶体外膜内侧无Ca~(2 )结合。和附睾头、附睾尾的附睾液相比,附睾体附睾液基质内具有大量Ca~(2 )存在。附睾体柱状上皮细胞的微绒毛切面上也具有Ca~(2 )沉淀反应颗粒,微绒毛可能与附睾液Ca~(2 )含量的调节有关。精子尾部Ca~(2 )主要分布于线粒体内,在质膜内、外两侧和线粒体外膜外侧也结合有少量的Ca~(2 )。和小鼠精子相比,豚鼠精子尾部线粒体内具有大量的Ca~(2 )。  相似文献   

5.
大熊猫精子获能和顶体反应过程中钙分布变化规律的研究   总被引:2,自引:2,他引:0  
李明文  张福祥 《动物学报》1995,41(4):420-424
应用焦锑酸钾原位定位法对大熊猫精子获能和顶体反应过程中进行钙定位研究,发现未获能精子的 Ca2+主要结合于顶体前区和赤道段质膜外侧和顶体内膜内侧(核膜侧);随着获能的进行,Ca2+进入精子内部并主要结合于顶体区质膜内侧和顶体外膜外侧;顶体反应的精子,Ca2+结合于顶体内膜外侧、顶体后区质膜外侧和分散存在于释放的顶体内容物中,有些顶体反应精子的顶体内膜外侧结合的Ca2+特别丰富。精子尾部的Ca2+主要分布于中段线粒体内,且其内所含Ca2+含量随着获能和顶体反应而增加。另外尾部致密纤维和轴丝处也有少量Ca2+分布。  相似文献   

6.
《生命科学研究》2016,(6):548-554
精子顶体反应是指精子顶体外膜与精子质膜发生细胞内多点融合的反应,其过程属于特殊的胞吐过程。精子顶体反应是一个复杂严谨的生理过程,不仅需要诱导剂的诱导,还需要多种相关膜融合蛋白的参与。SNARE蛋白及其相关蛋白能够调控哺乳动物细胞内的融合,尤其在精子顶体反应过程中发挥着重要作用。其中SNARE蛋白是核心成分,与其相关蛋白相互作用,共同参与精子顶体反应过程。现主要对SNAREs、Rab、Munc-18、complexin、synaptotagmin和α-SNAP等蛋白质在精子顶体反应中的作用进行概述。  相似文献   

7.
中华绒螯蟹(Eriocheir sinensis)精子顶体反应的研究   总被引:17,自引:6,他引:11  
分别用卵水、海水、caCl_2或NaCl水溶液对中华绒螯蟹成熟精子进行人工诱导顶体反应,结果表明:精子的生理性成熟、同种卵或Ca~(++)的存在、碱性环境以及与一定的固体接触均为精子顶体反应触发的重要条件。3月份精子诱导率最高。 电镜观察证明,中华绒螯蟹精子的顶体反应可分四个阶段:(1)辐射臂收缩;(2)顶体囊外翻;(3)顶体管前伸;(4)片层结构脱落。  相似文献   

8.
睾丸特异性丝氨酸/苏氨酸蛋白激酶(Testis-SpecificSerine/Threonine Kinases,TSSKs)可能在精子发生和(或)精子功能调节中起着重要作用,该文研究克隆并表达了小鼠Tssk1和Tssk2基因,纯化得到了Tssk1和Tssk2蛋白激酶,经Western blotting分析,Tssk1和Tssk2皆存在于小鼠和人的成熟精子中。免疫组化的结果显示,Tssk1分布于小鼠的头部(顶体)及整个尾部,Tssk2主要分布在小鼠精子头部顶体后的区域;获能前后的小鼠精子其Tssk1及Tssk2分布模式未发生改变,小鼠Tssk2在诱发顶体反应前后精子中的分布模式也无变化。然而,原来存在于顶体的Tssk1在诱发顶体反应后由于顶体的丢失而未能检出其信号,但尾部的信号不受影响。在人精子中,Tssk1分布区域为颈部及尾部,Tssk2则分布于赤道板的位置。研究结果提示,Tssk1和Tssk2可能对精子功能具有重要调节作用。  相似文献   

9.
精子只有经过获能和顶体反应,才能与卵融合。本文对以体外诱导的顶体反应人精子作为免疫原制备的23个单克隆抗体进行了一系列鉴定,结果表明:所得单克隆抗体的间接免疫荧光染色,主要定位在人精子的赤道板和中段,没有发现定位于顶体及顶体后的单克隆抗体。某些单克隆抗体的间接免疫荧光染色部位在顶体反应后发生了改变。有18个单克隆抗体显示程度不同的精子凝集作用,未发现有精子制动作用的单克隆抗体。免疫印迹证实,有9个单克隆抗体的靶抗原是蛋白质类物质。  相似文献   

10.
研究2,4-D诱导枸杞体细胞胚发生中的作用及其与Ca~(2+)含量和ATPase活性时空分布动态之间的关系,以探讨2,4-D诱导植物体细胞胚发生的作用机理。采用超微细胞化学定位的方法,跟踪分析了体细胞胚发生与发育的不同时期,Ca~(2+)和ATPase活性的时空分布动态。结果表明:2,4-D是诱导离体培养的枸杞体细胞进入胚胎状态的关键激素。在含有2,4-D和不含2,4-D的培养条件下,分别诱导枸杞体细胞脱分化后,再转入除去2,4-D的MS培养基上,进行分化培养,结果前者可分化形成体细胞胚,因而称为胚性愈伤组织。后者在相同条件却不能分化形成胚,故称为非胚性愈伤组织。在2,4-D诱导枸杞的胚性愈伤组织中,胚性细胞分化早期的细胞间隙和细胞壁上均有Ca~(2+)沉淀。随着胚性细胞的分化、分裂和多细胞原胚形成,这时Ca~(2+)在细胞内的分布主要集中在细胞膜和液泡膜上;球形胚期在细胞核中Ca~(2+)呈弥散性分布。在此过程中,ATPase活性时空分布与Ca~(2+)的定位变化具有高度一致性,仅仅稍滞后于Ca~(2+)出现的时间。而在胚性细胞分化早期,ATPase活性同样位于质膜上,随后在液泡和细胞核都可见ATPase活性分布。而在非胚性愈伤组织中,则未见Ca~(2+)和ATPase活性呈时空动态分布,而且随着非胚性细胞的液泡化,无论是Ca~(2+)含量,还是ATPase活性都呈逐渐降低的趋势。表明Ca~(2+)和ATPase活性变化与2,4-D诱导的胚性细胞分化和发育密切相关。并由此推测,Ca~(2+)和ATPase的时空分布对胚性细胞分化中的信息传递和调控相关基因表达起着关键性作用。  相似文献   

11.
Calcium was localized by a pyroantimonate technique in hamster spermatozoa during the acrosome reaction and pyroantimonate precipitates were observed in the anterior region of the acrosome. The calcium was also localized in the postacrosomal lamina of spermatozoa undergoing the acrosome reaction. Spermatozoa, incubated in capacitating medium containing verapamil, showed denser precipitates with an increase in concentration of this drug. Ionophore A23187 enhanced binding of calcium to the acrosomal region. The sodium channel inhibitor amiloride inhibited the acrosome reaction and the pyroantimonate precipitates were absent in these spermatozoa, whereas ionophore monensin enhanced the acrosome reaction. This suggests that the Na+/Ca++ antiporter may be responsible for intracellular Ca++ regulation during the acrosome reaction in hamster spermatozoa.  相似文献   

12.
Calcium was identified by a pyroantimonate-osmium fixation technique in ram spermatozoa undergoing a spontaneous acrosome reaction induced by incubation of diluted semen at 39°C. Intracellular calcium was only detected in diluted spermatozoa and increased in amount and distribution over 4 hr At 4 hr, the majority of the spermatozoa displayed ultrastructural evidence of an acrosome reaction. Calcium was initially evident on the outer acrosomal membrane in multiparticulate clusters, which were seen to be located on scalloped crests of acrosomal membrane as fusion developed; it was also located in the region of the acrosomal ridge beneath the outer acrosomal membrane. Vesiculation commenced just anterior to the equatorial segment and proceeded anteriorly. As vesiculation advanced, calcium particles became associated with the periphery of the vesicles attached in the region of the fusion between the two membranes, but were never seen inside the vesicles. The equatorial segment was not labelled until much later in the reaction, at which time calcium particles were also evident on the nuclear membrane; vesiculation of the equatorial segment was also noted at this time. Dense labelling of the postacrosomal dense lamina was seen in all incubated spermatozoa. At the anterior margin of this structure the labelling was seen to be in a “sawtooth” arrangement. The disposition of the calcium both temporally and spatially is discussed in relation to its possible mechanisms in bringing about membrane fusion. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Indirect immunofluorescence studies with polyclonal antibodies show that caltrin binds to the plasma membrane over the acrosome and principal tail regions of bovine spermatozoa but not to the postacrosomal area or the midpiece. Calcium influx into bovine epididymal spermatozoa maintained in a simple salt medium containing DL-beta-hydroxybutyrate is prevented by caltrin freshly prepared from bovine seminal plasma through a procedure employing only gel permeation columns. Older preparations, on the other hand, enhance calcium uptake into these cells. Caltrin freshly prepared through a purification scheme that includes a cation exchanger only induces enhancement of calcium uptake into bovine epididymal spermatozoa maintained under identical conditions. It is postulated that early during sperm transit through the female reproductive tract, caltrin bound to the sperm plasma membrane protects the sperm cells from calcium influx. As the cells enter the oviduct where meeting with the egg could take place, factors present in the surrounding milieu may cause caltrin to change from an inhibitor to an enhancer of calcium uptake. The acrosome reaction and possibly hyperactivation, two components of capacitation that require calcium influx as an initial event, then take place.  相似文献   

14.
Summary In order to study the acrosome reaction in boar, spermatozoa were incubated in a calcium-containing medium in the presence of the calcium ionophore A23187. The time course of the acrosome reaction was assessed by phasecontrast microscopy and correlated with the movement characteristics of the spermatozoa determined by means of multiple-exposure photography (MEP). Different stages of the acrosome reaction could be observed by indirect immunofluorescence using an antibody fraction raised in rabbits against the isolated outer acrosomal membrane (OAM). At the start of the acrosome reaction, a bright fluorescence located exclusively at the acrosomal cap of the sperm head could be observed, whereas after 60–120 min, the fluorescence vanished, indicating the complete loss of the OAM. However, to gain more insight into the stages of the plasma membrane and OAM during the acrosome reaction, immunoelectron-microscopical studies were performed using anti-OAM antibodies detected by the protein-A gold method. Ultrathin sections and total preparations in combination with transmission electron microscopy (TEM) confirmed, that boar spermatozoa start their acrosome reaction by a vesiculation of the plasma membrane, thus exposing the heavily labelled OAM, which is then lost as sheets or large vesicles. The newly exposed inner acrosomal membrane did not show any labelling with gold, thereby indicating clear differences in the antigenicity of both acrosomal membranes.  相似文献   

15.
In order to study the acrosome reaction in boar, spermatozoa were incubated in a calcium-containing medium in the presence of the calcium ionophore A23187. The time course of the acrosome reaction was assessed by phase-contrast microscopy and correlated with the movement characteristics of the spermatozoa determined by means of multiple-exposure photography (MEP). Different stages of the acrosome reaction could be observed by indirect immunofluorescence using an antibody fraction raised in rabbits against the isolated outer acrosomal membrane (OAM). At the start of the acrosome reaction, a bright fluorescence located exclusively at the acrosomal cap of the sperm head could be observed, whereas after 60-120 min, the fluorescence vanished, indicating the complete loss of the OAM. However, to gain more insight into the stages of the plasma membrane and OAM during the acrosome reaction, immunoelectron-microscopical studies were performed using anti-OAM antibodies detected by the protein-A gold method. Ultrathin sections and total preparations in combination with transmission electron microscopy (TEM) confirmed, that boar spermatozoa start their acrosome reaction by a vesiculation of the plasma membrane, thus exposing the heavily labelled OAM, which is then lost as sheets or large vesicles. The newly exposed inner acrosomal membrane did not show any labelling with gold, thereby indicating clear differences in the antigenicity of both acrosomal membranes.  相似文献   

16.
Experiments to bind fluorescein-conjugated Arachis hypogea (peanut) agglutinin (FITC-PNA) to washed human spermatozoa demonstrated that this lectin binds to the acrosome region in air-dried preparations. Since there was no binding when labelling was performed in suspension, and comparable labelling to that seen in air-dried preparations was seen when spermatozoa treated with saponin (to lyse the plasma membrane) were labelled in suspension, the lectin must bind to an intracellular structure, probably the outer acrosomal membrane. This was confirmed by ultrastructural localization of colloidal gold-conjugated lectin in saponin-treated spermatozoa. Treatment of spermatozoa with the detergent Nonidet P-40 caused a marked change in the binding pattern: more spermatozoa showed binding in the equatorial segment of the acrosome with no binding in the anterior cap region. A comparable, less marked, change was seen when spermatozoa were incubated overnight under conditions known to support the capacitation and spontaneous acrosome reactions. Treatment with the calcium ionophore A23187 for 1 h to induce acrosome reactions artificially in uncapacitated spermatozoa resulted in the appearance of patchy acrosome fluorescence. From these experiments it is concluded that PNA binds specifically to the outer acrosomal membrane, and that FITC-PNA-labelling may be used to monitor the human sperm acrosome reaction.  相似文献   

17.
The intraacrosomal calcium pool plays a direct role in acrosomal exocytosis   总被引:9,自引:0,他引:9  
The acrosome reaction is a unique type of regulated exocytosis. The single secretory granule of the sperm fuses at multiple points with the overlying plasma membrane. In the past few years we have characterized several aspects of this process using streptolysin O-permeabilized human spermatozoa. Here we show that Rab3A triggers acrosomal exocytosis in the virtual absence of calcium in the cytosolic compartment. Interestingly, exocytosis is blocked when calcium is depleted from intracellular stores. By using a membrane-permeant fluorescent calcium probe, we observed that the acrosome actually behaves as a calcium store. Depleting calcium from this compartment by using a light-sensitive chelator prevents secretion promoted by Rab3A. UV inactivation of the chelator restores exocytosis. Rab3A-triggered exocytosis is blocked by calcium pump and inositol 1,4,5-trisphosphate (IP(3))-sensitive calcium channel inhibitors. Calcium measurements inside and outside the acrosome showed that Rab3A promotes a calcium efflux from the granule. Interestingly, release of calcium through IP(3)-sensitive calcium channels was necessary even when exocytosis was initiated by increasing free calcium in the extraacrosomal compartment in both permeabilized and intact spermatozoa. Our results show that a calcium efflux from the acrosome through IP(3)-sensitive channels is necessary downstream Rab3A activation during the membrane fusion process leading to acrosomal exocytosis.  相似文献   

18.
A simple dual staining procedure for detecting the true acrosome reaction in dried smears of buffalo spermatozoa is described. Trypan blue is used first to differentiate live from dead spermatozoa and the dried smears which have been prepared are stained with Giemsa for acrosome evaluation. Four categories of spermatozoa were recognized: A) live, intact acrosome (acrosome pink, postnuclear cap clear); B) dead, intact acrosome (acrosome pink, postnuclear cap blue); C) live, detached acrosome (acrosome clear, postnuclear cap clear); and D) dead, detached acrosome (acrosome clear, postnuclear cap blue). The procedure is simple, rapid and convenient for assessing true acrosome reaction in buffalo spermatozoa. Simultaneous assessment of sperm viability and its acrosomal status in dried smears makes this procedure attractive because the true acrosome reaction can be studied thoroughly at a later state after the incubation period.  相似文献   

19.
Goat epididymal and ejaculated spermatozoa were incubated in Krebs-Ringer bicarbonate buffer containing pyruvate and lactate as energy source. A 3 hr incubation for epididymal and 4 hr for ejaculated spermatozoa was required for the capacitation and acrosome reaction to take place. Calcium is an essential requirement which was needed for motility maintenance/activation and for the initiation of acrosome reaction. A 2-fold increase in cAMP content was measured over 3 hr period of incubation of goat epididymal spermatozoa which was not seen when calcium ions were either omitted or chelated with EGTA. There is thus a definite involvement of Ca2+ ions and cAMP in capacitation and acrosome reaction of goat spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号