首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以抗叶锈病小麦品系Hussar的衍生品系H103P为抗病亲本,郑州5389为感病亲本杂交得到的234个F4家系群体为材料,进行抗叶锈病基因定位分析。利用带有不同毒力的16个叶锈菌生理小种进行苗期抗叶锈性鉴定,结果表明周麦22及携带Lr13、Lr23和Lr16单基因的载体品种对16个叶锈菌生理小种均表现感病,H103P对除PHKT外的所有小种表现抗病,表明H103P抗叶锈性与携带Lr13、Lr23和Lr16单基因的载体品种不同。利用5种强毒力混合菌种(THTT、PHTT~((2))、FHJS~((2))、PHKS、PHTT~((1)))进行田间抗叶锈性鉴定,结果表明H103P、SAAR、周麦22以及Lr13载体品种田间表现均为高抗,234个F4家系群体抗性呈连续性分布,在田间表现出良好的成株期抗性。抗叶锈病基因定位分析结果表明,在小麦品系H103P中定位到1个位于小麦2BS染色体上的抗叶锈病基因,暂命名为LrHu。利用含有Lr13的特异性引物对H103P和郑州5389的扩增产物进行特异性酶切,结果发现小麦品系H103P含有抗叶锈病基因Lr13。小麦抗叶锈病基因LrHu与Lr13的关系还需...  相似文献   

2.
利用KHST、FHKT和FHJT②3个小麦叶锈菌混合菌株对182份小麦品种(系)进行苗期抗叶锈鉴定,对筛选出的抗性品种利用15个小麦叶锈菌生理小种进行基因推导,结合与20个抗叶锈基因连锁的25个分子标记进行抗叶锈基因分析。182份小麦品种(系)中,14个品种(泰科麦5303、驻麦305、豫圣麦118、存麦18号、轩麦6号、农丰川、丹麦118、郑麦103、郑麦119、赛德麦5号、郑麦369、许科918、豫麦668和AF116-120)表现抗性,其余品种(系)均表现高感;基因推导结果显示,驻麦305、存麦18号、农丰川、郑麦119、赛德麦5号、郑麦369、许科918含有抗叶锈基因Lr33+34;郑麦103含有抗叶锈基因Lr10和Lr33+34;AF116-120含有抗叶锈基因Lr10、Lr16、Lr20和Lr33+34;泰科麦5303、豫圣麦118、丹麦118和豫麦668可能含有其他抗叶锈基因;分子检测结果显示,农川丰、轩麦6号、郑麦103和许科918含有抗叶锈基因Lr1和Lr26;泰科麦5303、豫圣麦118、郑麦119和郑麦369含有抗叶锈基因Lr1;驻麦305、存麦18号和豫麦668含有抗叶锈基因Lr26;AF116-120含有抗叶锈基因Lr1和Lr2c;丹麦118含有抗叶锈基因Lr26和Lr37。所检测小麦品种含抗叶锈基因丰富度低,缺乏有效抗叶锈基因。182份黄淮海麦区小麦品种对小麦叶锈菌的抗病性及抗性品种中抗性基因组成的分析,可以为该地区小麦品种推广、合理布局及叶锈病防治与抗病育种提供科学依据。  相似文献   

3.
为明确河北省12个小麦主栽品种(系)的抗叶锈性及抗叶锈基因,在苗期选用20个不同毒性谱的小麦叶锈菌菌系接种12个小麦品种(系)以及37个含有已知抗叶锈病基因的载体品种以进行基因推导,同时利用11个与已知抗叶锈病基因紧密连锁的分子标记对12个品种(系)进行标记检测。为进一步鉴定成株期抗性,2014-2015年和2015-2016年连续2年分别在河北保定和河南周口对供试材料进行田间严重度调查。结果表明,在12个品种(系)中检测到Lr1、Lr26、LrB和Lr46共4个抗叶锈病基因,其中8个品种(系)推测含有Lr26,石新618可能含有Lr1,藁优2018可能含有LrB,冀5265可能含有Lr46。2年2点的田间鉴定结果表明,石新733、藁优2018和石优17为慢锈品种(系),可作为抗源材料加以利用。  相似文献   

4.
山东省12个主栽小麦品种(系)抗叶锈性分析   总被引:1,自引:0,他引:1  
本研究旨在明确山东省12个小麦主栽品种(系)抗叶锈性及抗叶锈基因,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据。利用2015年采自山东省的5个小麦叶锈菌流行小种的混合小种对这些材料进行苗期抗性鉴定,然后选用15个小麦叶锈菌生理小种对这些品种(系)进行苗期基因推导,并利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对其进行抗叶锈基因分子检测。结果显示,山东省12个主栽小麦品种(系)苗期对该省2015年的5个小麦叶锈菌混合流行小种均表现高度感病。通过基因推导与分子检测发现,济南17含有Lr16,矮抗58和山农20含有Lr26,其余济麦系列、烟农系列、良星系列等9个品种(系)均未检测到所供试标记片段。此外,本研究还对山东省3个非主栽品种进行了检测,结果发现,中麦175含有抗叶锈基因Lr1和Lr37,含有成株抗性基因;皖麦38只检测到Lr26,济麦20未检测到所供试标记片段。综合以上结果,山东省主栽小麦品种(系)所含抗叶锈基因丰富度较低,尤其不含有对我国小麦叶锈菌流行小种有效的抗锈基因,应该引起高度重视,今后育种工作应注重引入其他抗叶锈基因,提高抗叶锈性。  相似文献   

5.
为了明确河南省小麦品种的抗叶锈性及抗叶锈基因的分布,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据,本研究利用2015年采自河南省的5个小麦叶锈菌流行小种混合菌株,对近几年河南省16个主栽小麦品种进行了苗期抗性鉴定,然后选用12个小麦叶锈菌生理小种对这些品种进行苗期基因推导,同时利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对该16个品种进行了抗叶锈基因分子检测。结果显示,供试品种苗期对小麦叶锈菌混合流行小种均表现高度感病;基因推导与分子检测结果表明,供试品种可能含有Lr1、Lr16、Lr26和Lr30这4个抗叶锈基因,其中先麦8号含有Lr1和Lr26;郑麦366和郑麦9023含有Lr1;西农979和怀川916含有Lr16;中麦895、偃展4110、郑麦7698、平安8号、众麦1号、周麦16、衡观35和矮抗58含有Lr26;周麦22中含有Lr26,还可能含有Lr1和Lr30;豫麦49-198和洛麦23可能含有本研究中检测以外的其他抗叶锈基因。因此,河南省主栽小麦品种的抗叶锈基因丰富度较低,今后育种工作应注重引入其他抗叶锈性基因,提高抗叶锈性,有效控制小麦叶锈病。  相似文献   

6.
摘要:小麦叶锈病是小麦生产中的重要病害,培育持久抗叶锈性品种可以有效、经济地控制该病害。本文通过基因推导、分子检测结合系谱分析成株抗性鉴定对小麦重要生产品种中抗病基因进行分析,从而确定小麦品种中所携带的抗病基因。本试验用20个不同毒力的叶锈菌菌系、36个已知抗叶锈基因载体品种以及感病对照品种郑州5389对供试品种莱州137进行苗期抗叶锈病基因推导分析,并分别用12个与抗叶锈病基因连锁的分子标记进行目的基因的分子检测,同时利用系谱分析法来验证莱州137所携带的已知抗叶锈病基因;在2014-2015年度和2015-2016年度将莱州137、慢锈性对照品种SAAR和感病对照品种郑州5389种植于河北农业大学小麦试验田和河南周口黄泛区农场试验田,用田间混合生理小种(FHRT、THTT、THJT)接种进行成株期抗病性鉴定。结果表明,通过苗期基因推导分析,莱州137对小种FGBQ、PGJQ、TGTT、THSM、PHGM、PHST、FHJS、FHGQ、FNTQ、PRSQ和KHGQ表现抗病,而Lr26对FGBQ、PGJQ和TGTT高抗,Lr10和Lr14b分别对小种THSM、PHGM和PHST、PHGM、THTT表现高抗,同时系谱分析和分子检测也验证已知抗叶锈基因Lr26和Lr10,因此在供试品种莱州137中鉴定出Lr26、Lr10、Lr14b以及未知的抗叶锈病基因;根据2年2点的田间抗叶锈病鉴定,莱州137表现出成株抗性特点,且经分子标记检测该品种中未含有Lr34和Lr46,故小麦品种莱州137中含有未知的成株抗叶锈性基因,可作为新的小麦叶锈病抗源加以利用。  相似文献   

7.
小麦新抗源贵农775抗条锈性特征与遗传分析   总被引:1,自引:0,他引:1  
韩德俊  王宁  江峥  王琪琳  王晓杰  康振生 《遗传》2012,(12):1607-1613
发掘并利用不同类型抗条锈病基因,构建区域间抗病基因多样性差异布局,是阻遏条锈菌大区域传播、实现小麦条锈病持续控制的重要策略。为了明确小麦新抗源贵农775抗条锈性特征和抗性遗传规律,为其合理布局应用提供依据,文章利用10个条锈菌菌系进行苗期分小种鉴定;构建贵农775与感病品种Avocet(S)杂交后代F2:3及回交BC1遗传群体,利用小麦条锈菌流行小种CYR32和最近发现的对Yr26基因有毒性的新致病类型CH42,对贵农775进行抗条锈性遗传分析。结果表明,贵农775对包括CH42致病类型在内的所有10个供试菌系均表现为免疫或近免疫的抗病性反应,而中国当前主要条锈病抗源品种92R137、川麦42(YrCH42)、贵农22(YrGN22)及Yr24等均不抗CH42;抗病遗传分析结果表明,贵农775对小麦条锈菌小种CYR32和CH42的抗性分别由一对显性核基因控制,并且为不同的小种专化抗性基因。  相似文献   

8.
新疆的小麦品种(系)苗期和成株期抗叶锈性鉴定   总被引:1,自引:0,他引:1  
对来自新疆的104个小麦品种、高代品系及35个含有已知抗叶锈基因载体品种,在苗期接种12个中国小麦叶锈菌生理小种进行抗叶锈基因推导分析和分子检测;2007-2008年和2008-2009年连续2年度对这些材料进行成株抗叶锈性鉴定并筛选慢叶锈性品种。研究结果显示,在41个品种中共鉴定出6个已知抗叶锈基因Lr26、Lr34、Lr50、Lr3ka、Lr1和Lr14a,其中Lr26存在于21个品种中,Lr34在17个品种被发现,Lr1和Lr14a分别存在于3个品种中,还有2个品种携带Lr3ka以及1个品种携带Lr50。2年田间抗叶锈性鉴定筛选出7个慢叶锈性品种,可用于小麦抗病育种。  相似文献   

9.
5R618是高抗叶锈病小麦品系。为了确定该品系所携带的抗叶锈基因,以5R618与感病小麦品种郑州5389杂交获得F1,自交获得F2分离群体以及F2∶3家系,用叶锈菌生理小种THJP对亲本、F2分离群体以及F2∶3家系进行叶锈抗性鉴定,然后进行分子标记分析。结果显示,5R618对生理小种THJP的抗病性由1对显性基因控制,该基因暂命名为Lr5R。经过亲本和抗感池间分子标记筛选以及F2∶3家系的标记检测,Lr5R定位于染色体3DL上,barc71和STS24-16是Lr5R最近的2个标记,遗传距离分别为0.9 c M和2.1 c M。  相似文献   

10.
小麦叶锈病是影响小麦产量的最主要病害之一,CIMMYT品系19HRWSN-76高抗小麦叶锈病,以该品系与感病品系郑州5389杂交得到F2群体,利用叶锈菌生理小种FHJP对F2群体接菌鉴定,结果显示群体的抗感比例符合3∶1的理论比值,推测19HR WSN-76的抗叶锈性由一对显型基因控制,暂命名为Lr HR76。利用分子标记技术和分离群体分组分析法对F2群体进行分子标记检测,位于3DL的SSR标记barc71与该抗病基因连锁,遗传距离为3.0 c M。  相似文献   

11.
A method is described for establishing isolates of Puccinia recondita f. sp. tritici (causal agent of brown rust of wheat) on detached seedling leaf segments. The method was used to compare the responses of leaf segments and intact seedling leaves for 28 differential genotypes inoculated with eight rust isolates. Leaf segments were incubated at two post-inoculation temperatures (17 and 23C) and intact seedlings at 20–25 C. Reliable determinations of isolate pathogenicity was obtained using detached leaf segments of wheats with genes Lr l. Lr2a, Lr3a, Lr3bg., Lr3ka, Lr9, Lr15, Lrl9. Lr20, Lr24, Lr25. Lr26, Lr28, and Lr30 at both post-inoculation temperatures, and for wheats with genes Lr2b. Lr2c, Lrl7, Lr23, Lr27 + Lr31 and LrH, at 23°C. Differences between leaf segments and intact leaves for the remaining eight differentials were attributed to inconsistent or poor expression of genes in detached leaf segments. By repeating tests with detached leaf segments, it was possible to establish the pathogenicities of the isolates on all of these differentials except those carrying Lr13, Lr14a, Lr16 and Lr18. Potential uses and limitations of the technique in studies of Puccinia recondita f. sp. tritici are discussed.  相似文献   

12.
Leaf rust caused by Puccinia recondita f.sp. tritici is a wheat disease of worldwide importance. Wheat genotypes known to carry specific rust resistance genes and segregating lines that originated from various cross combinations and derived from distinct F2 lineage, so as to represent a diverse genetic background, were included in the present study for validation of molecular markers for Lr19 and Lr24. STS markers detected the presence of the leaf rust resistance gene Lr19 in a Thatcher NIL (Tc*Lrl9) and Inia66//CMH81A575 and of the gene Lr24 in the genotypes Arkan, Blue Boy II, Agent and CI 17907. Validation of molecular markers for Lr19 and Lr24 in parental lines, followed by successful detection of these genes in F3 lines from various cross combinations, was carried out. The molecular test corresponded well with the host-pathogen interaction test response of these lines.  相似文献   

13.
Inheritance of leaf rust and stem rust resistance in 'Roblin' wheat.   总被引:2,自引:0,他引:2  
P L Dyck 《Génome》1993,36(2):289-293
The Canadian common wheat (Triticum aestivum L.) cultivar 'Roblin' is resistant to both leaf rust (Puccinia recondita Rob. ex. Desm.) and stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn.). To study the genetics of this resistance, 'Roblin' was crossed with 'Thatcher', a leaf rust susceptible cultivar, and RL6071, a stem rust susceptible line. A set of F6 random lines was developed from each cross. The random lines and the parents were grown in a field rust nursery artificially inoculated with a mixture of P. recondita and P. graminis isolates and scored for rust reaction. The same material was tested with specific races of leaf rust and stem rust. These data indicated that 'Roblin' has Lr1, Lr10, Lr13, and Lr34 for resistance to P. recondita and Sr5, Sr9b, Sr11, and possibly Sr7a and Sr12 for resistance to P. graminis. In a 'Thatcher' background, the presence of Lr34 contributes to improve stem rust resistance, which appears also to occur in 'Roblin'.  相似文献   

14.
Over 100 genes of resistance to rust fungi: Puccinia recondita f. sp. tritici, (47 Lr - leaf rust genes), P. striiformis (18 Yr - yellow rust genes) and P. graminis f. sp. tritici (41 Sr - stripe rust genes) have been identified in wheat (Triticum aestivum L.) and its wild relatives according to recent papers. Sixteen Lr resistance genes have been mapped using restriction fragments length polymorphism (RFLP) markers on wheat chromosomes. More than ten Lr genes can be identified in breeding materials by sequence tagged site (STS) specific markers. Gene Lrk 10, closely linked to gene Lr 10, has been cloned and its function recognized. Available markers are presented in this review. The STS, cleaved amplified polymorphic sequence (CAPS) and sequence characterized amplified regions (SCAR) markers found in the literature should be verified using Triticum spp. with different genetic background. Simple sequence repeats (SSR) markers for Lr resistance genes are now also available.  相似文献   

15.
Thirty-seven wheat cultivars originating from seven European countries were examined by using sequence tagged site (STS) markers for seven Lr (leaf rust = brown rust) resistance genes against the fungal pathogen of wheat Puccinia recondita f. sp. tritici (Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37). Additionally, 22 accessions with various Lr genes from two germplasm collections were tested. A Scar (sequence-characterized amplified region) marker for Lr24 and a CAPS (Cleaved Amplified Polymorphic Sequence) marker for Lr47 were also used to identify those genes in the wheat accessions. Each marker amplified one specific DNA fragment. Three Lr gene markers were identified in wheat cultivars (Lr10, Lr26 and Lr37). Another four markers (Lr9, Lr19, Lr24 and Lr47) were found in breeding lines carrying leaf rust resistance genes. The results were compared with leaf rust resistance gene postulations made in previous studies, based on multipathotype testing. Markers for Lr10, Lr26 and Lr37 may be useful in marker-assisted breeding.  相似文献   

16.
A molecular-marker linkage map of hexaploid wheat (Triticum aestivum L. em. Thell) provides a framework for integration with the classical genetic map and a record of the chromosomal rearrangements involved in the evolution of this crop species. We have constructed restriction fragment length polymorphism (RFLP) maps of the A-, B-, and D-genome chromosomes of homoeologous groups 4, 5, and 7 of wheat using 114 F(7) lines from a synthetic X cultivated wheat cross and clones from 10 DNA libraries. Chromosomal breakpoints for known ancestral reciprocal translocations involving these chromosomes and for a known pericentric inversion on chromosome 4A were localized by linkage and aneuploid analysis. Known genes mapped include the major vernalization genes Vrn1 and Vrn3 on chromosome arms 5AL and 5DL, the red-coleoptile gene Rc1 on 7AS, and presumptively the leaf-rust (Puccinia recondita f.sp. tritici) resistance gene Lr34 on 7DS and the kernel-hardness gene Ha on 5DS. RFLP markers previously obtained for powdery-mildew (Blumeria graminis f.sp. tritici) resistance genes Pm2 and Pm1 were localized on chromosome arms 5DS and 7AL.  相似文献   

17.
D R Knott  B Yadav 《Génome》1993,36(5):877-883
Twelve lines of wheat (Triticum aestivum L.) were developed that had susceptible infection types to leaf rust (Puccinia recondita Rob. ex Desm. f.sp. tritici) race UN 15 in the seedling stage but were resistant in the adult plant stage in the field. The lines were developed from four crosses, each involving four parents (eight in total) that had originally been selected for adult plant or field resistance to stem rust (Puccinia graminis Pers. f.sp. tritici Eriks, and Henn.). The objectives of the present study were to determine the mechanism of resistance to leaf rust and its inheritance in the 12 lines. The 12 lines were grown in an artificially inoculated field nursery in Saskatoon, coefficients of infection (CI) were determined at four dates, and the areas under the disease progress curve (AUDPC) were calculated. Four representative lines were grown in a growth chamber to measure the latent period and pustule size at the two-leaf and flag-leaf stages. Eight lines were crossed and backcrossed to a susceptible check and the parents, F1, F2, F3, and BC1F2 generations were grown in a field nursery. The 12 lines showed wide ranges in CI and AUDPC but all were significantly more resistant than the susceptible check. The four lines studied in the growth chamber had longer latent periods and smaller pustules than the susceptible check at both stages. The differences tended to be greater at the flag-leaf stage. The inheritance studied showed that resistance was recessive or partially recessive and was controlled by two or more genes in each line of the eight lines. In three of the eight lines, Lr34 may be one of the genes and in the other five both Lr13 and Lr34 could be present. However, additional genes are clearly involved. A single gene by itself had only a small effect, but in two and three gene combinations the effects appeared to be greater. This type of resistance appears to occur frequently and may be durable because its complex inheritance may make it more difficult for the rust fungus to overcome. It should be used in breeding wheat for areas where leaf rust is a major problem.  相似文献   

18.
Diversity of resistance to leaf rust caused by Puccinia triticina can be enhanced in wheat (Triticum aestivum) cultivars through a better knowledge of resistance genes that are present in important cultivars and germplasm. Multi-pathotype tests on 84 wheat cultivars grown in Denmark, Finland, Norway and Sweden during 1992-2002 and 39 differential testers enabled the postulation of nine known genes for seedling resistance to leaf rust. Genes Lr1, Lr2a, Lr3, Lr10, Lr13, Lr14a, Lr17, Lr23 and Lr26 were found singly or in combination in 47 of the cultivars (55.9%). The most frequently occurring genes in cultivars grown in Sweden were Lr13 (20.4%), Lr14a (14.8%) and Lr26 (14.8%). Lr14a was the most common gene in cultivars grown in Norway (18.7%), Lr13 in Denmark (35.5%) and Lr10 in Finland (20.0%). Although 28 cultivars (33.3%) exhibited a response pattern that could not be assigned to resistance genes or combinations present in the tester lines, several pathotypes carried virulence and hence these genes or combinations are of limited use. Nine cultivars (10.7%) lacked detectable seedling resistance. One cultivar was resistant to all pathotypes used in the study.  相似文献   

19.
Sequence tagged site (STS) markers for eight resistance genes against Puccinia recondita f. sp. tritici were used to screen a set of near-isogenic lines of wheat cv. Thatcher containing in total 40 different Lr genes and their alleles. Polymerase chain reaction (PCR) analysis was carried out by using STS, SCAR and CAPS primers specific for the leaf rust resistance genes Lr1, Lr9, Lr10, Lr19, Lr24, Lr28, Lr37 and Lr47. The STS, CAPS and SCAR markers linked to resistance genes Lr9, Lr10, Lr19, Lr24, Lr37 and Lr47 were found to be reliable in diverse genetic backgrounds. The amplification product of the Lr1 gene marker was detected in the susceptible cv. Thatcher and in all of the near-isogenic lines examined except Lr2a, Lr2b, Lr2c and Lr19. The sequence analysis of PCR products amplified in lines Lr1, Lr10, Lr28 and in cv. Thatcher indicated that the near-isogenic lines and cv. Thatcher contained in the targeted chromosome region an allele that differed from the original alleles corresponding to Lr1/6*Thatcher (TLR621) and susceptible Thatcher (TH621). The amplification product specific to the STS marker of the Lr1 gene was amplified in almost all Thatcher near-isogenic lines and in cv. Thatcher because their alleles possessed primer sequences identical to the original allele TLR621. The marker for the Lr28 resistance gene was identified in line Lr28, carrying gene Lr28, and in 21 other near-isogenic lines. The sequencing of PCR products specific to Lr28 and generated in lines Lr1, Lr10 and Lr28 indicated that the lines Lr1, Lr10 and Lr28 are heterozygous in this region.  相似文献   

20.
Sequence tagged site (STS) markers have been developed recently to identify resistance genes in wheat. A number of wild relatives have been used to transfer resistance genes into wheat cultivars. Accessions of wild species of Triticeae: Aegilops longissima (4), Ae. speltoides (6), Ae. tauschii (8), Ae. umbellulata (3), Ae. ventricosa (3), Triticum spelta (2), T. timopheevi (3), T. boeoticum (4) and T. monococcum (1), 34 in total, were examined using PCR-STS markers for resistance genes against Puccinia recondita f.sp. tritici (Lr) and Erysiphe graminis (Pm). Additionally, a set of cv. Thatcher near-isogenic lines conferring resistance genes Lr 1, Lr 9, Lr 10, Lr 24, Lr 28, Lr 35 and Lr 37 were examined with the same procedure. Twenty-two accessions were tested using the inoculation test for resistance to Erysiphe graminis, Puccinia recondita, P. striiformis and P. graminis. The most resistant entries were those of Aegilops speltoides and Triticum timopheevi and among T. boeoticum accession #5353. Markers of all mentioned Lr resistance genes were identified in all corresponding cv. Thatcher near-isogenic lines (except Lr 35 gene marker). The following resistance gene markers were identified in wild Triticeae accessions: Lr 1 in two accessions of Ae. tauschii and one accession of Ae. umbellulata, Lr 9 in one accession of Ae. umbellulata, Lr 10 in one accession of T. spelta, Lr 28 in 11 accessions: Ae. speltoides (4), Ae. umbellulata (2), T. spelta (2) and T. timopheevi (3), Lr 37 in 3 accessions of Ae. ventricosa, Pm 1 in all 34 accessions, Pm 2 in 28 accessions, Pm 3 in all 4 accessions of T. boeoticum, 1 accession of T. spelta and 1 of T. timopheevi, and Pm 13 in 5 out of 6 accessions of Ae. speltoides. Reliability and usefulness of STS markers is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号