首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
Knowledge of signaling mechanisms has increased dramatically during the past decade, particularly in the areas of development, biochemical signaling cascades, synaptic transmission and ion channel biophysics.  相似文献   

2.
Constructing accurate computational models that explain how ions permeate through a biological ion channel is an important problem in biophysics and drug design. Brownian dynamics simulations are large-scale interacting particle computer simulations for modeling ion channel permeation but can be computationally prohibitive. In this paper, we show the somewhat surprising result that a small-dimensional semi-Markov model can generate events (such as conduction events and dwell times at binding sites in the protein) that are statistically indistinguishable from brownian dynamics computer simulation. This approach enables the use of extrapolation techniques to predict channel conduction when performing the actual brownian dynamics simulation that is computationally intractable. Numerical studies on the simulation of gramicidin A ion channels are presented.  相似文献   

3.
Ion channels and transporters are membrane proteins whose functions are driven by conformational changes. Classical biophysical techniques provide insight into either the structure or the function of these proteins, but a full understanding of their behavior requires a correlation of both these aspects in time. Patch-clamp and voltage-clamp fluorometry combine spectroscopic and electrophysiological techniques to simultaneously detect conformational changes and ionic currents across the membrane. Since its introduction, patch-clamp fluorometry has been responsible for invaluable advances in our knowledge of ion channel biophysics. Over the years, the technique has been applied to many different ion channel families to address several biophysical questions with a variety of spectroscopic approaches and electrophysiological configurations. This review illustrates the strength and the flexibility of patch-clamp fluorometry, demonstrating its potential as a tool for future research.  相似文献   

4.
Ion channels and transporters are membrane proteins whose functions are driven by conformational changes. Classical biophysical techniques provide insight into either the structure or the function of these proteins, but a full understanding of their behavior requires a correlation of both these aspects in time. Patch-clamp and voltage-clamp fluorometry combine spectroscopic and electrophysiological techniques to simultaneously detect conformational changes and ionic currents across the membrane. Since its introduction, patch-clamp fluorometry has been responsible for invaluable advances in our knowledge of ion channel biophysics. Over the years, the technique has been applied to many different ion channel families to address several biophysical questions with a variety of spectroscopic approaches and electrophysiological configurations. This review illustrates the strength and the flexibility of patch-clamp fluorometry, demonstrating its potential as a tool for future research.  相似文献   

5.
Accumulating evidence suggests that the endo-lysosomal system provides a substantial store of Ca2+ that is tapped by the Ca2+-mobilizing messenger, NAADP. In this article, we review evidence that NAADP-mediated Ca2+ release from this acidic Ca2+ store proceeds through activation of the newly described two-pore channels (TPCs). We discuss recent advances in defining the sub-cellular targeting, topology and biophysics of TPCs. We also discuss physiological roles and the evolution of this ubiquitous ion channel family.  相似文献   

6.
We report on a silicon wafer-based device that can be used for recording macroscopic ion channel protein activities across a diverse group of cell-types. Gigaohm seals were achieved for CHO-K1 and RIN m5F cells, and both cell-attached and whole-cell mode configurations were also demonstrated. Two distinct intrinsic potassium ion channels were recorded in whole-cell mode for HIT-T15 and RAW 264.7 cells. Polydimethylsiloxane (PDMS) microfluidics were also coupled with the micromachined silicon chips in order to demonstrate that a single cell could be selectively directed to a micropore, and membrane protein currents could subsequently be recorded. These silicon chip-based devices have significant advantages over traditional micropipette approaches, and may serve as combinatorial tools for investigating membrane biophysics, pharmaceutical screening, and other bio-sensing tasks.  相似文献   

7.
The movement of ions across cell membranes is essential for a wide variety of fundamental physiological processes, including secretion, muscle contraction, and neuronal excitation. This movement is possible because of the presence in the cell membrane of a class of integral membrane proteins dubbed ion channels. Ion channels, thanks to the presence of aqueous pores in their structure, catalyze the passage of ions across the otherwise ion-impermeable lipid bilayer. Ion conduction across ion channels is highly regulated, and in the case of voltage-dependent K(+) channels, the molecular foundations of the voltage-dependent conformational changes leading to the their open (conducting) configuration have provided most of the driving force for research in ion channel biophysics since the pioneering work of Hodgkin and Huxley (Hodgkin, A. L., and Huxley, A. F. (1952) J. Physiol. 117, 500-544). The voltage-dependent K(+) channels are the prototypical voltage-gated channels and govern the resting membrane potential. They are responsible for returning the membrane potential to its resting state at the termination of each action potential in excitable membranes. The pore-forming subunits (alpha) of many voltage-dependent K(+) channels and modulatory beta-subunits exist in the membrane as one component of macromolecular complexes, able to integrate a myriad of cellular signals that regulate ion channel behavior. In this review, we have focused on the modulatory effects of beta-subunits on the voltage-dependent K(+) (Kv) channel and on the large conductance Ca(2+)- and voltage-dependent (BK(Ca)) channel.  相似文献   

8.
9.
Purcell EK  Liu L  Thomas PV  Duncan RK 《PloS one》2011,6(10):e26289
The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD) on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs) are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type) potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%), ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology.  相似文献   

10.
“Charged” amino acids play countless important roles in protein structure and function. Yet when these side chains come into contact with membranes we do not fully understand their behavior. This is highlighted by a recent model of voltage-gated ion channel activity and translocon-based experiments that suggest small penalties to expose these side chains to lipids, opposing the prevailing view in membrane biophysics. Here we employ a side chain analog as well as a transmembrane helix model to determine the free energy as a function of protonation state and position for a lipid-exposed arginine (Arg) residue across a membrane. We observe high free energy barriers for both the charged and neutral states. Due to the stabilizing influence of membrane deformations for the protonated form, the Arg side chain experiences a pKa shift of ≤4.5 units and remains mostly protonated. The cost for exposing Arg to lipid hydrocarbon is prohibitively high with implications for many membrane translocating processes and the activation mechanisms of voltage-gated ion channels.  相似文献   

11.
细胞生物物理学研究的概况及展望   总被引:1,自引:0,他引:1  
概括介绍了近几年来细胞生物物理学在细胞的精细结构研究、外界物理因素对细胞作用的研究、细胞运动的研究、细胞膜的离子通道、细胞的信号传递以及在研究方法等方面所取得的部分进展,并就如何实现细胞生物物理学的研究目标提出了自己的看法.  相似文献   

12.
Temporal pattern is a crucial feature of communication signals, and neurons in the brains of many animals respond selectively to behaviorally relevant temporal features of sensory stimuli. Many aspects of neural function contribute to this selectivity, including membrane biophysics, channel properties, synaptic physiology and network structure.  相似文献   

13.
The ion channel formed by the homologous proteins MEC-4 and MEC-10 forms the core of a sensory mechanotransduction channel in Caenorhabditis elegans. Although the products of other mec genes are key players in the biophysics of transduction, the mechanism by which they contribute to the properties of the channel is unknown. Here, we investigate the role of two auxiliary channel subunits, MEC-2 (stomatin-like) and MEC-6 (paraoxonase-like), by coexpressing them with constitutively active MEC-4/MEC-10 heteromeric channels in Xenopus oocytes. This work extends prior work demonstrating that MEC-2 and MEC-6 synergistically increase macroscopic current. We use single-channel recordings and biochemistry to show that these auxiliary subunits alter function by increasing the number of channels in an active state rather than by dramatically affecting either single-channel properties or surface expression. We also use two-electrode voltage clamp and outside-out macropatch recording to examine the effects of divalent cations and proteases, known regulators of channel family members. Finally, we examine the role of cholesterol binding in the mechanism of MEC-2 action by measuring whole-cell and single-channel currents in MEC-2 mutants deficient in cholesterol binding. We suggest that MEC-2 and MEC-6 play essential roles in modulating both the local membrane environment of MEC-4/MEC-10 channels and the availability of such channels to be gated by force in vivo.  相似文献   

14.
Plant and Soil - The objective of this research was to develop a three-dimensional (3D) rhizosphere modeling capability for plant-soil interactions by integrating plant biophysics, water and ion...  相似文献   

15.
Our understanding of the role of membrane tension in the field of membrane biophysics is rapidly evolving from a passive construct to an active player in a variety of cellular phenomena. Membrane tension has been shown to be a key regulator of many cellular processes ranging including trafficking, ion channel activation, and the invasion of red blood cells by malaria parasites. Recent experimental advances in cells, including the development of a fluorescent tension reporter, have shown that membrane tension is heterogeneous. In this mini-review, I summarize the recent advances in membrane tension measurements and discuss the contributions from different cellular constituents such as the cortical cytoskeleton. Then, I will explore how these different complexities can be considered in biophysical models of different scales. Finally, I will elaborate on the need for iterations between models and experiments as technologies in both fields advance to enable us to obtain critical insights into the physiological role of membrane tension as a critical component of mechanotransduction.  相似文献   

16.
In a recent study on the honeybee (Apis mellifera), the subgenual organ was observed moving inside the leg during sinusoidal vibrations of the leg (Kilpinen and Storm 1997). The subgenual organ of the honeybee is suspended in a haemolymph channel in the tibia of each leg. When the leg accelerates, the inertia causes the haemolymph and the subgenual organ to lag behind the movement of the rest of the leg. To elucidate the biophysics of the subgenual organ system of the honeybee, two mathematical models to simulate the experimentally observed mechanical response are considered. The models are a classical mass-spring model and a newly developed tube model consisting of an open-ended, fluid-filled tube occluded by an elastic structure midway. Both models suggest that the subgenual organ included in the haemolymph channel resembles that of an overdamped system. In resembling the biophysics of the subgenual organ system in the honeybee, we consider the tube model to be the better of the two because it simulates a mechanical response which complies best with the experimental data, and the physical parameters in the model can be related to the␣constituent parts of the subgenual organ included in the haemolymph channel. Received: 25 July 1997 / Accepted in revised form: 8 December 1997  相似文献   

17.
The fundamental biophysics underlying the selective movement of ions through ion channels was launched by George Eisenman in the 1960s, using glass electrodes. This minireview examines the insights from these early studies and the explosive progress made since then.  相似文献   

18.
Chemical gating of gap junction channels   总被引:3,自引:0,他引:3  
Chemical gating of gap junction channels is a complex phenomenon that may involve intra- and intermolecular interactions among connexin domains and a cytosolic molecule (calmodulin?) that may function as channel plug. This article focuses on the methodology we have employed for studying the molecular basis of chemical gating by lowered cytosolic pH. Our approach has combined molecular genetics and biophysics, using exposure to 100% CO(2) for assaying chemical gating efficiency. Chimeras of connexin 32 (Cx32) and connexin 38 (Cx38) and Cx32 mutants modified at residues of the cytoplasmic loop, the initial C-terminus domain, or both have been expressed in Xenopus oocytes, and channel expression and gating have been tested electrophysiologically by double voltage clamp. In addition, various channel forms, including homotypic, heterotypic, and heteromeric channel combinations, have been evaluated for chemical gating sensitivity.  相似文献   

19.
The ability of Ca ions to inhibit Ca channels presents one of the most intriguing problems in membrane biophysics. Because of this negative feedback, Ca channels can regulate the current that flows through them. The kinetics of the channels depend on voltage, and, because the voltage controls the current, a strong interaction exists between voltage dependence and Ca dependence. In addition to this interaction, the proximity of pores and the local concentration of ions also determine how effectively the Ca ions influence channel kinetics. The present article proposes a model that incorporates voltage-dependent kinetics, current-dependent kinetics, and channel clustering. We have based the model on previous voltage-clamp data and on Ca and Ba action currents measured during the action potential in beating heart cells. In general we observe that great variability exists in channel kinetics from patch to patch: Ba or Ca currents have low or high amplitudes and slow or fast kinetics during essentially the same voltage regime, either applied step-protocols or spontaneous cell action potentials. To explain this variability, we have postulated that Ca channels interact through shared ions. The model we propose expands on our previous model for Ba currents. We use the same voltage-dependent rate constants for the Ca currents that we did for the Ba currents. However, we vary the current-dependent rate constants according to the species of the conducting ion. The model reproduces the main features of our data, and we use it to predict Ca channel kinetics under physiological conditions. Preliminary reports of this work have appeared (DeFelice et al., 1991, Biophys. J. 59:551a; Risso et al., 1992, Biophys. J. 61:248a).  相似文献   

20.
Voltage-dependent K+ (Kv) channels form the basis of the excitability of nerves and muscles. KvAP is a well-characterized archeal Kv channel that has been widely used to investigate many aspects of Kv channel biochemistry, biophysics, and structure. In this study, a minimal kinetic gating model for KvAP function in two different phospholipid decane bilayers is developed. In most aspects, KvAP gating is similar to the well-studied eukaryotic Shaker Kv channel: conformational changes occur within four voltage sensors, followed by pore opening. Unlike the Shaker Kv channel, KvAP possesses an inactivated state that is accessible from the pre-open state of the channel. Changing the lipid composition of the membrane influences multiple gating transitions in the model, but, most dramatically, the rate of recovery from inactivation. Inhibition by the voltage sensor toxin VSTx1 is most easily explained if VSTx1 binds only to the depolarized conformation of the voltage sensor. By delaying the voltage sensor's return to the hyperpolarized conformation, VSTx1 favors the inactivated state of KvAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号