首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The cephalic neural crest (NC) cells delaminate from the neuroepithelium in large numbers and undergo collective cell migration under the influence of multiple factors including positive and negative taxis, cell-cell interactions mediating cell sorting, cell cooperation, and Contact-Inhibition of Locomotion. The migration has to be tightly regulated to allow NC cells to reach precise locations in order to contribute to various craniofacial structures such as the skeletal and peripheral nervous systems. Several birth defects, syndromes, and malformations are due to improper cephalic NC (CNC) migration, and NC cell migration bears important similarities to cancer cell invasion and metastasis dissemination. Therefore, understanding how CNC cells interpret multiple inputs to achieve directional collective cell migration will shed light on pathological situations where cell migration is involved.  相似文献   

2.
Collective cell migration occurs in a range of contexts: cancer cells frequently invade in cohorts while retaining cell-cell junctions. Here we show that collective invasion by cancer cells depends on decreasing actomyosin contractility at sites of cell-cell contact. When actomyosin is not downregulated at cell-cell contacts, migrating cells lose cohesion. We provide a molecular mechanism for this downregulation. Depletion of discoidin domain receptor 1 (DDR1) blocks collective cancer-cell invasion in a range of two-dimensional, three-dimensional and 'organotypic' models. DDR1 coordinates the Par3/Par6 cell-polarity complex through its carboxy terminus, binding PDZ domains in Par3 and Par6. The DDR1-Par3/Par6 complex controls the localization of RhoE to cell-cell contacts, where it antagonizes ROCK-driven actomyosin contractility. Depletion of DDR1, Par3, Par6 or RhoE leads to increased actomyosin contactility at cell-cell contacts, a loss of cell-cell cohesion and defective collective cell invasion.  相似文献   

3.
Cell movements represent a major driving force in embryonic development, tissue repair, and tumor metastasis [1]. The migration of single cells has been well studied, predominantly in cell culture [2, 3]; however, in vivo, a greater variety of modes of cell movement occur, including the movements of cells in clusters, strands, sheets, and tubes, also known as collective cell migrations [4, 5]. In spite of the relevance of these types of movements in both normal and pathological conditions, the molecular mechanisms that control them remain predominantly unknown. Epithelial follicle cells of the Drosophila ovary undergo several dynamic morphological changes, providing a genetically tractable model [6]. We found that anterior follicle cells, including border cells, mutant for the gene hindsight (hnt) accumulated excess cell-cell adhesion molecules and failed to undergo their normal collective movements. In addition, HNT affected border cell cluster cohesion and motility via effects on the JNK and STAT pathways, respectively. Interestingly, reduction of expression of the mammalian homolog of HNT, RREB1, by siRNA inhibited collective cell migration in a scratch-wound healing assay of MCF10A mammary epithelial cells, suppressed surface activity, retarded cell spreading after plating, and led to the formation of immobile, tightly adherent cell colonies. We propose that HNT and RREB1 are essential to reduce cell-cell adhesion when epithelial cells within an interconnected group undergo dynamic changes in cell shape.  相似文献   

4.
Collective cell migration is an essential feature both in embryonic development and cancer progression. The molecular mechanisms of these coordinated directional cell movements still need to be elucidated. The migration of cranial neural crest (CNC) cells during embryogenesis is an excellent model for collective cell migration in vivo. These highly motile and multipotent cells migrate directionally on defined routes throughout the embryo. Interestingly, local cell-cell interactions seem to be the key force for directionality. CNC cells can change their migration direction by a repulsive cell response called contact inhibition of locomotion (CIL). Cell protrusions collapse upon homotypic cell-cell contact and internal repolarization leads to formation of new protrusions toward cell-free regions. Wnt/PCP signaling was shown to mediate activation of small RhoGTPase RhoA and inhibition of cell protrusions at the contact side. However, the mechanism how a cell recognizes the contact is poorly understood. Here, we demonstrate that Xenopus cadherin-11 (Xcad-11) mediated cell-cell adhesion is necessary in CIL for directional and collective migration of CNC cells. Reduction of Xcad-11 adhesive function resulted in higher invasiveness of CNC due to loss of CIL. Additionally, transplantation analyses revealed that CNC migratory behaviour in vivo is non-directional and incomplete when Xcad-11 adhesive function is impaired. Blocking Wnt/PCP signaling led to similar results underlining the importance of Xcad-11 in the mechanism of CIL and directional migration of CNC.  相似文献   

5.
Integrins can intercommunicate with cadherins. Here, we examined their possible relationship by use of small interfering RNA-mediated protein knockdown in HeLa cells. We found that a subset of integrin signaling molecules, namely Fak and paxillin, but not p130 Crk-associated substrate or proline-rich tyrosine kinase 2, participate in processes regulating N-cadherin-based cell-cell adhesion. Paxillin was found to be required primarily for the recruitment of Fak to robust focal adhesions. Our results suggest that at least some signals involving Fak are linked to a mechanism down-regulating Rac1 activity at the cell periphery, which appears to be important for the formation of N-cadherin-based adhesions in motile cells. Our analyses simultaneously exemplified the essential role of Fak in the maintenance of cell-cell adhesions in collective cell migration, a type of migration occurring in embryonic development and carcinoma invasion.  相似文献   

6.
The destruction of stable cell-cell adhesion and the acquisition of the ability to migrate are consistent stages of neoplastic evolution of tumor cells of epithelial origin. We studied the morphologic and mi gration characteristics of epithelial cells of Iar1162 and IAR1170 clones derived from a mixed culture of on cogene N-RasV12-transformed cell line IAR-2. It was found that the mutant oncogene RAS can cause two types of morphological changes in IAR-2 epithelial cells. Cells of one type (IAR1162 clones) underwent epithelial-mesenchymal transition: they stopped to express E-cadherin, acquired fibroblast-like morphology, and did not form tight junctions. Cells of the other type (IAR1170 clones) retained a morphology close to the morphology of nontransformed progenitor cells, formed E-cadherin-based adherens junctions and tight junctions, and formed a monolayer in confluent culture. However, in both IAR1162 and IAR1170 cells, the mutant oncogene RAS caused the destruction of marginal actin bundle and the reorganization of cell-cell adherens junctions. RAS-transformed IAR1162 and IAR1170 epithelial cells acquired the ability to migrate on a flat substrate as well as through narrow pores in membranes of migration chambers. A videomicroscopic study of transformed epithelial cell cultures demonstrated the instability of cell-cell contacts and the independent nature of cell migration. IAR 1170 epithelial cells, which had E-cadherin-based adherens junctions, were also able to move as a group (collective migration). 1162D3 cells, which lost the ability to express endogenous E-cadherin as a result of Ras-transformation, were transfected with a plasmid carrying the CDH1. As a result of transfection, clones of cells with different levels of expression of exogenous E-cadherin were obtained. The high level of expression of exogenous E-cadherin in transformed epithelial cells led to a decrease in the rate of migration on a two-dimensional substrate of the cells that were in contact with neighboring cells but almost had no effect on the migration of single cells, at the same time increasing the number of cells that migrated through the pores in migration chambers. Thus, the destruction of marginal actin bundle and the change in the spatial organization of cell-cell adherens junctions, irrespective of the presence or absence of E-cadherin, was accompanied by destruction of stable cell-cell adhesion and the appearance of locomotor activity in Ras-transformed epithelial cells. The retaining of E-cadherin in cell-cell adhesion junctions affects the locomotor activity of transformed epithelial cells and plays an important role in their collective migration.  相似文献   

7.
The destruction of stable cell-cell adhesion and the acquisition of the ability to migrate are consistent stages of neoplastic evolution of tumor cells of epithelial origin. We studied the morphological and migration characteristics of epithelial cells of IAR1162 and IAR1170 clones derived from a mixed culture of N-RasV12 oncogene-transformed IAR-2 cell line. It was found that the oncogenic RAS can cause two types of morphological changes in IAR-2 epithelial cells. Cells of one type (IAR1162 clones) underwent epithelial-mesenchymal transition: they stopped to express E-cadherin, acquired fibroblast-like morphology, and did not form tight junctions. Cells of the other type (IAR1170 clones) retained a morphology close to the morphology of nontransformed progenitor cells, assembled E-cadherin-based adherens junctions and tight junctions, and formed a monolayer in confluent culture. However, in both IAR1162 and IAR1170 cells, the oncogenic RAS caused the destruction of marginal actin bundle and the reorganization of cell-cell adherens junctions. RAS-transformed IAR1162 and IAR1170 epithelial cells acquired the ability to migrate on a flat substrate as well as through narrow pores in membranes of migration chambers. A videomicroscopic study of transformed epithelial cell cultures demonstrated the instability of cell-cell contacts and the independent nature of cell migration. IAR1170 epithelial cells, which had E-cadherin-based adherens junctions, were also able to move as a group (collective migration). 1162D3 cells, which lost the ability to express endogenous E-cadherin as a result of Ras-transformation, were transfected with a plasmid carrying the CDH1. As a result of transfection, clones of cells with different levels of expression of exogenous E-cadherin were obtained. The high level of expression of exogenous E-cadherin in transformed epithelial cells led to a decrease in the rate of migration on a two-dimensional substrate of the cells that were in contact with neighboring cells but almost had no effect on the migration of single cells, at the same time increasing the number of cells that migrated through the pores in migration chambers. Thus, the destruction of marginal actin bundle and the change in the spatial organization of cell-cell adherens junctions, irrespective of the presence or absence of E-cadherin, was accompanied by destruction of stable cell-cell adhesion and the appearance of cell motility in Ras-transformed epithelial cells. The retaining of E-cadherin in cell-cell adhesion junctions affects the motility of transformed epithelial cells and plays an important role in their collective migration.  相似文献   

8.
Collective dynamics in multicellular systems such as biological organs and tissues plays a key role in biological development, regeneration, and pathological conditions. Collective tissue dynamics—understood as population behaviour arising from the interplay of the constituting discrete cells—can be studied with on- and off-lattice agent-based models. However, classical on-lattice agent-based models, also known as cellular automata, fail to replicate key aspects of collective migration, which is a central instance of collective behaviour in multicellular systems. To overcome drawbacks of classical on-lattice models, we introduce an on-lattice, agent-based modelling class for collective cell migration, which we call biological lattice-gas cellular automaton (BIO-LGCA). The BIO-LGCA is characterised by synchronous time updates, and the explicit consideration of individual cell velocities. While rules in classical cellular automata are typically chosen ad hoc, rules for cell-cell and cell-environment interactions in the BIO-LGCA can also be derived from experimental cell migration data or biophysical laws for individual cell migration. We introduce elementary BIO-LGCA models of fundamental cell interactions, which may be combined in a modular fashion to model complex multicellular phenomena. We exemplify the mathematical mean-field analysis of specific BIO-LGCA models, which allows to explain collective behaviour. The first example predicts the formation of clusters in adhesively interacting cells. The second example is based on a novel BIO-LGCA combining adhesive interactions and alignment. For this model, our analysis clarifies the nature of the recently discovered invasion plasticity of breast cancer cells in heterogeneous environments.  相似文献   

9.
Actinomyosin activity is an important driver of cell locomotion and has been shown to promote collective cell migration of epithelial sheets as well as single cell migration and tumor cell invasion. However, the molecular mechanisms underlying activation of cortical myosin to stimulate single cell movement, and the relationship between the mechanisms that drive single cell locomotion and those that mediate collective cell migration of epithelial sheets are incompletely understood. Here, we demonstrate that p114RhoGEF, an activator of RhoA that associates with non-muscle myosin IIA, regulates collective cell migration of epithelial sheets and tumor cell invasion. Depletion of p114RhoGEF resulted in specific spatial inhibition of myosin activation at cell-cell contacts in migrating epithelial sheets and the cortex of migrating single cells, but only affected double and not single phosphorylation of myosin light chain. In agreement, overall elasticity and contractility of the cells, processes that rely on persistent and more constant forces, were not affected, suggesting that p114RhoGEF mediates process-specific myosin activation. Locomotion was p114RhoGEF-dependent on Matrigel, which favors more roundish cells and amoeboid-like actinomyosin-driven movement, but not on fibronectin, which stimulates flatter cells and lamellipodia-driven, mesenchymal-like migration. Accordingly, depletion of p114RhoGEF led to reduced RhoA, but increased Rac activity. Invasion of 3D matrices was p114RhoGEF-dependent under conditions that do not require metalloproteinase activity, supporting a role of p114RhoGEF in myosin-dependent, amoeboid-like locomotion. Our data demonstrate that p114RhoGEF drives cortical myosin activation by stimulating myosin light chain double phosphorylation and, thereby, collective cell migration of epithelial sheets and amoeboid-like motility of tumor cells.  相似文献   

10.
Cell migration is fundamental in both animal morphogenesis and disease. The migration of individual cells is relatively well-studied; however, in vivo, cells often remain joined by cell-cell junctions and migrate in cohesive groups. How such groups of cells coordinate their migration is poorly understood. The planar polarity pathway coordinates the polarity of non-migrating cells in epithelial sheets and is required for cell rearrangements during vertebrate morphogenesis. It is therefore a good candidate to play a role in the collective migration of groups of cells. Drosophila border cell migration is a well-characterised and genetically tractable model of collective cell migration, during which a group of about six to ten epithelial cells detaches from the anterior end of the developing egg chamber and migrates invasively towards the oocyte. We find that the planar polarity pathway promotes this invasive migration, acting both in the migrating cells themselves and in the non-migratory polar follicle cells that they carry along. Disruption of planar polarity signalling causes abnormalities in actin-rich processes on the cell surface and leads to less-efficient migration. This is apparently due, in part, to a loss of regulation of Rho GTPase activity by the planar polarity receptor Frizzled, which itself becomes localised to the migratory edge of the border cells. We conclude that, during collective cell migration, the planar polarity pathway can mediate communication between motile and non-motile cells, which enhances the efficiency of migration via the modulation of actin dynamics.  相似文献   

11.
《Biophysical journal》2022,121(10):1856-1867
In embryogenesis and cancer invasion, cells collectively migrate as a cluster in 3D tissues. Many studies have elucidated mechanisms of either individual or collective cell migration on 2D substrates; however, it remains unclear how cells collectively migrate as a cluster through 3D tissues. To address this issue, we considered the interfacial tension at cell-cell boundaries expressing cortical actomyosin contractions and cell-cell adhesive interactions. The strength of this tension is polarized; i.e., spatially biased within each cell according to a chemoattractant gradient. Using a 3D vertex model, we performed numerical simulations of multicellular dynamics in 3D space. The simulations revealed that the polarized interfacial tension enables cells to migrate collectively as a cluster through a 3D tissue. In this mechanism, interfacial tension induces unidirectional flow of each cell surface from the front to the rear along the cluster surface. Importantly, this mechanism does not necessarily require convection of cells, i.e., cell rearrangement, within the cluster. Moreover, several migratory modes were induced, depending on the strengths of polarity, adhesion, and noise; i.e., cells migrate either as single cells, as a cluster, or aligned like beads on a string, as occurs in embryogenesis and cancer invasion. These results indicate that the simple expansion and contraction of cell-cell boundaries enables cells to move directionally forward and to produce the variety of collective migratory movements observed in living systems.  相似文献   

12.
Cell migration in healthy and diseased systems is a combination of single and collective cell motion. While single cell motion has received considerable attention, our understanding of collective cell motion remains elusive. A new computational framework for the migration of groups of cells in three dimensions is presented, which focuses on the forces acting at the microscopic scale and the interactions between cells and their extracellular matrix (ECM) environment. Cell-cell adhesion, resistance due to the ECM and the factors regulating the propulsion of each cell through the matrix are considered. In particular, our approach emphasizes the role of receptors that mediate cell-cell and cell-matrix interactions, and examines how variation in their properties induces changes in cellular motion. As an important case study, we analyze two interacting cells. Our results show that the dynamics of cell pairs depends on the magnitude and the stochastic nature of the forces. Stronger intercellular stability is generally promoted by surface receptors that move. We also demonstrate that matrix resistance, cellular stiffness and intensity of adhesion contribute to migration behaviors in different ways, with memory effects present that can alter pair motility. If adhesion weakens with time, our findings show that cell pair break-up depends strongly on the way cells interact with the matrix. Finally, the motility for cells in a larger cluster (size 50 cells) is examined to illustrate the full capabilities of the model and to stress the role of cellular pairs in complex cellular structures. Overall, our framework shows how properties of cells and their environment influence the stability and motility of cellular assemblies. This is an important step in the advancement of the understanding of collective motility, and can contribute to knowledge of complex biological processes involving migration, aggregation and detachment of cells in healthy and diseased systems.  相似文献   

13.
Migrating cells generate traction forces to counteract the movement-resisting forces arising from cell-internal stresses and matrix adhesions. In the case of collective migration in a cell colony, or in the case of 3-dimensional migration through connective tissue, movement-resisting forces arise also from external stresses. Although the deformation of a stiffer cell or matrix causes larger movement-resisting forces, at the same time a larger stiffness can also promote cell migration due to a feedback between forces, deformations, and deformation speed that is mediated by the acto-myosin contractile machinery of cells. This mechanical feedback is also important for stiffness sensing, durotaxis, plithotaxis, and collective migration in cell colonies.  相似文献   

14.
The voltage-gated sodium channel beta2-subunit (beta2) is a member of the IgCAM superfamily and serves as both an adhesion molecule and an auxiliary subunit of the voltage-gated sodium channel. Here we found that beta2 undergoes ectodomain shedding followed by presenilin (PS)-dependent gamma-secretase-mediated cleavage. 12-O-Tetradecanoylphorbol-13-acetate treatment or expression of an alpha-secretase enzyme, ADAM10, resulted in ectodomain cleavage of beta2 in Chinese hamster ovary cells. Subsequent cleavage of the remaining 15-kDa C-terminal fragment (beta2-CTF) was independently inhibited by three specific gamma-secretase inhibitors, expression of the dominant negative form of PS1, and in PS1/PS2 knock-out cells. gamma-Secretase inhibitor treatment also increased endogenous beta2-CTF levels in neuroblastoma cells and mouse primary neuronal cultures. In a cell-free gamma-secretase assay, we detected gamma-secretase activity-dependent generation of a 12 kDa beta2 intracellular domain (ICD), which was loosely associated with the membrane fraction. To assess the functional role of beta2 processing by gamma-secretase, we tested whether N-[N-(3,5-difluorophenylacetyl-l-alanyl)]-S-phenylglycine t-butylester (DAPT), a specific gamma-secretase inhibitor, would alter beta2-mediated cell adhesion and migration. We found that DAPT inhibited cell-cell aggregation and migration in a wound healing assay carried out with Chinese hamster ovary cells expressing beta2. DAPT also reduced migration of neuroblastoma cells in a modified Boyden chamber assay. Since DAPT treatment resulted in increased beta2-CTF levels, we also tested whether beta2-CTFs or beta2-ICDs would directly affect cell migration by overexpressing recombinant proteins. Interestingly, elevated levels of beta2-CTFs, but not ICDs, also blocked cell migration by 81 to 93%. Together, our findings show for the first time that beta2 is a PS/gamma-secretase substrate and gamma-secretase mediated cleavage of beta2-CTF is required for cell-cell adhesion and migration of beta2-expressing cells.  相似文献   

15.
Cell migration is an important process in such phenomena as growth, development, and wound healing. The control of cell migration is orchestrated in part by cell surface adhesion molecules. These molecules fall into two major categories: those that bind to extracellular matrix and those that bind to adjacent cells. Here, we report on the role of a cell-cell adhesion molecule, platelet-endothelial cell adhesion molecule-1, (PECAM-1), a member of the lg superfamily, in the modulation of cell migration and cell-cell adhesion. PECAM-1 is a 120-130 kDa integral membrane protein that resides on endothelial cells and localizes at sites of cell-cell contact. Since endothelial cells express PECAM-1 constitutively, we studied the effects of PECAM-1 on cell-cell adhesion and migration in a null-cell population. Specifically, we transfected NIH/3T3 cells with the full length PECAM-1 molecule (two independent clones). Transfected cells containing only the neomycin resistance gene, cells expressing a construct coding for the extracellular domain of the molecule, and cells expressing the neu oncogene were used as controls. The PECAM-1 transfectants appeared smaller and more polygonal and tended to grow in clusters. Indirect immunofluorescence of PECAM-1 transfectants showed peripheral staining at sites of cell-cell contact, while the extracellular domain transfectants and the control cells did not. In two quantitative migration assays, the full-length PECAM-1 transfectants migrated more slowly than control cells. Thus, PECAM-1 transfected into a null cell appears to localize to sites of cell-cell contact, promote cell-cell adhesion, and diminish the rate of migration. These findings suggest a role for this cell-cell adhesion molecule in the process of endothelial cell migration.  相似文献   

16.
Laminin-binding integrins form a complex with CD151, a member of the tetraspanin family suggested to be involved in the regulation of cell migration. In the epidermis, CD151 is localized with alpha3beta1 and alpha6beta4 integrins at cell-cell and cell-matrix contacts, respectively, characteristic structures of non-migrating cells. Taking advantage of a monoclonal antibody against CD151, TS151r, which epitope overlaps with the tetraspanin integrin-binding site, we have investigated the role of CD151 in epithelial cell migration. Under standard culture conditions, the migratory capacity of epithelial HaCaT cells on laminins is low, apparently due to endogenous laminin 5. However, challenging HaCaT cells with TS151r allows a re-arrangement of the actin cytoskeleton, dismantling of cell-cell and beta4 integrin-mediated cell-matrix contacts and cell migration. In vivo, free CD151 is absent in resting epithelial cells of interfollicular epidermis, and all CD151 is bound to integrins in intercellular and cell-matrix contacts. By contrast, free CD151 is present at intercellular contacts in the epithelial sheet lining the deeper region of anagen hair follicles, which is considered to contain migrating cells. Together, these results strongly suggest that dissociation of the CD151-integrin complex permits remodeling of epithelial cell interactions with the extracellular matrix and cell migration.  相似文献   

17.
The role of matrix mechanics on cell behavior is under intense investigation. Cells exert contractile forces on their matrix and the matrix elasticity can alter these forces and cell migratory behavior. However, little is known about the contribution of matrix mechanics and cell-generated forces to stable cell-cell contact and tissue formation. Using matrices of varying stiffness and measurements of endothelial cell migration and traction stresses, we find that cells can detect and respond to substrate strains created by the traction stresses of a neighboring cell, and that this response is dependent on matrix stiffness. Specifically, pairs of endothelial cells display hindered migration on gels with elasticity below 5500 Pa in comparison to individual cells, suggesting these cells sense each other through the matrix. We believe that these results show for the first time that matrix mechanics can foster tissue formation by altering the relative motion between cells, promoting the formation of cell-cell contacts. Moreover, our data indicate that cells have the ability to communicate mechanically through their matrix. These findings are critical for the understanding of cell-cell adhesion during tissue formation and disease progression, and for the design of biomaterials intended to support both cell-matrix and cell-cell adhesion.  相似文献   

18.
Invasion through the extracellular matrix (ECM) is important for wound healing, immunological responses and metastasis. We established an invasion-based cell motility screen using Boyden chambers overlaid with Matrigel to select for pro-invasive genes. By this method we identified antisense to MARCKS related protein (MRP), whose family member MARCKS is a target of miR-21, a microRNA involved in tumor growth, invasion and metastasis in multiple human cancers. We confirmed that targeted knockdown of MRP, in both EpRas mammary epithelial cells and PC3 prostate cancer cells, promoted in vitro cell migration that was blocked by trifluoperazine. Additionally, we observed increased immunofluoresence of E-cadherin, β-catenin and APC at sites of cell-cell contact in EpRas cells with MRP knockdown suggesting formation of adherens junctions. By wound healing assay we observed that reduced MRP supported collective cell migration, a type of cell movement where adherens junctions are maintained. However, destabilized adherens junctions, like those seen in EpRas cells, are frequently important for oncogenic signaling. Consequently, knockdown of MRP in EpRas caused loss of tumorigenesis in vivo, and reduced Wnt3a induced TCF reporter signaling in vitro. Together our data suggest that reducing MRP expression promotes formation of adherens junctions in EpRas cells, allowing collective cell migration, but interferes with oncogenic β-catenin signaling and tumorigenesis.  相似文献   

19.
Keratinocyte integrins alpha6beta4 and alpha3beta1 bind laminin-5, a component of basement membranes. We previously demonstrated that in keratinocytes, haptotactic migration on laminin-5 was stimulated by anti-beta1 integrin-activating antibody TS2/16, whereas antibodies to alpha6 and beta4, respectively, blocked TS2/16-induced, alpha3beta1-dependent migration. Moreover, alpha6beta4-associated haptotaxis inhibition was linked to a phosphatidylinositol 3-kinase (PI3K) pathway and required erbB2 activation. erbB2, the ligand-less member of the epidermal growth factor receptor family, was shown to form a complex with the hemidesmosomal integrin alpha6beta4. Here, we demonstrate that alpha6beta4 inhibitory effects on haptotaxis are abolished by an anti-E-cadherin antibody, which interferes with cell-cell adhesion. Furthermore, antibodies to alpha6 and beta4 stimulated adhesion to an E-cadherin-Fc recombinant protein. In addition, anti-alpha6/beta4 antibodies increased colony size in plated cells, stimulated cell-cell aggregation, and up-regulated E-cadherin localization to cell-cell contacts. These effects were abolished when erbB2 or PI3K were blocked. These results indicate that stimulation of alpha6beta4 increases E-cadherin-mediated cell-cell adhesion and that this mechanism depends on erbB2 activation. The molecule that links alpha6beta4 with E-cadherin may be the small GTPase cdc42, an effector of PI3K, because dominant-negative cdc42 abolished the inhibitory effect of anti-alpha6/beta4 antibodies and increased basal migration, whereas constitutively active cdc42 prevented the TS2/16-induced increase in haptotaxis. These findings suggest a model whereby alpha6beta4 can augment cell-cell adhesion and slow down haptotaxis over laminin-5 and point to the alpha6beta4-erbB2 heterodimer as an important signaling complex for the formation of cohesive keratinocyte layers.  相似文献   

20.
Invasive cell migration through tissue barriers requires pericellular remodelling of extracellular matrix (ECM) executed by cell-surface proteases, particularly membrane-type-1 matrix metalloproteinase (MT1-MMP/MMP-14). Using time-resolved multimodal microscopy, we show how invasive HT-1080 fibrosarcoma and MDA-MB-231 breast cancer cells coordinate mechanotransduction and fibrillar collagen remodelling by segregating the anterior force-generating leading edge containing beta1 integrin, MT1-MMP and F-actin from a posterior proteolytic zone executing fibre breakdown. During forward movement, sterically impeding fibres are selectively realigned into microtracks of single-cell calibre. Microtracks become expanded by multiple following cells by means of the large-scale degradation of lateral ECM interfaces, ultimately prompting transition towards collective invasion similar to that in vivo. Both ECM track widening and transition to multicellular invasion are dependent on MT1-MMP-mediated collagenolysis, shown by broad-spectrum protease inhibition and RNA interference. Thus, invasive migration and proteolytic ECM remodelling are interdependent processes that control tissue micropatterning and macropatterning and, consequently, individual and collective cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号