首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The cold tolerance of first-instar nymphs of the Australian plague locust, Chortoicetes terminifera, was examined using measures of total body water content, supercooling point and mortality for a range of sub-zero temperature exposure regimes. The supercooling points for starved and fed nymphs were −13.1 ± 0.9 and −12.6 ± 1.6 °C, and freezing caused complete mortality. Above these temperatures, nymphs were cold tolerant to different degrees based on whether they were starved or given access to food and water for 24 h prior to exposure. The rate of cooling also had a significant effect on mortality. Very rapid cooling to −7 °C caused 84 and 87% mortality for starved and fed nymphs respectively, but this significantly decreased for starved nymphs if temperature declined by more ecologically realistic rates of 0.5 and 0.1 °C min−1. These results are indicative of a rapid cold hardening response and are discussed in terms of the likely effects of cold nights and frost on first-instar nymphal survival in the field.  相似文献   

2.
The bird cherry-oat aphid (Rhopalosiphum padi L.) is a major pest of wheat (Triticum aestivum L.) and can cause up to 30% yield losses. Heritable plant resistance to aphids is both an economically and ecologically sound method for managing aphids. Here we report how the behaviour and performance of R. padi differs on two resistant, one susceptible wheat landrace and a susceptible elite wheat variety. Feeding behaviour differed among the genotypes, with aphids on resistant lines spending longer in the pathway phase and less time phloem feeding. These behaviours suggest that both inter- and intracellular factors encountered during pathway and phloem feeding phases could be linked to the observed aphid resistance. Locomotion and antennal positioning choice tests also revealed a clear preference for susceptible lines. Although feeding studies revealed differences in the first probe indicating that the resistance factors might also be located in the peripheral layers of the plant tissue, scanning electron microscopy revealed no difference in trichrome length and density on the surface of leaves. Aphids are phloem feeders and limiting the nutrient uptake by the aphids may negatively affect their growth and development as shown here in lower weight and survival of nymphs on resistant genotypes and decreased reproductive potential, with lowest mean numbers of nymphs produced by aphids on W064 (54.8) compared to Solstice (71.9). The results indicate that resistant lines markedly alter the behaviour, reproduction and development potential of R. padi and possess both antixenosis and antibiosis type of resistance.  相似文献   

3.
The wheat aphids, Rhopalosiphum padi (Linnaeus) and Sitobion avenae (Fabricius), are key pests on wheat crops worldwide. Management practices rely primarily on insecticides. The pirimicarb (carbamate) is used extensively as an effective insecticide to control these two aphids. In addition to the mortality caused by pirimicarb, various sublethal effects may occur in aphids when exposed to low lethal or sublethal doses. Understanding the general effect of pirimicarb on aphids could help increasing rational use of this insecticide. Under laboratory conditions, we assessed the sublethal effects of a low lethal concentration of pirimicarb (LC25) on biological traits and acetylcholinesterase (AChE) activity of R. padi and S. avenae. Both direct and transgenerational effects, i.e. on parent and the F1 generations were assessed, respectively. We found that R. padi and S. avenae responded differentially to the LC25 of pirimicarb. The parent generation of R. padi showed a 39% decrease in fecundity and multiple transgenerational effects were observed in the F1 generation; overall juvenile development, reproductive period, adult longevity and lifespan were longer than those of the control group. By contrast, LC25 of pirimicarb showed almost no effects on S. avenae biological traits in both the parent and F1 generations; only the pre-reproductive duration was reduced in F1 generations. Demographic parameter estimates (e.g. rm) showed similar trend, i.e. significant negative effect on R. padi population growth and no effect on S. avenae. However, AChE activity decreased in both R. padi and S. avenae treated by the LC25 of pirimicarb. We demonstrated sublethal and transgenerational effects of pirimicarb in the two wheat aphid species; it hinted at the importance of considering sublethal effects (including hormesis) of pirimicarb for optimizing Integrated Pest Management (IPM) of wheat aphids.  相似文献   

4.
It has previously been shown that the aphid Rhopalosiphum padi (L.) (Homoptera: Aphididae) adversely affects the biology of the leafhopper Psammotettix alienus (Dahlbom) (Homoptera: Cicadellidae) (Alla et al., 2001). In this work, we demonstrate that this effect was due to chemical components produced by the aphid.The increase in the number of aphids in the presence of the leafhopper on wheat caused nymphal mortality, an extended duration of the development and a decrease in nymph production of the leafhopper. Extract of aphids in methanol-water (50/50: v/v), applied on plants significantly increased the mortality in the leafhopper nymphs at both 3AE (3 Aphid Equivalent) and 7AE doses. At the same doses, both the honeydew and water extract of aphids did not have any effect. At the 20AE dose, aphid extracts in methanol-water led to a longer development time and strong mortality in leafhopper nymphs. In female adults of the leafhopper, neither the aphid extracts in methanol-water nor the honeydew showed a conclusive result, but generally, daily nymph production decreased with the increase in the extract doses.These results confirmed the depressive effect of R. padi on P. alienus and showed that this interaction was chemical. The active component(s) is partially extracted in a blend of methanol-water (50/50: v/v). Further studies to identify this component(s) will be undertaken.  相似文献   

5.
T. Bilde  S. Toft 《BioControl》1997,42(1-2):21-32
The cereal aphidRhopalosiphum padi has previously been found to be a low quality prey for a range of generalist arthropod predators. The aim of this study was to reveal, using food consumption experiments whether this applies to other cereal aphids. The question of whether predator feeding capacity increased when several aphid species were offered relative to a single aphid species was also addressed by measuring food consumption on a mixed aphid diet relative to single aphid diets. Food consumption by five carabid beetles of the three cereal aphid speciesRhopalosiphum padi, Sitobion avenae andMetopolophium dirhodum was determined relative to fruit fliesDrosophila melanogaster and the collembolanIsotoma anglicana. Feeding rate was measured as food consumption over 24 hour both for previously satiated and beetles starved for 7 days. Generally the largest aphid consumption was ofM. dirhodum and the lowest ofR. padi, withS. avenae in between. The mixed aphid consumption experiments did not reveal a higher feeding rate on mixed aphid diets relative to single aphid diets. The results indicate low preference forR. padi andS. avenae.  相似文献   

6.
Diurnal variation in phloem sap composition has a strong infuence on aphid performance.The sugar-rich phloem sap serves as the sole diet for aphids and a suite of physiological mechanisms and behaviors allowv them to tolerate the high osmotic stress.Here,we tested the hypothesis that night-time feeding by aphids is a behavior that takes advantage of the low sugar diet in the night to compensate for osmotic stress incurred while feeding on high sugar diet during the day.Using the electrical penetration graph(EPG)technique.we examined the eiects of diurmal rhythm on feeding behaviors of bird cherry-oat aphid(Rhopalosiphurm padi L.)on wheat.A strong diurmal rhythm in aphids as indicated by the presence of a cyclical pattern of expression in a core clock gene did not impact aphid feeding and similar feeding behaviors were observed during day and night.The major difference observed between day and night feeding was that aphids spent significantly longer time in phloem salivation during the night compared to the day.In contrast,aphid hydration was reduced at the end of the day-time feeding compared to end of the night-time fepding.Gene expression analysis of R.padi osmoregulatory genes indicated that sugar break down and water transport into the aphid gut was reduced at night.These data suggest that while diumal variation occurs in phloem sap composition,aphids use night time feeding to overcome the high osmotic stress incurred while feeding on sugar-rich phloem sap during the day.  相似文献   

7.
Among the aphids associated with wheat and other winter cereals, Rhopalosiphum padi (L.) is currently the predominant species in the wheat growing region of southern Brazil. The damage caused by this aphid occurs by direct feeding and/or by the transmission of pathogenic viruses, such as the Barley/Cereal yellow dwarf virus. In order to estimate the direct damage caused by R. padi on wheat, we evaluated the population growth of this aphid during the tillering and elongation stages and its effects on grain yield components. The experiment was conducted in a screenhouse with three wheat cultivars (BRS Guabiju, BRS Timbaúva, and Embrapa 16). The effect of a period of 16 days, starting from an infestation of 40 aviruliferous aphids/plant, was evaluated and compared to non-infested plants. In both stages, the population growth of R. padi was lower on the BRS Timbaúva. Although infestation caused a reduction in the grain yield of the three cultivars, this effect was lower for BRS Timbaúva. The cultivar Embrapa 16 supported higher infestations and was more tolerant to damage than the BRS Guabiju.  相似文献   

8.
《Journal of Asia》2019,22(3):693-698
Rhopalosiphum padi is a sap-sucking aphid and an important pest of wheat that causes considerable yield loss. Beta-cypermethrin, a synthetic pyrethroid pesticide, has a broad insecticide spectrum and is considered effective for aphid control, while its residual concentrations may have sublethal effects on R. padi. Here, the sublethal effects of beta-cypermethrin on R. padi were conducted under laboratory conditions. The acute toxicity test showed that LC10, LC20, and LC25 of beta-cypermethrin to R. padi adults were 0.003, 0.031 and 0.079 mg L−1, respectively. The pre-adult survival rate was significantly reduced by all three concentrations. LC20 significantly extended the development duration of 1st instar nymphs, pre-oviposition period, and oviposition period of R. padi. The adult longevity was also reduced by LC25. However, the fecundity did not differ between the beta-cypermethrin treatment and control. For life table parameters, both the finite rate (λ) and intrinsic rate of increase (r) decreased at LC10 and LC20, as well as the net reproductive rate (R0) reduced at LC10 and LC25, while mean generation time (T) increased at LC20. Thus, at the concentrations of beta-cypermethrin tested here, there were negative impacts on R. padi fitness by decreased pre-adult survival rate, λ, r, and R0, and delayed the development of some stages and increased T.  相似文献   

9.
2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), a hydroxamic acid (Hx) occurring in wheat, was shown to deter feeding by the aphid Rhopalosiphum padi (L.), and to reduce BYDV transmission to the plant. Dual choice tests with wheat leaves showed the preferential settlement of aphids on leaves with lower levels of DIMBOA. Electric monitoring of aphid feeding behaviour showed that in seedlings with higher DIMBOA levels fewer aphids reached the phloem and they needed longer times to contact a phloem vessel than in those with lower levels. When aphids carrying BYDV were allowed to feed on wheat cultivars with different DIMBOA levels, fewer plants were infected with BYDV in the higher DIMBOA cultivars than in the lower ones. Preliminary field experiments showed a tendency for wheat cultivars with higher Hx levels to be more tolerant to infection by BYDV than lower Hx level ones.  相似文献   

10.
Rhopalosiphum padi, Schizaphis graminum, and Sitobion avenae are three of the most destructive aphid species of wheat (Triticum aestivum L.). They can significantly reduce wheat yields directly by feeding and indirectly by transmitting viruses. This study aimed to search for resistance to these aphid species among lines derived from different rye (Secale cereale) origins and from Aegilops speltoides, all in the genetic background of the wheat cultivar Pavon F76. Resistance was quantified as aphid weight (R. padi, S. avenae, and S. graminum) and the number of aphids and percentage of infested leaf area exhibiting chlorosis (S. graminum). The most resistant genotypes reduced R. padi and S. avenae weight by 24.2 and 34.3 %, respectively, at the seedling stage, compared with Pavon F76 control plants. Strong S. graminum resistance was found only in A. speltoides-derived lines, the most resistant of which (7A.7S-L5) sustained just 3 % chlorosis and reduced S. graminum colony weight by 67.7 %. One line carrying the 1AL.1RSam wheat–rye translocation from Amigo wheat (originally from Insave rye) reduced S. avenae weight by 23.2 and 21.8 % in seedling and adult plants, respectively. Single genotypes carrying the complete 1R chromosome or the 1RS chromosome arm derived from E12165 wheat and Presto triticale proved to be resistant to both R. padi and S. avenae at the seedling stage. Further research should be conducted to unravel the genetic basis of resistance to these aphids in 1RS genotypes. The sources of resistance identified here may be useful for incorporating multiple aphid species resistance in wheat breeding programs, particularly for R. padi and S. avenae, to which no resistant wheats have been bred.  相似文献   

11.
Bird cherry-oat aphid, Rhopalosiphum padi (L.), is one of the most serious pests of cereals, with an almost worldwide distribution. A primary screening test was carried out to gauge the resistance or susceptibility of 40 wheat lines to R. padi, and follow-up experiments were conducted to determine the development and fecundity rates of R. padi on eight lines. The forty wheat lines examined were classified into two major classes and four subclasses: A (e.g., ERWYT 87-1) and B (e.g., ERWYT 87-20, ERWYT 87-11), with the highest average number of aphids 14 days after infestation, subclass C (e.g., ERWYT 88-8, ERWYT 87-6, ERWYT 87-4), with the lowest average number of aphids, and subclass D (e.g., ERWYT 88-12, ERWYT 88-13), with intermediate status. Aphid nymph developmental time and survival both differed among the wheat lines. Differences were also observed in the fecundity of R. padi, the intrinsic rate of increase (r m), and other parameters among the wheat lines tested. The highest and lowest values of r m were obtained for ERWYT 87-1 and ERWYT 88-8 (0.36 and 0.26 nymphs/female/day, respectively). Three lines (ERWYT 87-4, ERWYT 87-6, ERWYT 88-8) were relatively resistant to R. padi, which could prove useful in the development of IPM programs for this aphid in wheat fields.  相似文献   

12.
Insect pests can reduce wheat yield by direct feeding and transmission of plant viruses. Here we report results from laboratory and field phenotyping studies on a wide range of wheat, including landraces from the Watkins collection deriving from before the green revolution, more modern cultivars from the Gediflux collection (north‐western Europe) and modern UK Elite varieties, for resistance to the bird cherry‐oat aphid, Rhopalosiphum padi (Homoptera: Aphididae) and the English grain aphid, Sitobion avenae (Homoptera: Aphididae). A total of 338 lines were screened for R. padi and 340 lines for S. avenae. Field trials were also conducted on 122 Watkins lines to identify wheat bulb fly, Delia coarctata, preference on these landraces. Considerable variation was shown in insect performance among and within different wheat collections, with reduced susceptibility in a number of varieties, but phenotyping did not identify strong resistance to aphids or wheat bulb fly. Field trials showed within collection differences in aphid performance, with fewer aphids populating lines from the Watkins collection. This differs from development data in laboratory bioassays and suggests that there is a pre‐alighting cue deterring aphid settlement and demonstrates differences in aphid preference and performance on older plants in the field compared with seedlings in the laboratory, highlighting the need for phenotyping for aphid resistance at different plant growth stages. No association was identified between performance of the different insect species on individual varieties, potentially suggesting different nutritional requirements or resistance mechanisms.  相似文献   

13.
Bacterial endosymbionts have enabled aphids to adapt to a range of stressors,but their effects in many aphid species remain to be established.The bird cherry-oat aphid,Rhopalosiphum padi(Linnaeus),is an important pest of cereals worldwide and has been reported to form symbiotic associations with Serratia symbiotica and Sitobion miscanthi L-type symbiont endobacteria,although the resulting aphid phenotype has not been described.This study presents the first report of R.padi infection with the facultative bacterial endosymbiont Hamiltonella defensa.Individuals of R.padi were sampled from populations in Eastern Scotland,UK,and shown to represent seven R.padi genotypes based on the size of polymorphic microsatellite markers;two of these genotypes harbored H.defensa.In parasitism assays,survival of H.defensa-infected nymphs following attack by the parasitoid wasp Aphidius colemani(Viereck)was 5 fold higher than for uninfected nymphs.Aphid genotype was a major determinant of aphid performance on two Hordeum species,a modern cultivar of barley H.vulgare and a wild relative H.spontaneum,although aphids infected with H.defensa showed 16%lower nymph mass gain on the partially resistant wild relative compared with uninfected individuals.These findings suggest that deploying resistance traits in barley will favor the fittest R.padi genotypes,but symbiontinfected individuals will be favored when parasitoids are abundant,although these aphids will not achieve optimal performance on a poor quality host plant.  相似文献   

14.
It was hypothesized that (1) previous experience of aphids on a host plant leads to differences in their feeding behavior relative to aphids without previous experience on it and that (2) a change in the physiological state of the aphid modifies their experience-induced behavior. Using electronic recording, the feeding behavior of the aphid Sitobion fragariae (Walker) on wheat Triticum aestivum L. and oat Avena sativa L. was examined, comparing aphids with or without previous experience on a given host and with or without a period of starvation before assessing probing behavior. All comparisons were performed within a single aphid clone to minimize the effect of genetic variation. Feeding behavior on wheat was significantly affected by previous experience and starvation. The effect of previous experience interacted with the host plant where feeding behavior was tested. Aphids feeding on wheat following previous experience on wheat showed a longer time and a higher number of pathway activities and less time in waveform F (i.e., mechanical stylet work and penetration difficulties) than did aphids feeding on wheat after a previous experience on oat. No differences in the time from the beginning of the recording until the first salivation into the sieve elements were found. When aphids were subjected to a period of starvation, the time devoted to xylem ingestion increased compared with that of nonconstrained aphids. These results are discussed in terms of factors affecting foraging decisions.  相似文献   

15.
Data from bioassays of field collected aphids, barley indicator plants exposed to natural conditions, and various types of aphid traps were used to describe the spread of barley yellow dwarf virus (BYDV) in wheat and barley near Prosser, Washington. Bioassays were also used to assess the relative importance of local vector species. Of alate aphids collected from grain in the 1982 and 1983 fall migration seasons, 3.4–14–5% transmitted BYDV. Data from concurrent and post-migration assays of resident aphids (apterae and nymphs) reflected an increase in the proportion of infected plants in the field. Maximum increase in the percentage of viruliferous aphids occurred in late November and December of 1982 and November of 1983. The 1982 increase occurred after aphid flights had ceased for the year, suggesting active secondary spread. Collections in pitfall traps and infected trap plants from November to February confirmed aphid activity and virus spread. Rhopalosiphum padi was the most important vector in central Washington in 1982 and 1983 because of its abundance and relative BYDV transmission efficiency. Metopolophium dirhodum was more winter-hardy than R. padi and equal to R. padi in its efficiency as a vector; however, it was not as abundant as R. padi except during the mild winter of 1982–83, when it was a major contributor to secondary spread. Sitobion avenae may be important in years when it is abundant, but it was only a quarter as efficient as R. padi. Rhopalosiphum maidis was a much less efficient vector than R. padi and it only reached high populations in late autumn barley.  相似文献   

16.
Aphids that colonize and reproduce on potato are some of the most efficient vectors of Potato virus Y (PVY) (Potyviridae: Potyvirus), and hence these aphids have been the focus of the majority of studies to date. However, other non‐colonizing aphids can also function as vectors. Mineral oil is the only product available to growers that effectively prevents the spread of PVY in potato seed production. Most previous studies focused on the effect of mineral oil on the behavior of aphids on their preferential host plant, and consequently there is a lack of information for non‐colonizing aphids on potato plants. The objective of this study was to determine the effect of spraying potatoes with one of two mineral oils, Superior 70 or Vazyl‐Y, on host selection and probing behavior of the non‐colonizing aphid Rhopalosiphum padi (L.) (Hemiptera: Aphididae). The electrical penetration graph (EPG) technique, combined with ethological observations, determined that there was no difference in R. padi behavior on potato plants treated with Superior 70. However, there were few significant changes in R. padi behavior on plants sprayed with Vazyl‐Y, including a delay in the initiation of stylet penetration and an increase in the duration of xylem sap ingestion. These new data support previous results and confirm that the mode of action of mineral oil in the reduction of the spread of PVY is not solely due to the modification of the behavior of aphids.  相似文献   

17.
The probing behavior of bird cherry-oat aphid Rhopalosiphum padi was studied on its natural winter host in Europe, the bird cherry Prunus padus, and on the invasive black cherry Prunus serotina, on which spring generations of R. padi do not survive. The EPG-recorded behavior of R. padi on bird cherry and black cherry showed differences in crucial aspects of probing and feeding. The period of the pre-phloem penetration was twice as long and rarely interrupted in aphids on bird cherry as opposed to aphids on black cherry. On black cherry, there was a considerable delay between finding and accepting the phloem. Aphids that had sampled phloem sap either refused to ingest it or the ingestion periods were very short. Amygdalin and prunasin (cyanogenic glycosides present in leaves of Prunus) seriously impeded ingestion activities when applied in pure sucrose diet. The role of amygdalin and prunasin in winter host plant selection and host alternation in R. padi is discussed.  相似文献   

18.
In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids).  相似文献   

19.
Some cereal seedlings exhibit antibiotic and antixenotic resistance to the aphids Metopolophium dirhodum (Walker) and Rhopalosiphum padi (L.), because the seedlings contain hydroxamic acids or gramine. The association between tolerance to aphids and aphid antibiosis was investigated for three cereals, Dollarbird wheat Vulcan wheat and Yagan barley. The dry biomass gained by the aphids and the simultaneous reduction in the biomass of the plants (biomass conversion ratio) quantified tolerance. Biomass production and the density dependence of biomass production by the aphids quantified antibiosis more effectively than fecundity. Vulcan wheat, which has more hydroxamic acid than Dollarbird wheat showed the highest level of antibiosis, and the barley was not antibiotic for either aphid. The biomass conversion ratio was a constant; the biomass of an infested plant was reduced by 3 mg for each mg of aphid biomass gained, regardless of aphid species, plant cultivar, or aphid density. The three plants showed no differential tolerance to the aphids, and therefore tolerance is not associated with antibiosis in this case.  相似文献   

20.
  1. The effects of drought-induced changes in plant quality on aphid performance and population growth is well-studied. The response of aphid behaviour to plant water limitation has received less attention. Water limitation may affect host-plant colonization by altering the attractiveness of plants. Additionally, plant water limitation may inhibit feeding site establishment and phloem ingestion.
  2. Our goal was to examine bird cherry-oat aphid (Rhopalosiphum padi L.) host selection and feeding behaviour under water limitation. We assessed aphid response to well-watered, mildly-stressed, and highly-stressed wheat (Triticum aestivum L.) by evaluating (i) host-plant selection through two-choice assays, (ii) feeding behaviour using the electrical penetration graph technique, and (iii) phloem ingestion by quantifying honeydew production.
  3. Aphids were less likely to select highly stressed plants than a mildly stressed or well-watered alternative. Aphids did not distinguish between mildly stressed and well-watered plants. Aphid feeding behaviours, including duration of phloem ingestion, were not affected by water availability. However, honeydew production was reduced under both levels of water limitation. These results suggest that the volume of phloem ingested by aphids per unit time declined on stressed plants. The combination of lower colonization and diminished access to food on stressed plants may lead to a reduction in aphid abundance, independent of the direct effects of nutrition on individual aphid performance.
  4. This study highlights the potential contribution of herbivore behaviour to documented changes in aphid abundance on stressed plants and underscores the important role of plant water stress intensity in mediating plant-herbivore interactions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号