首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Russian wheat aphid,Diuraphis noxia(Mordvilko), as a pest of small grains, has prompted research into biological control and host plant resistance. In the presence of Russian wheat aphid, leaves of a susceptible barley (Morex) are curled and chlorotic and sustain large densities of this aphid, while leaves of a resistant barley (STARS-9301B) remain flat and green and sustain fewer aphids. Might parasitism of Russian wheat aphid byAphelinus albipodusHayat & Fatima andDiaeretiella rapaeMcIntosh be affected differently by these plant types? When presented the plants separately and based on parasitism rate relative to aphid density, the largerD. rapaewas more effective in parasitizing relatively high densities of aphids within curled leaves of Morex than relatively low densities of aphids on uncurled leaves of STARS-9301B. Parasitism byA. albipodusdid not significantly differ among the plants. When given a choice of plants, approximately equal rates of parasitism occurred on the two plant lines for both parasitoid species, and parasitism byD. rapaewas greater thanA. albipodus.These data indicate that using parasitoid size as an indicator of success in a physically restricted environment may be misleading, when considered in a plant environment responsive in several manners to aphids (chlorosis, curling, and ability to sustain Russian wheat aphid). We expect that use of resistant barley will result in decreased parasitoid abundance as aphid densities decrease. However, parasitism rates are expected to be approximately equal on resistant and susceptible barley. In this system, plant resistance and biocontrol are compatible management strategies.  相似文献   

2.
Plant penetration behaviour (probing) of the cabbage aphid, Brevicoryne brassicae, and the pea aphid, Acyrthosiphon pisum, was studied on excised leaves of broad beans, Vicia faba, kept in water or in a 1% aqueous solution of sinigrin. Using the DC EPG (Electrical Penetration Graph) technique it was shown that the cabbage aphid on sinigrin-untreated bean leaves showed numerous short probes into epidermis and mesophyll. None of these aphids showed either phloem salivation or ingestion waveforms on untreated leaves. In contrast, on sinigrin-treated bean leaves, 35% of the probing time was spent on phloem sap ingestion (E2) and almost all aphids reached phloem vessels and started feeding. The duration of phloem salivation before phloem ingestion and the mean duration of phloem ingestion periods were similar on a host and a sinigrin-treated non-host plant. However, the total probing time by B. brassicae was 10% longer, the total phloem sap ingestion time was twice as long, and the time to the first phloem phase within a probe was three times shorter on the host plant compared to sinigrin-treated broad beans. Acyrthosiphon pisum also responded to the addition of sinigrin to broad beans, but in this case sinigrin acted as a deterrent. On sinigrin-treated leaves, A. pisum terminated probes before ingestion from phloem vessels, and none of these aphids showed phloem salivation and ingestion on treated leaves. Glucosinolates were detected in the mesophyll cells of the brassicaceous plant, Sinapis alba. Based on this finding and in addition to the foregoing EPG analysis of aphid probing on these plants and broad beans, our hypothesis is that aphids may recognise their host plants as soon as they probe the mesophyll tissue and before they start ingestion from phloem vessels.  相似文献   

3.
The feeding behaviour of Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae) was electronically monitored on five cereal species (Triticum aestivum L., T. turgidum L., Secale cereale L. and x Triticosecale Wittmack) containing different hydroxamic acids levels and on Hordeum vulgare L., lacking these compounds, by means of a DC-System. With increasing DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one) levels D. noxia showed less probing particularly before reaching the phloem phase and a lower percentage of aphids achieved sustained phloem ingestion. However, no significant correlation was found between DIMBOA levels and the total time of phloem feeding. These findings indicate that factors from the mesophyll and vascular tissues appear to be involved in the effects of resistance. The underlying mechanism, however, remains unclear. Thus, DIMBOA seems to be only part of the chemical defenses of the cereal plants that might be implicated in D. noxia resistance.  相似文献   

4.
Induced plant responses may affect the behaviour and growth of the attacking herbivore insect. The aphid Sipha flava (Forbes) produces reddish spots on the infested leaf of its host plant Sorghum halepense (L.). In order to assess the consequences on the aphid of this presumptive induced plant response, we studied the feeding behaviour and growth of S. flava on previously infested and non-infested leaves of S. halepense. Considering that the reddish pigment could play a defensive role, its effect on aphid survival was determined in artificial diets. In addition, changes in the histology of the leaf and the chemical nature of the induced pigment were also studied. Aphids devoted a significantly shorter total time to non-penetration activities in infested than in non-infested leaves. Time before the first phloem ingestion tended to be shorter in infested leaves. The mean relative growth rate of S. flava nymphs was significantly higher on infested than on non-infested leaves. Survival of aphids on diet containing the reddish extract was not significantly different from that on the control diet. Infestation of S. halepense by S. flava produced a reddish coloration in the leaf, which was identified as an anthocyanin by UV-visible spectrometry. Light microscopy showed that only mesophyll cells of previously infested plants presented swelled, dispersed, and heterogeneously stained chloroplasts with a higher accumulation of starch granules, no grana arranged in stacks, and reduction in the amount of inner membranes (thylakoids), relatively to chloroplasts of non-infested leaves. Scanning electron micrographs of leaf surface revealed reduced presence of crystalline epicuticular waxes of epidermal cells in infested leaves as compared to non-infested ones. The main conclusion is that the attack of S. flava to S. halepense leaves induced plant susceptibility where aphid feeding behaviour and growth were both enhanced on previously infested leaves.  相似文献   

5.
The influence of wheat (Triticum aestivumL.) resistance, the parasitoid Aphidius rhopalosiphiDe Stephani-Perez (Hymenoptera: Braconidae) and the entomopathogenic fungus Pandora neoaphidis(Remaudière et Hennebert) Humber (Zygomycetes: Entomophthorales) on the density and population growth rate of the cereal aphid Sitobion avenae(F.) (Hemiptera: Aphididae) was studied under laboratory conditions. Partial wheat resistance was based on hydroxamic acids, a family of secondary metabolites characteristic of several cultivated cereals. The partial resistance of wheat cultivar Naofén, the action of the parasitoid and the joint action of the parasitoid and fungus, reduced aphid density. The lowest aphid densities were obtained with the combination of the parasitoid and the fungus, but wheat resistance under these circumstances did not improve aphid control. Significant reductions of population growth rate (PGR) of aphids were obtained with the joint action of wheat resistance and natural enemies. In particular, the combined effects of parasitoids and fungi showed significantly lower PGR than the control without natural enemies in both wheat cultivars. Our results support the hypothesis that wheat resistance and the utilization of biological control agents could be complementary strategies in an integrated pest management program against cereal aphids.  相似文献   

6.
3种寄主上桃蚜的选择性及形态分化   总被引:4,自引:0,他引:4  
桃蚜是一种重要的农业害虫,寄主广泛,种下分化复杂。以采自黄土高原旱作区桃树、烟草、甘蓝上的桃蚜为研究对象,通过叶片选择法、传统比较形态测定法研究了3种寄主上桃蚜的选择性及形态分化。结果表明:在3种寄主同时存在的情况下,烟草上的桃蚜嗜食烟草,表现为63.5%的桃蚜选择烟草叶,13.8%选择甘蓝叶,8.2%选择桃叶,而甘蓝和桃树上的桃蚜对原寄主没有表现出明显的嗜好性;从形态指标来看,3种寄主上的桃蚜在体长、触角末节长度、后足腿节长度、触角与体长的比例方面存在显著差异(P0.05),说明这几个特征可以作为区分这3种寄主上桃蚜的依据。综合分析可以初步认为黄土高原旱作区烟草上的桃蚜可能形成了寄主专化型-烟草型。  相似文献   

7.
Benzoxazinoids are key defence chemicals in cereals that are known to affect several aspects of aphid biology. However, little is known about how they affect aphid physiology. In the present study, we report changes in the whole‐body proteomic profiles of a 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one (DIMBOA)‐susceptible genotype of the grain aphid Sitobion avenae (F.) after being exposed to wheat cultivars containing contrasting levels of DIMBOA. The proteome is analyzed after 14 days (short term) and 28 days (long term) of rearing on these cultivars. Seventy‐two proteins are differentially regulated among the treatments and 49 are identified. Exposure to high‐DIMBOA plants results in a higher number of proteins regulated long term. DIMBOA exposure in S. avenae initially generates greater cellular activities, mostly involving cytoskeleton function and possibly related to detoxification. This function appears to be unimportant at long term and is eventually replaced by effects on metabolism function and homeostasis. Taken together, the results of the present study show that the responses of aphids to the secondary plant compounds, such as DIMBOA, exhibit a temporal dynamic in the proteome, possibly helping aphids to overcome the effect of these toxic compounds.  相似文献   

8.
Barley yellow dwarf (BYD) is one of the most common diseases of cereal crops, caused by the phloem‐limited, cereal aphid‐borne Barley yellow dwarf virus (BYDV) (Luteoviridae). Delayed planting and controlling aphid vector numbers with insecticides have been the primary approaches to manage BYD. There is limited research on nitrogen (N) application effects on plant growth, N status, and water use in the BYDV pathosystem in the absence of aphid control. Such information will be essential in developing a post‐infection management plan for BYDV‐infected cereals. Through a greenhouse study, we assessed whether manipulation of N supply to BYDV‐infected winter wheat, Triticum aestivum L. (Poaceae), in the presence or absence of the aphid vector Rhopalosiphum padi L. (Hemiptera: Aphididae), could improve N and/or water uptake, and subsequently promote plant growth. Similar responses of shoot biomass and of water and N use efficiencies to various N application rates were observed in both BYDV‐infected and non‐infected plants, suggesting that winter wheat plants with only BYDV infection may be capable of outgrowing infection by the virus. Plants, which simultaneously hosted aphids and BYDV, suffered more severe symptoms and possessed higher virus loads than those infected with BYDV only. Moreover, in plants hosting both BYDV and aphids, aphid pressure was positively associated with N concentration within plant tissue, suggesting that N application and N concentration within foliar tissue may alter BYDV replication indirectly through their influence on aphid reproduction. Even though shoot biomass, tissue N concentration, and water use efficiency increased in response to increased N application, decision‐making on N fertilization to plants hosting both BYDV and aphids should take into consideration the potential of aphid outbreak and/or the possibility of reduced plant resilience to environmental stresses due to decreased root growth.  相似文献   

9.
Extended sieve element salivation (E1 waveform in the electrical penetration graph) is a characteristic activity during early sieve element punctures, particularly in resistant plants. In order to explore a chemically-mediated mechanism of resistance associated with sieve element salivation, we compared the pattern of feeding behaviour of the aphid, Sitobion fragariae (Walker), on two cultivars of the wheat Triticum aestivum L., with different concentrations of hydroxamic acids (Hx). During 24 h of electronic monitoring, aphids dedicated over 50% of the total time to phloem ingestion from the sieve elements. Total time allocated to E1 in the experiment, time to first E1 within the experiment, time allocated to E1 before a sustained phloem ingestion (E2) and the contribution of sieve element salivation to the phloem phase (E1/[E1+E2]) were significantly higher in the high-Hx cultivar. The increased salivation in plants with higher contents of Hx suggests the existence, at least in this system, of a chemically-mediated sieve element constraint.  相似文献   

10.
Jasmonate and salicylatemediated signaling pathways play significant roles in induced plant defenses, but there is no sufficient evidence for their roles in monocots against aphids. We exogenously applied methyl jasmonate (MeJA) and salicylic acid (SA) on wheat seedlings and examined biochemical responses in wheat and effects on the grain aphid, Sitobion avenae (Fab.). Application of MeJA significantly increased levels of wheat's polyphenol oxidase, peroxidase and proteinase inhibitor 1, 2 and 6 days after treatment. In twochoice tests, adult aphids preferred control wheat leaves to MeJA or SA treated leaves. Electrical penetration graph (EPG) recordings of aphid probing behavior revealed that on MeJAtreated plants, the duration of aphid's first probe was significantly shorter and number of probes was significantly higher than those on control plants. Also total duration of probing on MeJAtreated plants was significantly shorter than on control plants. Total duration of salivation period on SAtreated plants was significantly longer, while mean phloem ingestion period was significantly shorter than on control plants. However, no significant difference in total duration of phloem sap ingestion period was observed among treatments. The EPG data suggest that MeJAdependent resistance factors might be due to feeding deterrents in mesophyll, whereas the SAmediated resistance may be phloembased. We did not observe any significant difference of MeJA and SA application on aphid development, daily fecundity, intrinsic growth rate and population growth. The results indicate that both MeJA and SAinduced defenses in wheat deterred S. avenae colonization processes and feeding behavior, but had no significant effects on its performance.  相似文献   

11.
Interactions among three trophic levels of resistant and susceptible slenderwheat grasses, Elymus trachycaulum (Link) Goule ex Shinners ex. H.F. Lewis, Russian wheat aphid, Diuraphis noxia (Mordvilko), and a hymenopterous parasitoid were studied in the laboratory and greenhouse. These relationships were compared with a commercial susceptible wheat Triticum aestivum L. variety. Aphids reared on the resistant entries showed significantly lower weights and numbers. Significant reduction of parasitoid mummy weight and adult size was positively correlated with the effects on the aphids. Resistant entries also induced a longer prereproductive period for both the aphids and parasitoids. Numbers of aphids and aphid damage were significantly modified by the addition of parasitoids. Parasitism was higher on plants that did not have leaf rolling. These findings may indicate that antibiosis resistance studied here is not the most desirable because it decreases natural enemy vitality.  相似文献   

12.
The bird cherry-oat aphid (Rhopalosiphum padi L.) is a major pest of wheat (Triticum aestivum L.) and can cause up to 30% yield losses. Heritable plant resistance to aphids is both an economically and ecologically sound method for managing aphids. Here we report how the behaviour and performance of R. padi differs on two resistant, one susceptible wheat landrace and a susceptible elite wheat variety. Feeding behaviour differed among the genotypes, with aphids on resistant lines spending longer in the pathway phase and less time phloem feeding. These behaviours suggest that both inter- and intracellular factors encountered during pathway and phloem feeding phases could be linked to the observed aphid resistance. Locomotion and antennal positioning choice tests also revealed a clear preference for susceptible lines. Although feeding studies revealed differences in the first probe indicating that the resistance factors might also be located in the peripheral layers of the plant tissue, scanning electron microscopy revealed no difference in trichrome length and density on the surface of leaves. Aphids are phloem feeders and limiting the nutrient uptake by the aphids may negatively affect their growth and development as shown here in lower weight and survival of nymphs on resistant genotypes and decreased reproductive potential, with lowest mean numbers of nymphs produced by aphids on W064 (54.8) compared to Solstice (71.9). The results indicate that resistant lines markedly alter the behaviour, reproduction and development potential of R. padi and possess both antixenosis and antibiosis type of resistance.  相似文献   

13.
Wing dimorphism has been proposed as a strategy to face trade-offs between flight capability and fecundity. In aphids, individuals with functional wings have slower development and lower fecundity compared with wingless individuals. However, differential maintenance costs between winged and wingless aphids have not been deeply investigated. In the current study, we studied the combined effect of wing dimorphism with the effects of aphid genotypes and of wheat hosts having different levels of chemical defences (hydroxamic acids, Hx) on adult body mass and standard metabolic rates (SMR) of winged and wingless morphs of the grain aphid, Sitobion avenae. We found that wingless aphids had higher body mass than winged aphids and that body mass also increased towards host with high Hx levels. Furthermore, winged aphids showed a plastic SMR in terms of Hx levels, whereas wingless aphids displayed a rigid reaction norm (significant interaction between morph condition and wheat host). These findings suggest that winged aphids have reduced adult size compared to wingless aphids, likely due to costs associated to the development of flight structure in early-life stages. These costs contrast with the absence of detectable metabolic costs related to fuelling and maintenance of the flight apparatus in adults.  相似文献   

14.
The symbiosis between grasses and endophytic fungi is a common phenomenon and can affect herbivore performance through acquired, chemical plant defence by fungal alkaloids. In laboratory experiments, two species of common grass aphids, Rhopalosiphum padi and Metopolophium dirhodum were tested, in a population experiment (on four plant cultivars) and individually (on one plant cultivar) for the effects of the endophyte, Neotyphodium lolii, that forms symbiotic associations with perennial ryegrass Lolium perenne. In the population experiment that lasted for four aphid generations both aphid species showed decreased population sizes when feeding on each of the four endophyte-infected cultivars. Individuals of R. padi tested individually showed reduced adult life span and fecundity when feeding on infected plants. Individuals of M. dirhodum showed no response in any of the traits measured. This suggests that R. padi individuals are more sensitive to endophyte infection than M. dirhodum individuals. However, all infected grass cultivars reduced population sizes of both aphid species over four generations. Therefore, fungal endophytes can reduce populations of aphid herbivores independent of plant cultivars.  相似文献   

15.
Estimations of infestation by the bird cherry-oat aphid (Rhopalosiphum padi) as well as measurements of grain yield in 26 Hungarian winter wheat cultivars under field conditions were correlated with the concentration of hydroxamic acids (Hx) in seedlings of those cultivars. The significant inverse relationship between infestation ratings and Hx levels in wheat showed that Hx, despite their decreased accumulation at later plant phenological stages, may be able to confer resistance against aphid infestation in the field. Since no significant relationship was found between grain yield and Hx levels in plants it is suggested that Hx accumulation does not impose a cost to the plant in terms of yield. These findings support earlier claims stressing the potential of Hx as breeding targets for aphid resistance in wheat.  相似文献   

16.
The potential for exploiting natural wheat resistance to control the cereal aphid Rhopalosiphum padi, the most important aphid pest of small grain cereals in the UK, was investigated as an alternative approach to the use of insecticides. The investigation focussed on a group of secondary metabolites, the hydroxamic acids or benzoxazinones, present naturally as glucosides, but which hydrolyse on tissue damage to give biologically active aglycones, e.g. 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one (DIMBOA) which are associated with natural plant defence. These can be important for resistance against insects, fungi, bacteria and nematodes for a range of cultivated monocotyledonous plants and could ultimately be combined with other defence mechanisms to provide a general approach to cereal aphid control. Levels of hydroxamic acids, particularly DIMBOA‐glucoside, were determined in hexaploid (Triticum aestivum) and tetraploid (Triticum durum) wheat varieties and differences were found between species and varieties. The effect of feeding by R. padi on the level of hydroxamic acids in the leaf tissue was also investigated. Thus, after 24 h of aphid feeding, as an apparently localised hydrolytic defence reaction in the leaf, levels of DIMBOA‐glucoside decreased noticeably. When aphids were fed on sucrose solution containing low doses of DIMBOA there was a significant mortality compared to the sucrose control. However, the levels of and variation in hydroxamic acids in the wheat varieties investigated were insufficient for significant differences in aphid behaviour and development.  相似文献   

17.
Feeding behaviour of five species of cereal aphids in wheat seedlings differing in hydroxamic acid (Hx) levels, was monitored via electrical penetration graphs (EPG). Aphid species could be grouped as sensitive to the feeding deterrent effect of Hx in the seedlings (Rhopalosiphum padi, Schizaphis graminum, Sitobion avenae, andMetopolophium dirhodum) or insensitive to them (Rhopalosiphum maidis). However, when feeding behaviour was studied in artificial diets containing Hx, all species were equally sensitive to Hx. The behavour ofR. maidis was further compared with that ofR. padi through detailed EPG analysis. It was found that the insensitivity ofR. maidis to Hx in seedlings may be due to a feeding strategy avoiding contact with the compounds by decreasing the number of cellular punctures in live tissues other than sieve elements during its way to the phloem.  相似文献   

18.
Crop protection is an integral part of establishing food security, by protecting the yield potential of crops. Cereal aphids cause yield losses by direct damage and transmission of viruses. Some wild relatives of wheat show resistance to aphids but the mechanisms remain unresolved. In order to elucidate the location of the partial resistance to the bird cherry–oat aphid, Rhopalosiphum padi, in diploid wheat lines of Triticum monococcum, we conducted aphid performance studies using developmental bioassays and electrical penetration graphs, as well as metabolic profiling of partially resistant and susceptible lines. This demonstrated that the partial resistance is related to a delayed effect on the reproduction and development of R. padi. The observed partial resistance is phloem based and is shown by an increase in number of probes before the first phloem ingestion, a higher number and duration of salivation events without subsequent phloem feeding and a shorter time spent phloem feeding on plants with reduced susceptibility. Clear metabolic phenotypes separate partially resistant and susceptible lines, with the former having lower levels of the majority of primary metabolites, including total carbohydrates. A number of compounds were identified as being at different levels in the susceptible and partially resistant lines, with asparagine, octopamine and glycine betaine elevated in less susceptible lines without aphid infestation. In addition, two of those, asparagine and octopamine, as well as threonine, glutamine, succinate, trehalose, glycerol, guanosine and choline increased in response to infestation, accumulating in plant tissue localised close to aphid feeding after 24 h. There was no clear evidence of systemic plant response to aphid infestation.  相似文献   

19.
Greenbugs, Schizaphis graminum (Rondani), were reared on intact and excised leaves of varieties of sorghum which differed in their suitability as hosts for this aphid. Aphids grew poorly on intact leaves of three resistant varieties, but grew well on excised leaves of the same varieties. Leaf excision did not affect aphid growth on three susceptible varieties. By electronically monitoring the feeding behaviour of aphids on two resistant and one susceptible variety, significant differences were found in many parameters between aphids assayed on excised vs. intact leaves of only the resistant varieties. Aphids on excised leaves of the resistant varieties, and on excised or intact leaves of the susceptible variety, made fewer probes to the phloem, spending more time ingesting from phloem during each probe, compared to aphids on intact resistant plants. There was a higher level of free amino acids in excised leaves of all varieties, but aphid growth and feeding behaviour improved as a result of excision only on resistant varieties. This observation, coupled with the fact that intact plants of all varieties have similar amino acid levels, indicates that these nutrients are not of primary importance in sorghum suitability to the greenbug. Other explanations for the aphids' responses to excised leaves are discussed.  相似文献   

20.
We investigated the comparative effects of the feeding damage caused by two Russian wheat aphid (RWA, Diuraphis noxia Kurdjumov) biotypes, RWASA1 and RWASA2, on leaves of three RWA-resistant barley (Hordeum vulgare L.) lines from the USDA-ARS, and used a South African non-resistant cultivar as control. The relationship between aphid breeding capacity and the structural damage inflicted by the aphids was studied, using wide-field fluorescence and transmission electron microscopy (TEM). Colonies of the two biotypes grew rapidly on all four barley lines during a 10 day feeding exposure but as expected, population size and density were generally lower on the resistant lines than on the non-resistant cultivar. The new South African biotype, RWASA2, bred significantly faster than the original RWASA1 biotype. The feeding and water uptake-related damage sustained by phloem and xylem tissues of the resistant lines suggest that RWASA2 was a more aggressive feeder and caused substantially more cell damage than RWASA1. Examination of wound callose distribution after aphid feeding revealed that high levels of wound callose occurred in non-resistant and in resistant lines. Reduction in aphid population size, as well as ultrastructural damage during feeding by RWA biotypes on resistant lines, signals potential antibiotic and tolerant responses of the barley lines to aphid feeding. We infer from callose distribution and ultrastructural studies, that phloem transport would be substantially reduced in the non-resistant PUMA and to a lesser extent in the resistant STARS lines, which suggests that the STARS lines may be a potential source of RWASA1 and RWASA2-resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号