首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA marker can be used for precise plant cultivar identification. However, DNA markers have often not been used effectively for the identification of plant cultivars due to a lack of an effective analysis strategy. We used a novel strategy for effective identification of plant individuals based on a new way of recording DNA fingerprints of the genotyped plants; a cultivar identification diagram can be manually generated and used as key reference information for quick identification of plant and/or seed samples. Forty-seven pomegranate varieties popularly cultivated in various provinces of China were subjected to RAPD marker analysis. Using the cultivar identification diagram strategy, they were clearly separated by the fingerprints of 11 RAPD primers. The utility and accuracy of the cultivar identification diagram analysis results were confirmed by the identification of three randomly chosen groups of cultivars among the 47 varieties.  相似文献   

2.
DNA markers have useful applications in cultivar identification. A novel analysis approach called cultivar identification diagram (CID) was developed using DNA markers in the separation of plant individuals. This new strategy is less time- and cost-consuming, has reliable results, and was constructed for fingerprinting. Ten 11-mer primers were used to amplify the genotypes; all 95 peach genotypes (from the National Peach Germplasm Repository, in Nanjing, China) were distinguished by a combination of 54 primers. The utilization of the CID among these 95 peach cultivars was also verified by the identification of three randomly chosen groups of cultivars. This identification showed some advantages including the use of fewer primers and easy separation of all cultivars by the corresponding primers marked in the right position on the CID. This peach CID could provide the information to separate any peach cultivars of these 95, which may be of help to the peach industry in China and for the utilization of DNA markers to identify other plant species.  相似文献   

3.
We optimized RAPD techniques by increasing the length of RAPD primers and performing a strict screening of PCR annealing temperature to distinguish 60 sweet orange cultivars from the Research Institute of Pomology at the Chinese Academy of Agricultural Sciences. A new approach called cultivar identification diagram (CID) was used to improve the efficiency of RAPD markers for cultivar identification. Thirteen effective primers were first screened from 54 RAPD arbitrary 11-mer primers based on their amplification products and amplified polymorphic bands; they were then used for PCR amplification of all 60 cultivars. All cultivars were manually and completely separated by the polymorphic bands appearing in DNA fingerprints from 13 primers; a CID of the 60 sweet orange cultivars was then constructed. This CID separated all the cultivars from each other, based on the polymorphic bands; the corresponding primers were marked in the correct positions on the sweet orange CID. The CID strategy facilitates the identification of fruit cultivars with DNA markers. This CID of sweet orange cultivars will be very useful for the protection of cultivar rights and for early identification of seedlings in the nursery industry.  相似文献   

4.
为了克服单纯依据形态特性鉴定品种的局限性, 我们开展了莲品种DNA指纹图谱构建研究, 旨在对其品种的快速准确鉴定及专利权保护等起一定作用。本研究以圆明园保存的72个莲品种为实验材料, 用来自不同地点的1,409份野生莲(Nelumbo nucifera)和58份美洲黄莲(N. lutea)群体样本作遗传背景参照。从104对核微卫星引物(nSSR)中筛选出15对, 从17对叶绿体微卫星(cpSSR)引物中筛选出2对, 共17对引物作为72个莲品种DNA指纹鉴定的条码。15对nSSR引物共检测到94个等位基因(平均6.27个), 其中11个属于美洲黄莲, 65个属于野生莲, 18个不能区分; 多态信息含量(PIC)介于0.3899-0.8023之间 (平均0.5748)。2对cpSSR引物共检测到13个单倍型, 其中9个属于野生莲, 4个属于美洲黄莲。全部17对引物标记结果显示, 共有19个品种含有美洲黄莲遗传组分, 其中8个母系来源于美洲黄莲; 有36个品种(涉及12对引物)具有至少1个特有基因型; 最少8对引物组合可完全区分开68个品种。有2组共4个品种组内全部17对引物均不能区分。本研究通过核心引物组合法使68个莲品种获得特异性DNA指纹。推荐13对nSSR和2对cpSSR共15对引物作为莲品种鉴定的核心条码, 并建议将形态特征与DNA指纹相结合作为莲品种的鉴定标准。  相似文献   

5.
Variations in random amplified polymorphic DNA (RAPD) profiles from leaf, stem, root, and tuber tissues were observed in case of two glasshouse grown potato cultivars using 40 decamer primers suggesting possible danger of cultivar misidentification. Genomic DNA extracted from the above four tissues of four in vitro grown potato cultivars, however, produced more uniform RAPD fingerprints. A significant effect of random primers on fingerprint uniformity was observed in case of both glasshouse and in vitro grown samples. A new concept of stability index for random primers based on homogeneity of RAPD profiles obtained from different tissues of a single plant have been introduced. It is concluded that RAPD analysis of genomic DNA extracted from any tissue of in vitro grown potato plants using 14 selected decamer primers could be used to develop RAPD fingerprints for identification of Indian potato cultivars.  相似文献   

6.
Identified germplasm is an important component for efficient and effective management of plant genetic resources. Traditionally, cultivars or species identification has relied on morphological characters like growth habit or floral morphology like flower colour and other characteristics of the plant. Studies were undertaken for identification and analysis of genetic variation within 34 rose cultivars through random amplified polymorphic DNA (RAPD) markers. Analysis was made by using twenty five decamer primers. Out of twenty five, ten primers were selected and used for identification and analysis of genetic relationships among 34 rose cultivars. A total of 162 distinct DNA fragments ranging from 0.1 to 3.4 kb was amplified by using 10 selected random decamer primers. The genetic similarity was evaluated on the basis of presence or absence of bands. The cluster analysis indicated that the 34 rose cultivars form 9 clusters. The first cluster consists of eight hybrid cultivars, three clusters having five cultivars each, one cluster having four cultivars, two clusters having three cultivars each and two clusters having one cultivar each. The genetic distance was very close within the cultivars. Thus, these RAPD markers have the potential for identification of clusters and characterization of genetic variation within the cultivars. This is also helpful in rose breeding programs and provides a major input into conservation biology.  相似文献   

7.
8.
牡丹品种鉴定用ISSR引物的筛选与开发   总被引:5,自引:0,他引:5  
用于牡丹品种鉴定的DNAISSR-PCR反应体系已经建立。利用DNAISSR分子标记分析少量牡丹品种时,容易获得各品种的特有ISSR标记。然而,中国牡丹品种约有1500个,在小批量品种范围内找到的品种特有ISSR标记有可能出现在其它品种中。因此,利用DNAISSR分子标记对数量庞大的中国牡丹品种进行区分和鉴定时,寻找品种特有标记成为突出的技术难题。标记是由引物通过PCR扩增产生的。因此,关键在于找到理想的ISSR引物。对已知的ISSR引物的筛选未获得良好的PCR扩增结果。报道牡丹鉴定用ISSR引物的设计与开发新途径。  相似文献   

9.
应用SRAP标记绘制88份南瓜属种质资源DNA指纹图谱   总被引:1,自引:0,他引:1  
为了给南瓜属种质资源鉴定和分类提供分子生物学依据,本研究采用SRAP分子标记技术与DNAMAN指纹图谱绘制软件对88份南瓜属种质资源(包含美洲南瓜、中国南瓜、印度南瓜)进行分子指纹图谱绘制。结果表明:35对SRAP多态性引物共扩增出499条清晰条带,其中多态性条带438条,多态性条带比率高达87.8%。根据扩增出的条带成功绘制出88份南瓜属种质资源的DNA指纹图谱,每一份种质都具有其独特的分子身份证,使得每份种质均可被区别开来。其中,多态性最好的引物是E5EM8,可以同时绘制72份南瓜属种质资源的指纹图谱。所有供试材料用5对多态性SRAP引物即可全部区别开来。研究表明,SRAP分子标记技术可成功地绘制南瓜属种质资源DNA指纹图谱。本研究对南瓜属种质资源鉴别、分子数据库构建及品种权保护具有较重要的意义。  相似文献   

10.
The availability of a simple, reproducible and cost-effective molecular marker is a prerequisite for plant genetic analysis. We have developed a novel promoter-targeted marker, CAAT box- derived polymorphism (CBDP) using the nucleotide sequence of CAAT box of plant promoters. CBDP, like random amplified polymorphic DNA (RAPD), uses single primer in polymerase chain reaction (PCR) for generating markers. However unlike RAPD, the CBDP primers are 18 nucleotides long and consist of a central CCAAT nucleotides core flanked by the filler sequence towards the 5′ end and di- or trinucleotides towards the 3′ end. In this study, a small set of 25 CBDP primer was designed and initially tested in a representative set of eight cultivars of jute for generation of polymorphic markers. Further, to achieve high reproducibility, a touchdown PCR was employed with an annealing temperature of 50ºC. All the CBDP primers generated polymorphic markers in jute cultivars, and an UPGMA dendrogram based on Jaccard’s similarity grouped them into two clusters represented by Corchorus capsularis and C. olitorius, respectively. Interestingly, such grouping of jute cultivars was consistent with genetic relationships established earlier for these cultivars using other DNA markers. Moreover, these CBDP primers also generated polymorphic markers in representative sets of cotton (Gossypium species) and linseed (Linum usitatissimum ) cultivars. Given the high success rate of CBDP primers in generating markers in the tested species and advantages like ease in marker development and assay with reproducible profiles, they could potentially be exploited in other species as well for assessing genetic diversity, cultivar identification, construction of linkage map and marker- assisted selection.  相似文献   

11.
Microsatellite DNA markers of ten SSR loci and 248 RAPD loci (resolved by 26 RAPD primers) were used for DNA fingerprinting and differentiation of 17 widely grown Populus x canadensis syn. Populus x euramericana (interspecific Populus deltoides x Populus nigra hybrids) cultivars ("Baden 431", "Blanc du Poitou", "Canada Blanc", "Dorskamp 925", "Eugenei", "Gelrica", "Grandis", "Heidemij", "I-55/56", "I-132/56", "I-214", "Jacometti", "Ostia", "Regenerata", "Robusta", "Steckby" and "Zurich 03/3"), and determination of their genetic interrelationships. Informativeness of microsatellite and RAPD markers was also evaluated in comparison with allozyme markers for clone/cultivar identification in P. x canadensis. High microsatellite DNA and RAPD genetic diversity was observed in the sampled cultivars. All of the 17 P. x canadensis cultivars could be differentiated by their multilocus genotypes at four SSR loci, and were heterozygous for their parental species-specific alleles at the PTR6 SSR locus. Except for "Canada Blanc" and "Ostia", which had identical RAPD patterns, all cultivars could also be differentiated by RAPD fingerprints produced by each of the two RAPD primers, OPA07 and OPB15. For microsatellites, the mean number of alleles, polymorphic information content, observed heterozygosity, observed number of genotypes and the number of cultivars with unique genotypes per locus was 5.2, 0.64, 0.67, 5.7 and 2.2, respectively. For RAPD markers, the number of haplotypes per locus, and the number of cultivars with unique RAPD profiles per locus were 1.06 and 0.72, respectively. Overall, microsatellite DNA markers were the most informative for DNA fingerprinting of P. x canadensis cultivars. On the per locus basis, microsatellites were about six-times more informative than RAPD markers and about nine-times more informative than allozyme markers. However, on the per primer basis, RAPD markers were more informative. The UPGMA cluster plots separated the 17 cultivars into two major groups based on their microsatellite genotypic similarities, and into three major groups based on their RAPD fragment similarities. Both the microsatellite and RAPD data suggest that the cultivars "Baden 431", "Heidemij", "Robusta" and "Steckby" are genetically closely related. The inter-cultivar genetic relationships from microsatellite DNA and RAPD markers were consistent with those observed from allozyme markers, and were in general agreement with their speculated origin. Microsatellite DNA and RAPD markers could be used for clone and cultivar identification, varietal control and registration, and stock handling in P. x canadensis.  相似文献   

12.
 Inter-simple sequence repeat (ISSR) markers generated by 22 primers were tested for their ability to distinguish among samples from 94 trees of 68 citrus cultivars. Within each of the six cultivar groups studied, most of these cultivars are so closely related that they are difficult to distinguish by other molecular-marker techniques. ISSR markers involve PCR amplification of DNA using a single primer composed of a microsatellite sequence anchored at the 3′ or 5′ end by 2–4 arbitrary, often degenerate, nucleotides. The amplification products were separated on non-denaturing polyacrylamide gels and detected by silver staining. ISSR banding profiles were very repeatable on duplicate samples. Different citrus species had very different fingerprint patterns. Within Citrus sinensis (L.) Osbeck and C. paradisi Macf., in which all cultivars have originated by the selection of mutants, ISSR markers distinguished 14 of 33 sweet orange and 1 of 7 grapefruit cultivars. Five of six lemon cultivars were discriminated by ISSR markers. Many differences were found among mandarin cultivars; however, all five satsuma cultivars analyzed had identical ISSR fingerprints. Four of five citrange cultivars were distinguishable, but ‘Troyer’ and ‘Carrizo’ had identical ISSR fingerprints. ‘Kuharske Carrizo’ citrange, which has better citrus nematode resistance than other ‘Carrizo’ citrange accessions, had unique ISSR fingerprints. Three ISSR markers that differentiated certain sweet orange cultivars were hybridized to Southern blots of sweet orange DNA digested with different restriction endonucleases. The sweet orange cultivars tested could be distinguished by these ISSR-derived RFLP markers. Moreover, one ISSR marker unique to ‘Ruby’ blood orange was observed in its progeny trees. Received: 9 September 1996 / Accepted: 4 April 1997  相似文献   

13.
Pyrus communis L. is the most important pear species for European production. Very few cultivars satisfy standards for fruit quality and clonal fidelity; thus, accurate verification of cultivar identity for checking propagation material and patent protection is important. We evaluated the randomly amplified polymorphic DNA (RAPD) technique for its ability to identify genetic differences among standard pear (Pyrus communis L.) cultivars, William, Passa Crassana, and Conference, and three gamma-ray induced variants. To identify genotype-specific markers, we used thirty 10-mer and two 11-mer sequences, annealing temperatures from 36–45°C, 2Taq polymerases (AmpliTaq and Stoffel fragment, both from former Perkin Elmer Cetus), and 2–4 replicate amplifications. Of the 32 primers (30 from Operon Technologies, Alameda, CA, USA), very few distinguished William from Passa Crassana, and only 1 could clearly differentiate all 3 cultivars. Two primers that did not reveal polymorphisms when used singly, generated polymorphic patterns that distinguished standard from gamma-ray-treated material when used in combination. We show that RAPD analyses can discriminate pear genotypes and suggest this technique as a reliable and inexpensive method for marker-facilitated screening of propagation material and for patent protection.  相似文献   

14.
AFLP and RAPDmarkers were employed in sixteen diploid cotton (Gossypium sp) cultivars for genetic diversity estimation and cultivar identification. Polymorphism information content (PIC) and percent polymorphism were found to be more for AFLP markers as compared to RAPD markers. Average Jaccard’s genetic similarity index was found to be almost similar using either AFLP or RAPD markers. All the cultivars could be distinguished from one another using AFLP markers and also by the combined RAPD profiles. Cultivar identification indicators like resolving power, marker index and probability of chance identity of two cultivars suggested the usefulness of AFLP markers over the RAPD markers. AFLP and RAPD analyses revealed limited genetic diversity in the studied cultivars. Cluster analysis of both RAPD and AFLP data produced two clusters, one containing cultivars of G. herbaceum and another containing cultivars of G. arboreum species. Highly positive correlation between cophenetic matrices using RAPD and AFLP markers was observed. AFLP markers were found to be more efficient for genetic diversity estimation, polymorphism detection and cultivar identification.  相似文献   

15.
为分析品种遗传多样性和遗传距离并构建品种聚类图和指纹图谱,该研究从DNA模板浓度、引物浓度、退火温度和循环次数等方面优化了叶子花ISSR-PCR反应体系和反应程序,利用11个ISSR引物对131个叶子花品种进行PCR扩增,扩增产物经琼脂糖凝胶电泳检测。结果表明:优化的ISSR-PCR反应体系中DNA模板浓度为0.5 ng·μL-1,引物浓度为0.5μmol·L-1,引物UBC813、UBC814、UBC815、UBC823、UBC824、UBC835、UBC840、UBC841、UBC843、UBC844和UBC876的最佳退火温度分别为52.3、55.9、54.3、54.3、53.6、56.2、56.2、51.9、54.4、54、50℃,循环次数为32。用11个ISSR引物对131个叶子花品种扩增出161条带,其中多态性条带156条,多态性比率为96.89%。单个引物的等位基因数、有效等位基因数、Nei’s基因多样性指数和Shannon’s信息指数分别为1.86~2.00、1.33~1.68、0.21~0.39和0.34~0.57,平均值分别为1.969、1.478、0.294和0.447。引物UBC841的鉴别率最高(80.92%),可有效鉴别106个品种,与引物UBC876结合可将131个叶子花品种完全鉴别开,建立了各品种的指纹图谱。叶子花品种的遗传距离范围为0.00~0.60,平均值为0.365,遗传多样性较低,在遗传距离0.58处,131个品种分为6大类群,聚类分析显示同一个种的品种大多聚在一类,但同一个种仍有品种未聚在一类或亚类、也有多个种的品种聚在一类。该研究较为准确地揭示了叶子花种质资源的遗传多样性,建立的指纹图谱为叶子花品种登记、知识产权保护以及品种鉴定提供了可靠技术和有效手段。  相似文献   

16.
As a popular flowering species with many cultivars, Cymbidium ensifolium (L.) is commercially important in horticulture. However, so far little has been known about genetic diversity and conservation genetics of this species. Understanding of the genetic variation and relationships in cultivars of C.?ensifolium is a prerequisite for development of future germplasm conservation and cultivar improvement. Here we report assessment of genetic variations in C.?ensifolium cultivars using the DNA fingerprinting technique of inter-simple sequence repeats (ISSR). A total of 239 ISSR loci were identified and used for evaluation of genetic variation with a selection of 19 ISSR primers. Among these ISSR loci, 99.16% were polymorphic with wide genetic variation as shown by Nei??s gene diversity (H?=?0.2431) among 85 tested cultivars. ISSR fingerprinting profiles showed that each cultivar had its characteristic DNA pattern, indicating unequivocal cultivar identification at molecular level. Eighteen cultivar-specific ISSR markers were identified in seven cultivars. The cultivar Sijiwenhan was confirmed as hybrid by four ISSR primers. Several cultivars with same name but different geographical origins were distinguished based on their ISSR profiles. A dendrogram generated with ISSR markers could group 73 of 85 cultivars into four major clusters. Further analysis of ISSR variation revealed that about 69% of total genetic variation in this species is due to genetic divergence inside geographical groups. Our results suggest that both germplasm collection and in?situ conservation are important for future planning of C.?ensifolium species conservation.  相似文献   

17.
Multiple endonuclease digestion of template DNA or amplification products can increase significantly the detection of polymorphic DNA in fingerprints generated by multiple arbitrary amplicon profiling (MAAP). This coupling of endonuclease cleavage and amplification of arbitrary stretches of DNA, directed by short oligonucleotide primers, readily allowed distinction of closely related fungal and bacterial isolates and plant cultivars. MAAP analysis of cleaved template DNA enabled the identification of molecular markers linked to a developmental locus of soybean (Glycine max L. Merrill). Ethyl methane sulfonate (EMS)-induced supernodulating, near-isogenic lines altered in the nts locus, which controls nodule formation, could be distinguished from each other and from the parent cultivar by amplification of template pre-digested with 2–3 restriction enzymes. A total of 42 DNA polymorphisms were detected using only 19 octamer primers. In the absence of digestion, 25 primers failed to differentiate these soybean genotypes. Several polymorphic products co-segregated tightly with the nts locus in F2 families from crosses between the allelic mutants nts382 and nts1007 and the ancestral G. soja Sieb. & Succ. PI468.397. Our results suggest that EMS is capable of inducing extensive DNA alterations, probably around discrete mutational hot-spots. EMS-induced DNA polymorphisms may constitute sequence-tagged markers diagnostic of specific genomic regions.  相似文献   

18.
RAPD markers were used to examine the genetic relatedness of eight strawberry cultivars released from four breeding programmes around the world. Ten random primers successfully amplified DNA fragments from each cultivar and specific fingerprints were generated from the molecular marker data. The cultivars were traced back to founding clones and the relationships between the cultivars were examined from both the molecular and the pedigree data.  相似文献   

19.
利用RAPD标记技术,对8个沙梨(Pyrus pyrifolia)主栽品种进行RAPD分析。结果显示,从33个10碱基随机引物中筛选出了2个多态性高的引物S2075和S1296,扩增位点分别为11个和10个,以此为基础建立了8个品种的DNA指纹图谱;根据这2个引物中任何一个的扩增图谱均可以将这8个品种区分。研究结果为沙梨品种的区别与鉴定提供了一种有效方法。  相似文献   

20.
Identification of hazelnut (Corylus avellana) cultivars by RAPD analysis   总被引:5,自引:0,他引:5  
The random amplified polymorphic DNA (RAPD) technique offers a useful tool to detect DNA polymorphisms. It can also be used to distinguish different clones and cultivars. We have developed a comprehensive RAPD-based procedure for the routine molecular typing of various plants. Here we report the application of this technique for the correct identification of six hazelnut cultivars (Corylus avellana) widespread in the Campania region (south Italy). The analysed hazelnut cultivars were successfully distinguished by their RAPD fingerprints using the DNA primers U2, U3, U4, U11 and U14. However, in each cultivar we observed very low genetic heterogeneity among the clonal variants. Since this technique is among the simplest and easiest methods used to fingerprint DNA, it could be easily transferred to less sophisticated laboratory infrastructures (e.g. outstations of crop regulatory agencies). Received: 20 December 1997 / Revision received: 6 August 1998 / Accepted: 13 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号