首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 734 毫秒
1.
为了探究不同种植方式下草本植物对喀斯特"土层浅薄"和"岩溶干旱"生境的养分调节响应,选择苇状羊茅(Festuca arundinacea)和黑麦草(Lolium perenne)为研究材料,在盆栽水分控制条件下设置了2种土壤厚度[对照土壤厚度(T_(CK))和浅土(T_S)]、2种水分处理[对照水分(W_(CK))和干旱(W_D)]和2种种植方式(单种和混种),研究土壤厚度和水分减少对混种下两种草本植物元素含量、积累和分配的影响。结果表明:(1)与对照组(CK:T_(CK)W_(CK))相比,在浅土组(S:T_SW_(CK))、干旱组(D:T_(CK)W_D)和浅土+干旱组(SD:T_SW_D),苇状羊茅和黑麦草的地上和根系C和N含量在单种和混种下(浅土除外)显著增加,P含量和各部分元素积累量显著降低;而苇状羊茅的根系各元素分配比在3种低资源水平下(S、D、SD)由单种时增加转为混种时降低,而黑麦草的根系营养元素分配比在浅土中增加,但在干旱处理下减少。(2)在对照资源水平下(CK),混种后苇状羊茅的地上部分C含量、根系P含量、地上、地下和总的元素积累量和根系元素分配比显著高于单种,而在3种低资源水平下达到各参数在单种和混种下无显著差异。(3)在各资源水平下,混种后黑麦草各部分C、N、P的含量、积累量和根系元素分配比大体上与单种无显著差异。结果表明,在低资源水平下,苇状羊茅和黑麦草通过增加C和N元素含量表现出较强的资源获取和防御能力。在混种条件下,苇状羊茅能够通过调节自身元素的积累和分配来提高竞争力,而黑麦草保持相对恒定的策略来响应竞争。  相似文献   

2.
凋落物分解是生态系统营养物质循环的核心过程,而土壤微生物群落在凋落物分解过程中扮演着极其重要且不可替代的角色。随着生物多样性的丧失日益严峻,探讨凋落物多样性及组成对凋落物分解和土壤微生物群落的影响,不仅有助于了解凋落物分解的内在机制,而且可为退化草原生态系统的恢复提供参考。以内蒙古呼伦贝尔草原退化恢复群落中的草本植物为研究对象,依据植物多度、盖度、频度和物种的重要值及其在群落中的恢复程度筛选出排序前4的羊草(Leymus chinensis)、茵陈蒿(Artemisia capillaris)、麻花头(Serratula centauroides)、二裂委陵菜(Potentilla bifurca)的凋落物为实验材料,通过设置3种凋落物多样性水平(1,2,4),包括11种凋落物组合(单物种凋落物共4种,两物种凋落物混合共6种,四物种凋落物混合共1种),利用磷脂脂肪酸(PLFA)方法来研究分解60 d后凋落物多样性及组成对凋落物分解和土壤微生物群落的影响。结果表明:(1)凋落物物种多样性仅对C残余率具有显著影响,表现在两物种混合凋落物C残余率显著低于单物种凋落物,而凋落物组成对所观测的4个凋落物分解参数(质量、C、N残余率以及C/N)均具有显著影响;(2)凋落物物种多样性对细菌(B)含量具有显著影响,而凋落物组成对真菌(F)含量具有显著影响,两者对F/B以及微生物总量均无显著影响;(3)冗余分析结果表明凋落物组成与凋落物分解相关指标(凋落物质量、C、N残余率及C/N)和土壤微生物(真菌、细菌含量)的相关关系高于凋落物多样性。(4)进一步建立结构方程模型(Structural Equation Model,SEM)发现,凋落物初始C含量对凋落物质量、C、N残余率及C/N有显著正的直接影响;凋落物木质素含量对凋落物质量、C、N残余率有显著正的直接影响;凋落物初始N含量对N残余率有显著正的直接影响,而对C残余率及C/N有显著负的直接影响;凋落物初始C/N对凋落物质量、N残余率有显著正的直接影响,而对C/N有显著负的直接影响。此外,凋落物初始C、N、木质素含量及C/N均对真菌含量具有显著正影响,并可通过真菌对凋落物质量分解产生显著负的间接影响。以上结果表明该退化恢复区域优势种凋落物分解以初始C、木质素为主导,主要通过土壤真菌影响凋落物的分解进程,这将减缓凋落物的分解速率进而减慢草原生态系统的进程。这些结果为凋落物多样性及组成对自身分解和土壤微生物群落的影响提供了实验依据,也为进一步分析凋落物分解内在机制以及草原生态系统的恢复提供了数据参考。  相似文献   

3.
草地利用方式影响植被群落结构和土壤微环境, 制约草地生态系统碳循环。该文通过测定温带草原在放牧、割草、围封3种利用方式下湿润年(2012年)和干旱年(2011年)的凋落物产量、质量及其分解速率和土壤碳通量, 分析了草地利用方式对土壤呼吸和凋落物的影响, 探讨了凋落物对土壤呼吸的贡献机制。结果表明: 在干旱年份, 放牧样地土壤呼吸最大, 分别达到割草和围封样地的1.5倍和1.29倍; 在湿润年份, 割草样地土壤呼吸最大, 为309 g C∙m-2∙a-1, 明显高于放牧样地和围封样地。不论干旱年还是湿润年, 围封样地凋落物产量都大于放牧样地和割草样地。3种利用方式下湿润年土壤呼吸和凋落物分解均比干旱年增强。因此, 水分是温带草原植物生长和生态系统碳循环的主要限制因子, 草地利用方式则显著影响凋落物生产和分解。进一步分析表明, 经过两年的分解, 同一样地内凋落物质量C:N下降, N含量和木质素:N升高, 土壤呼吸与凋落物产量、凋落物分解速率以及木质素:N正相关, 而与凋落物C:N负相关。  相似文献   

4.
采用凋落物分解袋法, 研究了呼伦贝尔草甸草原主要优势种贝加尔针茅(Stipa baicalensis)根系组织和地上部分凋落物分解的季节动态以及凋落物的放置位置(置于地表和15 cm土壤表层)对分解的影响。结果表明, 置于表层土壤中的根系组织和地上部分凋落物的分解速率比置于地表的快, 但是根系组织在两个放置位置分解的差异不显著。无论置于地表还是置于表层土壤中, 地上部分凋落物的分解均快于根系组织的凋落物分解。在分解过程中, 凋落物碳(C)损失的季节变化模式与重量损失相似; 而氮(N)变化模式明显不同, 地上部分凋落物表现为释放—累积—释放, 根系则表现为释放—累积, 并且地上部分或者根系在不同放置位置中N含量变化的差异较小。地上部分和根系组织凋落物的初始化学组成的差异可能是导致其分解过程差异显著的主要原因, 其次的原因才是土壤含水量。因此, 该地区未来环境温度、湿度因子的变化将会显著影响贝加尔针茅地上部分凋落物的分解过程, 而对根系组织凋落物的分解作用较小。  相似文献   

5.
放牧和围封通过影响植物群落结构和土壤微环境来调控草地生态系统的碳循环。该研究在内蒙古温带草原设置轻度放牧后围封、轻度放牧、重度放牧后围封、重度放牧4种样地, 通过测定干旱年(2011年)和湿润年(2012年)地上、地下凋落物产量、质量及其分解速率和土壤养分含量, 分析不同放牧强度对凋落物形成和分解的影响, 以及围栏封育对生态系统恢复的作用。结果表明: 重度放牧地上凋落物产量和分解速率均高于轻度放牧。干旱年轻度放牧样地地下凋落物产量和分解速率高于重度放牧, 湿润年相反。短期围封显著提高了凋落物产量, 轻度放牧样地围封后地上凋落物分解速率和养分循环加快, 而重度放牧样地围封后地上凋落物分解减慢。因此, 与重度放牧相比, 轻度放牧草地的恢复更适合采用围栏封育措施; 而重度放牧草地的恢复可能还需辅以必要的人工措施。降水显著促进地上、地下凋落物形成和分解。地下凋落物的生产和分解受降水年际波动影响较大, 重度放牧草地对降水变化的敏感度比轻度放牧草地高。地上凋落物分解速率与凋落物N含量显著正相关, 与土壤全N显著负相关, 与地上凋落物C:N和木质素:N相关性不大; 地下凋落物分解速率与凋落物C、C:N和纤维素含量显著负相关。该研究结果将为不同放牧强度的草地生态系统恢复和碳循环研究提供理论依据。  相似文献   

6.
模拟增温和不同凋落物基质质量对凋落物分解速率的影响   总被引:5,自引:0,他引:5  
采用凋落物分解袋法,研究了在土壤、水分相当的条件下模拟增温对红松(Pinus koraiensis)、蒙古栎(Quercus mongolica)及其混合凋落物分解的影响,以及在不同温度水平下,不同凋落物质量(两种单一凋落物和混合凋落物)的分解特性。利用碱式吸收法测量了凋落物分解累积释放CO2动态。将N浓度和C/N率作为凋落物质量参数,用呼吸产生CO2的积累值和凋落物质量损失率确定凋落物分解率。结果表明温度升高对单一凋落物和混合凋落物分解均有促进作用,在不同温度水平上,不同质量凋落物的分解特性有所差别,25 ℃和29 ℃条件下混合凋落物分解速率>蒙古栎单一凋落物>红松单一凋落物分解速率。然而,在31 ℃条件下混合凋落物与蒙古栎单一凋落物分解速率相差不大,二者均大于红松单一凋落物分解速率。  相似文献   

7.
 草地利用方式影响植被群落结构和土壤微环境, 制约草地生态系统碳循环。该文通过测定温带草原在放牧、割草、围封3种利用方式下湿润年(2012年)和干旱年(2011年)的凋落物产量、质量及其分解速率和土壤碳通量, 分析了草地利用方式对土壤呼吸和凋落物的影响, 探讨了凋落物对土壤呼吸的贡献机制。结果表明: 在干旱年份, 放牧样地土壤呼吸最大, 分别达到割草和围封样地的1.5倍和1.29倍; 在湿润年份, 割草样地土壤呼吸最大, 为309 g C·m–2·a–1, 明显高于放牧样地和围封样地。不论干旱年还是湿润年, 围封样地凋落物产量都大于放牧样地和割草样地。3种利用方式下湿润年土壤呼吸和凋落物分解均比干旱年增强。因此, 水分是温带草原植物生长和生态系统碳循环的主要限制因子, 草地利用方式则显著影响凋落物生产和分解。进一步分析表明, 经过两年的分解, 同一样地内凋落物质量C:N下降, N含量和木质素:N升高, 土壤呼吸与凋落物产量、凋落物分解速率以及木质素:N正相关, 而与凋落物C:N负相关。  相似文献   

8.
凋落物分解是连接生态系统地上、地下过程的重要环节,决定了生态系统养分循环速率,但到目前为止对凋落物分解在荒漠草地生态系统受放牧以及外源资源补给影响的研究较少。本研究通过对不同放牧强度(对照、轻牧、中牧和重牧)短花针茅草原群落进行添加氮素(10.0 g N m~(-2) a~(-1))和增水(108 mm/a)处理,探讨群落水平凋落物分解速率的变化。研究结果显示,过去不同强度放牧历史对群落凋落物分解影响极显著(P0.0001)。凋落物前期分解(135 d)过程中,凋落物初始C∶N比与凋落物分解速率常数呈显著负相关关系,表明凋落物可降解性在凋落物前期分解中起主要作用。轻度放牧影响下凋落物分解速度最快,这与该条件下凋落物C∶N比显著低于其他放牧强度下的有关,说明适度放牧不仅有利于群落维持,也在一定程度上有利于生态系统养分循环。当凋落物分解更长时间(870 d)后,对照区凋落物分解速率显著低于放牧处理样地,但凋落物初始C∶N比对凋落物分解速率没有显著影响。进一步分析显示,不同放牧强度背景下长期凋落物分解速率与分解环境的土壤微生物多样性成正相关关系,与群落盖度呈极显著(P0.001)负相关关系。添加氮素显著(P0.05)降低凋落物分解速度,但对凋落物氮含量无显著影响。生长季加水未影响凋落物质量及凋落物分解速度。研究结果表明,凋落物前期分解受凋落物质量影响,但较长时间凋落物分解则与分解过程中接受到的太阳辐射量有关。  相似文献   

9.
极端干旱区由于降水稀少, 植被盖度低, 太阳辐射强烈, 以及土壤稳定性差, 导致其凋落物周转不同于非干旱区。为探究极端干旱区凋落物分解规律, 该研究利用凋落物分解袋法, 以塔克拉玛干沙漠南缘沙漠-绿洲过渡带优势物种花花柴(Karelinia caspia)、骆驼刺(Alhagi sparsifolia)和胡杨(Populus euphratica)凋落叶为研究对象, 设置不同的沙土掩埋处理: 地表、2 cm和15 cm埋深, 以模拟自然条件下凋落物分解环境, 测定分解过程中凋落物质量和水溶性盐的变化特征。结果表明: 极端干旱区凋落物分解速率与凋落物初始碳(C)含量、氮(N)含量、C:N和木质素含量的关系与非干旱区存在较大差异, 在地表处理下, 木质素含量越高, 质量损失越快。不同分解环境下凋落物质量和水溶性盐损失具有显著差异, 与15 cm埋深相比, 地表和2 cm埋深处理显著增加了凋落物的质量损失和水溶性盐总量损失。地表处理增加了凋落物分解前期的水溶性盐溶解量。该研究表明, 极端干旱区凋落物分解的驱动机制具有独特性, 由于降水稀少, 土壤微生物的活性较低, 掩埋深度不是驱动凋落物分解的主要因素, 极端干旱区凋落物的分解主要受其他非生物过程如太阳光辐射的影响。  相似文献   

10.
冬小麦生境中土壤养分对凋落物碳氮释放的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
土壤养分影响植物生长, 进而影响凋落物质量和产量; 凋落物质量和产量影响凋落物分解过程。基于一个生长实验和一个相同环境分解实验, 研究了冬小麦(Triticum aestivum)生境中养分可利用性对凋落物碳(C)和氮(N)释放的影响。结果显示: (1)冬小麦凋落物产量、叶/根C:N比、C释放量和N释放量随土壤养分梯度呈单调变化; (2)土壤养分影响叶凋落物丢失率而不影响根凋落物丢失率; (3)初始叶/根C:N比与其C、N释放量之间存在负相关关系; (4)分解过程降低叶C:N比和根C:N比。结果表明: 生境中土壤养分的提高可加速凋落物C、N归还, 这反过来可能促进冬小麦生长, 因此这种效应是正反馈; 初始C:N比可预测凋落物C、N释放量。  相似文献   

11.
凋落物是植物在其生长发育过程中新陈代谢的产物,是土壤有机质输入的重要途径,凋落物分解是生态系统养分循环的关键过程之一。在全球气候变化背景下,热带地区干旱事件发生的频率和强度均在增加,同时,普遍认为热带地区受磷(P)限制,所以探讨干旱胁迫和土壤磷可用性对热带地区叶凋落物分解的影响及两者是否存在交互效应十分必要,有助于了解干旱对该区叶凋落物分解的影响机制以及是否受土壤磷调控。依据植物多度、碳固持类型、叶质地,以海南三亚甘什岭热带低地雨林的4个树种叶凋落物(铁凌 Hopea exalata、白茶树 Koilodepas bainanense、黑叶谷木 Memecylon nigrescens、山油柑 Acronychia pedunculata)为实验材料,依托2019年在该区建成的热带低地雨林模拟穿透雨减少、磷(P)添加双因素交互控制实验平台,包括干旱(D -50%穿透雨)、P添加(P +50Kg P hm-2a-1)、模拟干旱×P添加(DP -50%穿透雨×+50Kg P hm-2a-1)、对照(CK)4个处理,且4种处理随机分布于3个区组,即设置了3个重复。使用常规的凋落物分解袋法探究实验处理对4个树种叶凋落物的分解系数、碳(C)、氮(N)元素动态变化的影响。结果表明:不同树种的叶凋落物因基质质量不同分解存在差异。模拟干旱处理对叶凋落物C、N损失产生抑制作用,但是对不同树种叶凋落物的抑制作用不同,原因是干旱处理通过抑制土壤分解者活动、减弱凋落物的物理破碎作用,间接抑制凋落物分解,并且由于高质量(含N量高)凋落物受微生物分解者影响较大,所以该凋落物分解受干旱抑制程度较大;P添加处理对叶凋落物C损失存在促进作用、N损失存在抑制作用,原因是土壤中P含量的升高,提高了微生物分解高C物质的能力,以及当土壤中P含量较高时,间接抑制微生物通过分解凋落物获取养分或者促进微生物优先完成自身生长代谢需要而不是合成分解凋落物所需要的酶,导致叶凋落物N损失下降;模拟干旱与P添加处理存在显著交互效应,P添加处理缓解或反转了干旱胁迫对叶凋落物分解的抑制作用。以上结果表明,不同基质质量的凋落物分解存在差异,对干旱胁迫的响应不同;在叶凋落物分解过程中,P添加促进C损失、抑制N损失;此外,在热带低地雨林,土壤中P可用性变化可调节干旱对凋落物分解的影响。  相似文献   

12.
Exotic grasses and grass-fueled fires have altered plant species composition in the seasonal submontane woodlands of Hawaii Volcanoes National Park. These changes have altered both structural and functional aspects of the plant community, which could, in turn, have consequences for litter decomposition and nitrogen (N) dynamics. In grass-invaded unburned woodland, grass removal plots within the woodland, and woodland converted to grassland by fire, we compared whole-system fluxes and the contributions of individual species to annual aboveground fine litterfall and litterfall N, and litter mass and net N loss. We assessed the direct contribution of grass biomass to decomposition and N dynamics, and we determined how grasses affected decomposition processes indirectly via effects on native species and alteration of the litter layer microenvironment. Grasses contributed 35% of the total annual aboveground fine litterfall in the invaded woodland. However, total litterfall mass and N were not different between the invaded woodland and the grass removal treatment because of compensation by the native tree Metrosideros polymorpha, which increased litter production by 37% ± 5% when grasses were removed. The 0.3 g N m–2/y–1 contained in this production increase was equal to the N contained in grass litter. Litter production and litterfall N was lowest in the grassland due to the loss of native litter inputs. Decomposition of litterfall on an area basis was highest in the grass-invaded woodland. We attributed this effect to increased inherent decomposability of native litter in the presence of grasses because (a) the microenvironment of the three vegetation treatments had little effect on decomposition of common litter types and (b) M. polymorpha litter produced in the invaded woodland decomposed faster than that produced in the grass removal plots due to higher lignin concentrations in the latter than in the former. Area-weighted decomposition was lowest in the grassland due to the absence of native litter inputs. Across all treatments, most litter types immobilized N throughout the incubation, and litter net N loss on an area basis was not different among treatments. Our results support the idea that the effects of a plant species or growth form on decomposition cannot be determined in isolation from the rest of the community or from the direct effects of litter quality and quantity alone. In this dry woodland, exotic grasses significantly altered decomposition processes through indirect effects on the quantity and quality of litter produced by native species.  相似文献   

13.
The performance of Oniscus asellus (Isopoda) and its influence on litter mass loss and mineralization was assessed in a microcosm experiment, using beech (Fagus sylvatica) leaf litter that was produced on different soil types, contrasting atmospheric CO2 concentrations, and different nitrogen deposition rates. Litter quality was significantly altered by these treatments, and many of the CO2 and N effects differed between soil types. Litter quality affected subsequent litter mass loss rates, microbial respiration, and leaching of dissolved organic carbon (DOC) and nitrate. These effects were largely independent of the presence of isopods, even though isopods highly accelerated litter mass loss, stimulated microbial respiration by 37%, and increased nitrate leaching by 50%. Isopods did not change their relative rates of litter consumption and growth in response to litter quality. Isopod mortality, however, increased with increasing litter lignin/N ratios, and was significantly different between soil types, which may indicate long‐term effects on litter decomposition through altered isopod densities. Having the choice among the litter of three different species [maple (Acer pseudoplatanus), beech (Fagus sylvatica) and oak (Quercus robur)] grown at either ambient or elevated CO2, isopods preferred maple to beech when all the litter was produced under elevated CO2. This suggests that beyond changes in consumption, an altered food selection by isopods in a CO2‐enriched atmosphere may affect the temporal and spatial composition of the litter layer in temperate forests. In contrast to previous findings, we conclude that isopods do not always increase their consumption rates, and hence do not differentially affect microbial decomposition in litter of poorer quality. Nevertheless changes in animal densities and/or shifts in their food preferences, could result in altered decomposition and carbon and nutrient turnover rates.  相似文献   

14.
马志良  高顺  杨万勤  吴福忠  谭波  张玺涛 《生态学报》2015,35(22):7553-7561
地处长江上游的四川盆地亚热带常绿阔叶林具有典型雨热同季的气候特点,季节性干湿交替可能显著影响凋落物分解,但迄今缺乏相应的报道。因此,采用凋落物分解袋法,研究了常绿阔叶林区最具代表性的马尾松(Pinus massoniana)、柳杉(Cryptomeria fortunei)、杉木(Cunninghamia lanceolata)、香樟(Cinnamomum camphora)、红椿(Toona ciliata)、麻栎(Quercus acutissima)等6种凋落叶在第1年不同雨热季节的分解特征。结果表明,经历1a的分解,6种凋落叶质量残留率大小顺序依次为:红椿(27.90%)柳杉(41.39%)杉木(48.93%)麻栎(49.62%)马尾松(68.82%)香樟(72.23%),6种凋落叶在不同干湿季节质量损失差异显著(P0.05)。阔叶树种在旱季(MRS、SRS和WRS)的质量损失显著高于针叶树种。雨季(ERS和LRS)对6种凋落叶质量损失的贡献率(69.73%—89.68%)均明显大于旱季(10.32%—30.27%)。6种凋落叶在不同时期中质量损失速率差异显著(P0.05),且6种凋落叶在雨季的质量损失速率明显高于旱季。相关分析结果表明,凋落叶质量损失及其速率均与降雨量和温度呈极显著(P0.01)正相关关系。凋落叶质量损失与初始C、木质素含量及C/N、木质素/N极显著(P0.01)负相关,与N含量极显著(P0.01)正相关。这些结果表明亚热带地区森林凋落物分解的质量损失主要发生在雨季,雨季温湿度的改变可显著影响凋落物分解过程。  相似文献   

15.
Elevated CO2, increased nitrogen (N) deposition and increasing species richness can increase net primary productivity (NPP). However, unless there are comparable changes in decomposition, increases in productivity will most likely be unsustainable. Without comparable increases in decomposition nutrients would accumulate in dead organic matter leading to nutrient limitations that could eventually prohibit additional increases in productivity. To address this issue, we measured aboveground plant and litter quality and belowground root quality, as well as decomposition of aboveground litter for one and 2‐year periods using in situ litterbags in response to a three‐way factorial manipulation of CO2 (ambient vs. 560 ppm), N deposition (ambient vs. the addition of 4 g N m−2 yr−1) and plant species richness (one, four, nine and 16 species) in experimental grassland plots. Litter chemistry responded to the CO2, N and plant diversity treatments, but decomposition was much less responsive. Elevated CO2 induced decreases in % N and % lignin in plant tissues. N addition led to increases in % N and decreases in % lignin. Increasing plant diversity led to decreases in % N and % lignin and an increase in % cellulose. In contrast to the litter chemistry changes, elevated CO2 had a much lower impact on decomposition and resulted in only a 2.5% decrease in carbon (C) loss. Detectable responses were not observed either to N addition or to species richness. These results suggest that global change factors such as biodiversity loss, elevated CO2 and N deposition lead to significant changes in tissue quality; however, the response of decomposition is modest. Thus, the observed increases in productivity at higher diversity levels and with elevated CO2 and N fertilization are not matched by an increase in decomposition rates. This lack of coupled responses between production and decomposition is likely to result in an accumulation of nutrients in the litter pool which will dampen the response of NPP to these factors over time.  相似文献   

16.
While plant litters are the main source of soil organic matter (SOM) in forests, the controllers and pathways to stable SOM formation remain unclear. Here, we address how litter type (13C/15N‐labeled needles vs. fine roots) and placement‐depth (O vs. A horizon) affect in situ C and N dynamics in a temperate forest soil after 5 years. Litter type rather than placement‐depth controlled soil C and N retention after 5 years in situ, with belowground fine root inputs greatly enhancing soil C (x1.4) and N (x1.2) retention compared with aboveground needles. While the proportions of added needle and fine root‐derived C and N recovered into stable SOM fractions were similar, they followed different transformation pathways into stable SOM fractions: fine root transfer was slower than for needles, but proportionally more of the remaining needle‐derived C and N was transferred into stable SOM fractions. The stoichiometry of litter‐derived C vs. N within individual SOM fractions revealed the presence at least two pools of different turnover times (per SOM fraction) and emphasized the role of N‐rich compounds for long‐term persistence. Finally, a regression approach suggested that models may underestimate soil C retention from litter with fast decomposition rates.  相似文献   

17.

Background and aims

We determined the relationship between site N supply and decomposition rates with respect to controls exerted by environment, litter chemistry, and fungal colonization.

Methods

Two reciprocal transplant decomposition experiments were established, one in each of two long-term experiments in oak woodlands in Minnesota, USA: a fire frequency/vegetation gradient, along which soil N availability varies markedly, and a long-term N fertilization experiment. Both experiments used native Quercus ellipsoidalis E.J. Hill and Andropogon gerardii Vitman leaf litter and either root litter or wooden dowels.

Results

Leaf litter decay rates generally increased with soil N availability in both experiments while belowground litter decayed more slowly with increasing soil N. Litter chemistry differed among litter types, and these differences had significant effects on belowground (but not aboveground) decay rates and on aboveground litter N dynamics during decomposition. Fungal colonization of detritus was positively correlated with soil fertility and decay rates.

Conclusions

Higher soil fertility associated with low fire frequency was associated with greater leaf litter production, higher rates of fungal colonization of detritus, more rapid leaf litter decomposition rates, and greater N release in the root litter, all of which likely enhance soil fertility. During decomposition, both greater mass loss and litter N release provide mechanisms through which the plant and decomposer communities provide positive feedbacks to soil fertility as ultimately driven by decreasing fire frequency in N-limited soils and vice versa.  相似文献   

18.
Human management practices and large detritivores such as earthworms incorporate plant litter into the soil, thereby forming a heterogeneous soil environment from which plant roots extract nutrients. In a greenhouse experiment we investigated effects of earthworms and spatial distribution of 15N-labelled grass litter on plants of different functional groups [Lolium perenne (grass), Plantago lanceolata (forb), Trifolium repens (legume)]. Earthworms enhanced shoot and root growth in L. perenne and P. lanceolata and N uptake from organic litter and soil in all plant species. Litter concentrated in a patch (compared with litter mixed homogeneously into the soil) increased shoot biomass and 15N uptake from the litter in L. perenne and enhanced root proliferation in P. lanceolata when earthworms were present. Growth of clover (T. repens) was rather independent of the presence of earthworms and organic litter distribution: nevertheless, clover took up more nitrogen in the presence of earthworms and exploited more 15N from the added litter than the other plant species. The magnitude of the effects of earthworms and organic litter distribution differed between the plant species, indicating different responses of plants with contrasting root morphology. Aphid (Myzus persicae) reproduction was reduced on P. lanceolata in the presence of earthworms. We suggest that earthworm activity may indirectly alter plant chemistry and hence defence mechanisms against herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号