首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In recent years, genome-sequencing projects of pathogens and humans have revolutionized microbial drug target identification. Of the several known genomic strategies, subtractive genomics has been successfully utilized for identifying microbial drug targets. The present work demonstrates a novel genomics approach in which codon adaptation index (CAI), a measure used to predict the translational efficiency of a gene based on synonymous codon usage, is coupled with subtractive genomics approach for mining potential drug targets. The strategy adopted is demonstrated using respiratory pathogens, namely, Streptococcus pneumoniae and Haemophilus influenzae as examples. Our approach identified 8 potent target genes (Streptococcus pneumoniae?C2, H. influenzae?C6), which are functionally significant and also play key role in host-pathogen interactions. This approach facilitates swift identification of potential drug targets, thereby enabling the search for new inhibitors. These results underscore the utility of CAI for enhanced in silico drug target identification.  相似文献   

2.
In host-parasite diseases like tuberculosis, non-homologous proteins (enzymes) as drug target are first preference. Most potent drug target can be identified among large number of non-homologous protein through protein interaction network analysis. In this study, the entire promising dimension has been explored for identification of potential drug target. A comparative metabolic pathway analysis of the host Homo sapiens and the pathogen M. tuberculosis H37Rv has been performed with three level of analysis. In first level, the unique metabolic pathways of M. tuberculosis have been identified through its comparative study with H. sapiens and identification of non-homologous proteins has been done through BLAST similarity search. In second level, choke-point analysis has been performed with identified non-homologous proteins of metabolic pathways. In third level, two type of analysis have been performed through protein interaction network. First analysis has been done to find out the most potential metabolic functional associations among all identified choke point proteins whereas second analysis has been performed to find out the functional association of high metabolic interacting proteins to pathogenesis causing proteins. Most interactive metabolic proteins which have highest number of functional association with pathogenesis causing proteins have been considered as potential drug target. A list of 18 potential drug targets has been proposed which are various stages of progress at the TBSGC and proposed drug targets are also studied for other pathogenic strains.As a case study, we have built a homology model of identified drug targets histidinol-phosphate aminotransferase (HisC1) using MODELLER software and various information have been generated through molecular dynamics which will be useful in wetlab structure determination. The generated model could be further explored for insilico docking studies with suitable inhibitors.  相似文献   

3.
In the present study, comparative genome analysis between Clostridium perfringens and the human genome was carried out to identify genes that are essential for the pathogen's survival, and non-homologous to the genes of human host, that can be used as potential drug targets. The study resulted in the identification of 426 such genes. The number of these potential drug targets thus identified is significantly lower than the genome's protein coding capacity (2558 protein coding genes). The 426 genes of C. perfringens were further analyzed for overall similarities with the essential genes of 14 different bacterial species present in Database of Essential Genes (DEG). Our results show that there are only 5 essential genes of C. perfringens that exhibit similarity with 12 species of the 14 different bacterial species present in DEG database. Of these, 1 gene was similar in 12 species and 4 genes were similar in 11 species. Thus, the study opens a new avenue for the development of potential drugs against the highly pathogenic bacterium. Further, by selecting these essential genes of C. perfringens, which are common and essential for other pathogenic microbial species, a broad spectrum anti-microbial drug can be developed. As a case study, we have built a homology model of one of the potential drug targets, ABC transporter-ATP binding protein, which can be employed for in silico docking studies by suitable inhibitors.  相似文献   

4.
5.
Katara P  Grover A  Kuntal H  Sharma V 《Protoplasma》2011,248(4):799-804
Identification of potential drug targets is the first step in the process of modern drug discovery, subjected to their validation and drug development. Whole genome sequences of a number of organisms allow prediction of potential drug targets using sequence comparison approaches. Here, we present a subtractive approach exploiting the knowledge of global gene expression along with sequence comparisons to predict the potential drug targets more efficiently. Based on the knowledge of 155 known virulence and their coexpressed genes mined from microarray database in the public domain, 357 coexpressed probable virulence genes for Vibrio cholerae were predicted. Based on screening of Database of Essential Genes using blastn, a total of 102 genes out of these 357 were enlisted as vitally essential genes, and hence good putative drug targets. As the effective drug target is a protein which is only present in the pathogen, similarity search of these 102 essential genes against human genome sequence led to subtraction of 66 genes, thus leaving behind a subset of 36 genes whose products have been called as potential drug targets. The gene ontology analysis using Blast2GO of these 36 genes revealed their roles in important metabolic pathways of V. cholerae or on the surface of the pathogen. Thus, we propose that the products of these genes be evaluated as target sites of drugs against V. cholerae in future investigations.  相似文献   

6.
Here we report the 8 Mb high quality draft genome of Streptomyces sp. strain AW19M42, together with specific properties of the organism and the generation, annotation and analysis of its genome sequence. The genome encodes 7,727 putative open reading frames, of which 6,400 could be assigned with COG categories. Also, 62 tRNA genes and 8 rRNA operons were identified. The genome harbors several gene clusters involved in the production of secondary metabolites. Functional screening of the isolate was positive for several enzymatic activities, and some candidate genes coding for those activities are listed in this report. We find that this isolate shows biotechnological potential and is an interesting target for bioprospecting.  相似文献   

7.
The emergence of multidrug-resistant strain of community-acquired methicillin resistant Staphylococcus aureus (CA-MRSA) strain has highlighted the urgent need for the alternative and effective therapeutic approach to combat the menace of this nosocomial pathogen. In the present work novel potential therapeutic drug targets have been identified through the metabolic pathways analysis. All the gene products involved in different metabolic pathways of CA-MRSA in KEGG database were searched against the proteome of Homo sapiens using the BLASTp program and the threshold of E-value was set to as 0.001. After database searching, 152 putative targets were identified. Among all 152 putative targets, 39 genes encoding for putative targets were identified as the essential genes from the DEG database which are indispensable for the survival of CA-MRSA. After extensive literature review, 7 targets were identified as potential therapeutic drug target. These targets are Fructose-bisphosphate aldolase, Phosphoglyceromutase, Purine nucleoside phosphorylase, Uridylate kinase, Tryptophan synthase subunit beta, Acetate kinase and UDP-N-acetylglucosamine 1-carboxyvinyltransferase. Except Uridylate kinase all the identified targets were involved in more than one metabolic pathways of CA-MRSA which underlines the importance of drug targets. These potential therapeutic drug targets can be exploited for the discovery of novel inhibitors for CA-MRSA using the structure based drug design (SBDD) strategy.  相似文献   

8.
9.
10.
Colonization of human stomach by the bacterium Helicobacter pylori is a major causative factor for gastrointestinal illnesses and gastric cancer. However, the discovery of anti-H. pylori agents is a difficult task due to lack of mature protein targets. Therefore, identifying new molecular targets for developing new drugs against H. pylori is obviously necessary. In this study, the in-house potential drug target database (PDTD, http://www.dddc.ac.cn/tarfisdock/) was searched by the reverse docking approach using an active natural product (compound 1) discovered by anti-H. pylori screening as a probe. Homology search revealed that, among the 15 candidates discovered by reverse docking, only diaminopimelate decarboxylase (DC) and peptide deformylase (PDF) have homologous proteins in the genome of H. pylori. Enzymatic assay demonstrated compound 1 and its derivative compound 2 are the potent inhibitors against H. pylori PDF (HpPDF) with IC50 values of 10.8 and 1.25 microM, respectively. X-ray crystal structures of HpPDF and the complexes of HpPDF with 1 and 2 were determined for the first time, indicating that these two inhibitors bind well with HpPDF binding pocket. All these results indicate that HpPDF is a potential target for screening new anti-H. pylori agents. In addition, compounds 1 and 2 were predicted to bind to HpPDF with relatively high selectivity, suggesting they can be used as leads for developing new anti-H. pylori agents. The results demonstrated that our strategy, reverse docking in conjunction with bioassay and structural biology, is effective and can be used as a complementary approach of functional genomics and chemical biology in target identification.  相似文献   

11.
Complete genome sequences of several pathogenic bacteria have been determined, and many more such projects are currently under way. While these data potentially contain all the determinants of host-pathogen interactions and possible drug targets, computational tools for selecting suitable candidates for further experimental analyses are currently limited. Detection of bacterial genes that are non-homologous to human genes, and are essential for the survival of the pathogen represents a promising means of identifying novel drug targets. We have used three-way genome comparisons to identify essential genes from Pseudomonas aeruginosa. Our approach identified 306 essential genes that may be considered as potential drug targets. The resultant analyses are in good agreement with the results of systematic gene deletion experiments. This approach enables rapid potential drug target identification, thereby greatly facilitating the search for new antibiotics. These results underscore the utility of large genomic databases for in silico systematic drug target identification in the post-genomic era.  相似文献   

12.
Drug resistance in Gram-negative bacteria, such as Acinetobacter baumannii, is emerging as a significant healthcare problem. New antibiotics with a novel mechanism of action are urgently needed to overcome the drug resistance. Methionine aminopeptidase (MetAP) carries out an essential cotranslational methionine excision in many bacteria and is a potential target to develop such novel antibiotics. Two putative MetAP genes were identified in A. baumannii genome, but whether they actually function as MetAP enzymes was not known. Therefore, we established an efficient E. coli expression system for their production as soluble and metal-free proteins for biochemical characterization. We demonstrated that both could carry out the metal-dependent catalysis and could be activated by divalent metal ions with the order Fe(II) ≈ Ni(II) > Co(II) > Mn(II) for both. By using a set of metalloform-selective inhibitors discovered on other MetAP enzymes, potency and metalloform selectivity on the A. baumannii MetAP proteins were observed. The similarity of their catalysis and inhibition to other MetAP enzymes confirmed that both may function as competent MetAP enzymes in A. baumannii and either or both may serve as the potential drug target.  相似文献   

13.
MicroRNAs (miRNAs) are important regulators of gene expression and play crucial roles in many biological processes including apoptosis, differentiation, development, and tumorigenesis. Recent estimates suggest that more than 50% of human protein coding genes may be regulated by miRNAs and that each miRNA may bind to 300–400 target genes. Approximately 1,000 human miRNAs have been identified so far with each having up to hundreds of unique target mRNAs. However, the targets for a majority of these miRNAs have not been identified due to the lack of large-scale experimental detection techniques. Experimental detection of miRNA target sites is a costly and time-consuming process, even though identification of miRNA targets is critical to unraveling their functions in various biological processes. To identify miRNA targets, we developed miRTar Hunter, a novel computational approach for predicting target sites regardless of the presence or absence of a seed match or evolutionary sequence conservation. Our approach is based on a dynamic programming algorithm that incorporates more sequence-specific features and reflects the properties of various types of target sites that determine diverse aspects of complementarities between miRNAs and their targets. We evaluated the performance of our algorithm on 532 known human miRNA:target pairs and 59 experimentally-verified negative miRNA:target pairs, and also compared our method with three popular programs for 481 miRNA:target pairs. miRTar Hunter outperformed three popular existing algorithms in terms of recall and precision, indicating that our unique scheme to quantify the determinants of complementary sites is effective at detecting miRNA targets. miRTar Hunter is now available at http://203.230.194.162/~kbkim.  相似文献   

14.
Staphylococcus aureus is a gram positive bacterium, responsible for both community-acquired and hospital-acquired infection, resulting in a mortality rate of 39%. 43.2% resistance to methicilin and emerging resistance to Fluroquinolone and Oxazolidinone, have evoked the necessity of the establishment of alternative and effective therapeutic approach to treat this bacteria. In this computational study, various database and online software are used to determine some specific targets of Staphylococcus aureus N315 other than those used by Penicillin, Quinolone and Oxazolidinone. For this purpose, among 302 essential proteins, 101 nonhomologous proteins were accrued and 64 proteins which are unique in several metabolic pathways of S. aureus were isolated by using metabolic pathway analysis tools. Furthermore, 7 essentially unique enzymes involved in exclusive metabolic pathways were revealed by this research, which can be potential drug target. Along with these important enzymes, 15 non-homologous proteins located on membrane were identified, which can play a vital role as potential therapeutic targets for the future researchers.  相似文献   

15.
Dehalococcoides bacteria are the only organisms known to completely reduce chlorinated ethenes to the harmless product ethene. However, Dehalococcoides dechlorinate these chemicals more effectively and grow more robustly in mixed microbial communities than in isolation. In this study, the phylogenetic composition and gene content of a functionally stable trichloroethene-degrading microbial community was examined using metagenomic sequencing and analysis. For phylogenetic classification, contiguous sequences (contigs) longer than 2500 bp were grouped into classes according to tetranucleotide frequencies and assigned to taxa based on rRNA genes and other phylogenetic marker genes. Classes were identified for Clostridiaceae, Dehalococcoides, Desulfovibrio, Methanobacterium, Methanospirillum, as well as a Spirochete, a Synergistete, and an unknown Deltaproteobacterium. Dehalococcoides contigs were also identified based on sequence similarity to previously sequenced genomes, allowing the identification of 170 kb on contigs shorter than 2500 bp. Examination of metagenome sequences affiliated with Dehalococcoides revealed 406 genes not found in previously sequenced Dehalococcoides genomes, including 9 cobalamin biosynthesis genes related to corrin ring synthesis. This is the first time that a Dehalococcoides strain has been found to possess genes for synthesizing this cofactor critical to reductive dechlorination. Besides Dehalococcoides, several other members of this community appear to have genes for complete or near-complete cobalamin biosynthesis pathways. In all, 17 genes for putative reductive dehalogenases were identified, including 11 novel ones, all associated with Dehalococcoides. Genes for hydrogenase components (271 in total) were widespread, highlighting the importance of hydrogen metabolism in this community. PhyloChip analysis confirmed the stability of this microbial community.  相似文献   

16.
MicroRNAs (miRNAs) participate in various vitally biological processes via controlling target genes activity and thousands of miRNAs have been identified in many species to date, including 18,698 known animal miRNA in miRBase. However, there are only limited studies reported in rainbow trout (Oncorhynchus mykiss) especially via the computational-based approaches. In present study, we systematically investigated the miRNAs in rainbow trout using a well-developed comparative genome-based homologue search. A total of 196 potential miRNAs, belonging to 124 miRNA families, were identified, most of which were firstly reported in rainbow trout. The length of miRNAs ranged from 17 to 24 nt with an average of 20 nt while the length of their precursors varied from 47 to 152 nt with an average of 85 nt. The identified miRNAs were not evenly distributed in each miRNA family, with only one member per family for a majority, and multiple members were also identified for several families. Nucleotide U was dominant in the pre-miRNAs with a percentage of 30.04%. The rainbow trout pre-miRNAs had relatively high negative minimal folding free energy (MFE) and adjusted MFE (AMFE). Not only the mature miRNAs but their precursor sequences are conserved among the living organisms. About 2466 O. mykiss genes were predicted as potential targets for 189 miRNAs. Gene Ontology (GO) analysis showed that nearly 2093, 2107, and 2081 target genes are involved in cellular component, molecular function, and biological processes respectively. KEGG pathway enrichment analysis illuminated that these miRNAs targets might regulate 105 metabolic pathways, including those of purine metabolism, nitrogen metabolism, and oxidative phosphorylation. This study has provided an update on rainbow trout miRNAs and their targets, which represents a foundation for future studies.  相似文献   

17.
Nuclear magnetic resonance (NMR)-based screening has been recognized as a powerful approach for the identification and characterization of molecules interacting with pharmaceutical targets. Indeed, several NMR methods have been developed and successfully applied to many drug discovery projects. Whereas most of these approaches have targeted isolated biomolecular receptors, very few cases are reported with the screening performed in intact cells and cell extracts. Here we report the first successful application of the fluorine NMR-based assay n-FABS (n-fluorine atoms for biochemical screening) in living mammalian cells expressing the membrane protein fatty acid amide hydrolase (FAAH). This method allows the identification of both weak and potent inhibitors and the measurement of their potency in a physiological environment.  相似文献   

18.
To examine the expressed gene profile during encystation of Acanthamoeba castellanii Castellani, we used differentially expressed gene (DGE) screening by RT-PCR with 20 sets of random primers. From this analysis, we found that approximately 16 genes showed upregulation during encystation. We chose 6 genes, which had relatively higher expression levels, for further investigation. Based on homology search in database, DEG2 showed 55% of similarity with xylose isomerase, DEG9 showed 37% of similarity with Na P-type ATPase, and DEG14 showed 77% of similarity with subtilisin-like serine proteinase. DEG3 and DEG26 were identified as hypothetical proteins and DEG25 exhibited no significant similarity to any known protein. Encystation of Acanthamoeba has been suggested to be a process to resist adverse environmental or nutritional conditions. Further characterization studies of these genes may provide us with more information on the encystation mechanism of Acanthamoeba.  相似文献   

19.
Pseudomonas aeruginosa is an opportunistic bacterium known for causing chronic infections in cystic fibrosis and chronic obstructive pulmonary disease (COPD) patients. Recently, several drug targets in Pseudomonas aeruginosa PAO1 have been reported using network biology approaches on the basis of essentiality and topology and further ranked on network measures viz. degree and centrality. Till date no drug/ligand molecule has been reported against this targets.In our work we have identified the ligand /drug molecules, through Orthologous gene mapping against Bacillus subtilis subsp. subtilis str. 168 and performed modelling and docking analysis. From the predicted drug targets in PA PAO1, we selected those drug targets which show statistically significant orthology with a model organism and whose orthologs are present in all the selected drug targets of PA PAO1.Modeling of their structure has been done using I-Tasser web server. Orthologous gene mapping has been performed using Cluster of Orthologs (COGs) and based on orthology; drugs available for Bacillus sp. have been docked with PA PAO1 protein drug targets using MoleGro virtual docker version 4.0.2.Orthologous gene for PA3168 gyrA is BS gyrAfound in Bacillus subtilis subsp. subtilis str. 168. The drugs cited for Bacillus sp. have been docked with PA genes and energy analyses have been made. Based on Orthologous gene mapping andin-silico studies, Nalidixic acid is reported as an effective drug against PA3168 gyrA for the treatment of CF and COPD.  相似文献   

20.
FBXO25 is one of the 69 known human F-box proteins that serve as specificity factors for a family of ubiquitin ligases composed of SKP1, Rbx1, Cullin1, and F-box protein (SCF1) that are involved in targeting proteins for degradation across the ubiquitin proteasome system. However, the substrates of most SCF E3 ligases remain unknown. Here, we applied an in chip ubiquitination screen using a human protein microarray to uncover putative substrates for the FBXO25 protein. Among several novel putative targets identified, the c-fos protooncogene regulator ELK-1 was characterized as the first endogenous substrate for SCF1(FBXO25) E3 ligase. FBXO25 interacted with and mediated the ubiquitination and proteasomal degradation of ELK-1 in HEK293T cells. In addition, FBXO25 overexpression suppressed induction of two ELK-1 target genes, c-fos and egr-1, in response to phorbol 12-myristate 13-acetate. Together, our findings show that FBXO25 mediates ELK-1 degradation through the ubiquitin proteasome system and thereby plays a role in regulating the activation of ELK-1 pathway in response to mitogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号