首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K(cat) of 3.4s(-1), K(m) of 1.7 mM, and K(cat) / K(m) of 2000M(-1)s(-1). HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 degrees C. The enzyme activity of Co(2+)-containing HpPDF is apparently higher than that of Zn(2+)-containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori.  相似文献   

2.
Conventionally, drugs are discovered by testing chemically synthesized compounds against a battery of in vivo biological screens. Information technology and Omic science enabled us for high throughput screening of compound libraries against biological targets and hits are then tested for efficacy in cells or animals. Chancroid, caused by Haemophilus ducreyi is a public health problem and has been recognized as a cofactor for Human Immunodeficiency Virus (HIV) transmission. It facilitates HIV transmission by providing an accessible portal entry, promoting viral shedding, and recruiting macrophages as well as CD4 cells to the skin. So, there is a requirement to develop an efficient drug to combat Chancroid that can also diminish HIV infection. In-silico screening of potential inhibitors against the target may facilitate in detection of the novel lead compounds for developing an effective chemo preventive strategy against Haemophilus ducreyi. The present study has investigated the effects of approximately 1100 natural compounds that inhibit three vital enzymes viz. Phosphoenolpyruvate phosphotransferase, Acetyl-coenzyme A carboxylase and Fructose 1, 6-bisphosphatase of Haemophilus ducreyi in reference to a commercial drug Rifabutin. Results reveal that the lead compound uses less energy to bind to target. The lead compound parillin has also been predicted as less immunogenic in comparison to Rifabutin. Further, better molecular dynamics, pharmacokinetics, pharmacodynamics and ADME-T properties establish it as an efficient chancroid preventer.  相似文献   

3.
In this study for searching novel B-Raf(V600E) inhibitors, pharmacophore-based virtual screening identified 1 as a hit bearing 5-benzylidene-2-thioxodihydropyrimidine-4,6(1H,5H)-dione. Based on 1, scaffold hopping inspired by molecular docking discovered 5-(furan-2-ylmethylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione as a new and better scaffold. Substructure search with the new scaffold identified 28 active compounds, among which 12 compounds (42.9%) showed IC(50) less than 1μM. Especially, compound 3o, which is 10-fold more potent than the hit 1, is a potent inhibitor comparable to that of the marketed drug vemurafenib.  相似文献   

4.
The synthesis and optimization of the anti-Helicobacter pylori activity of a novel series of benzyloxyisoquinoline derivatives that was discovered by a random screening process, are described. In the in vitro assay, compound 10c containing a 3-acetamido-2,6-dichlorobenzyl substituent was found to have extremely potent activity against H. pylori and no activity against other common bacteria. The anti-H. pylori activity of 10c was superior to that of amoxicillin (AMPC) (1) and clarithromycin (CAM) (2). However, 10c did not show in vivo efficacy in a mouse infection model; a feature attributed to the lack of strong bactericidal activity at short contact times.  相似文献   

5.
Abstract

Apoptosis signal-regulating Kinase 1 (ASK1) has been confirmed as a potential therapeutic target for the treatment of non-alcoholic steatohepatitis (NASH) disorder and the discovery of ASK1 inhibitors has attracted increasing attention. In this work, a series of in silico methods including pharmacophore screening, docking binding site analysis, protein-ligand interaction fingerprint (PLIF) similarity investigation and molecular docking were applied to find the potential hits from commercial compound databases. Five compounds with potential inhibitory activity were purchased and submitted to biological activity validation. Thus, one hit compound was discovered with micromolar IC50 value (10.59?μM) against ASK1. Results demonstrated that the integration of computation methods and biological test was quite reliable for the discovery of potent ASK1 inhibitors and the strategy could be extended to other similar targets of interest.  相似文献   

6.
Prostate cancer is one of the most prevalent types of malignant cancers in men and has a high mortality rate among all male cancers. Previous studies have demonstrated that Sentrin/SUMO-specific protease 1 (SENP1) plays an important role in the occurrence and development of prostate cancer, and has been identified as a novel drug target for development of small molecule drugs against prostate cancer. In this paper, we used virtual screening and docking to identify compound J5 as a novel lead compound inhibiting SENP1, from SPECS library. We further investigated the SAR (structure–activity relationship) of the benzoate substituent of compound J5, and discovered compounds 8d and 8e as better small molecule inhibitors of SENP1. Both compounds are the high potent SENP1 small molecule inhibitors discovered up to date, and further lead optimization may lead to a series of novel anti-SENP1 agents. Further SAR studies are in process and will be reported in due course.  相似文献   

7.
Anti-Helicobacter pylori flavonoids from licorice extract   总被引:18,自引:0,他引:18  
Fukai T  Marumo A  Kaitou K  Kanda T  Terada S  Nomura T 《Life sciences》2002,71(12):1449-1463
Licorice is the most used crude drug in Kampo medicines (traditional Chinese medicines modified in Japan). The extract of the medicinal plant is also used as the basis of anti-ulcer medicines for treatment of peptic ulcer. Among the chemical constituents of the plant, glabridin and glabrene (components of Glycyrrhiza glabra), licochalcone A (G. inflata), licoricidin and licoisoflavone B (G. uralensis) exhibited inhibitory activity against the growth of Helicobacter pylori in vitro. These flavonoids also showed anti-H. pylori activity against a clarithromycin (CLAR) and amoxicillin (AMOX)-resistant strain. We also investigated the methanol extract of G. uralensis. From the extract, three new isoflavonoids (3-arylcoumarin, pterocarpan, and isoflavan) with a pyran ring, gancaonols A[bond]C, were isolated together with 15 known flavonoids. Among these compounds, vestitol, licoricone, 1-methoxyphaseollidin and gancaonol C exhibited anti-H. pylori activity against the CLAR and AMOX-resistant strain as well as four CLAR (AMOX)-sensitive strains. Glycyrin, formononetin, isolicoflavonol, glyasperin D, 6,8-diprenylorobol, gancaonin I, dihydrolicoisoflavone A, and gancaonol B possessed weaker anti-H. pylori activity. These compounds may be useful chemopreventive agents for peptic ulcer or gastric cancer in H. pylori-infected individuals.  相似文献   

8.
Plasmodium falciparum alanine M1-aminopeptidase (PfA-M1) is a validated target for anti-malarial drug development. Presence of significant similarity between PfA-M1 and human M1-aminopeptidases, particularly within regions of enzyme active site leads to problem of non-specificity and off-target binding for known aminopeptidase inhibitors. Molecular docking based in silico screening approach for off-target binding has high potential but requires 3D-structure of all human M1-aminopeptidaes. Therefore, in the present study 3D structural models of seven human M1-aminopeptidases were developed. The robustness of docking parameters and quality of predicted human M1-aminopeptidases structural models was evaluated by stereochemical analysis and docking of their respective known inhibitors. The docking scores were in agreement with the inhibitory concentrations elucidated in enzyme assays of respective inhibitor enzyme combinations (r2≈0.70). Further docking analysis of fifteen potential PfA-M1 inhibitors (virtual screening identified) showed that three compounds had less docking affinity for human M1-aminopeptidases as compared to PfA-M1. These three identified potential lead compounds can be validated with enzyme assays and used as a scaffold for designing of new compounds with increased specificity towards PfA-M1.  相似文献   

9.
Tuberculosis and other bacterial diseases represent a significant threat to human health. The DNA topoisomerases are excellent targets for chemotherapy, and DNA gyrase in particular is a well-validated target for antibacterial agents. Naphthoquinones (e.g. diospyrin and 7-methyljuglone) have been shown to have therapeutic potential, particularly against Mycobacterium tuberculosis. We have found that these compounds are inhibitors of the supercoiling reaction catalyzed by M. tuberculosis gyrase and other gyrases. Our evidence strongly suggests that the compounds bind to the N-terminal domain of GyrB, which contains the ATPase active site, but are not competitive inhibitors of the ATPase reaction. We propose that naphthoquinones bind to GyrB at a novel site close to the ATPase site. This novel mode of action could be exploited to develop new antibacterial agents.  相似文献   

10.
The synthesis and anti-Helicobacter pylori (H. pylori) activity evaluation of a new series of erythromycin A (E)-9-oxime ether derivatives are described. These compounds exhibited comparable in vitro anti-H. pylori activity and improved acid stability compared to the reference compound clarithromycin.  相似文献   

11.
It is urgent to develop new antiviral agents due to the continuous emergence of drug-resistant strains of influenza virus. Our earlier studies have identified that certain pentacyclic triterpene saponins with 3-O-β-chacotriosyl residue are novel H5N1 virus entry inhibitors. In the present study, a series of C-28 modified 3-O-β-chacotriosyl epiursolic acid derivatives via conjugation with different kinds of sides were synthesized, of which anti-H5N1 activities in A549 cells were evaluated in vitro. Among them, 10 exhibited strongest anti-H5N1 potency at the low-micromole level without cytotoxicity, surpassing the potency of ribavirin. Further mechanism studies of the lead compound 10 based on HI, SPR and molecular modeling revealed that these new 3-epiursolic acid saponins could bind tightly to the viral envelope HA protein, thus blocking the invasion of H5N1 viruses into host cells.  相似文献   

12.
Neuraminidase (NA) of influenza is a key target for virus infection control and the recently discovered open 150-cavity in group-1 NA provides new opportunity for novel inhibitors design. In this study, we used a combination of theoretical methods including fragment docking, molecular linking and molecular dynamics simulations to design ligands that specifically target at the 150-cavity. Through in silico screening of a fragment compound library on the open 150-cavity of NA, a few best scored fragment compounds were selected to link with Zanamivir, one NA-targeting drug. The resultant new ligands may bind both the active site and the 150-cavity of NA simultaneously. Extensive molecular dynamics simulations in explicit solvent were applied to validate the binding between NA and the designed ligands. Moreover, two control systems, a positive control using Zanamivir and a negative control using a low-affinity ligand 3-(p-tolyl) allyl-Neu5Ac2en (ETT, abbreviation reported in the PDB) found in a recent experimental work, were employed to calibrate the simulation method. During the simulations, ETT was observed to detach from NA, on the contrary, both Zanamivir and our designed ligand bind NA firmly. Our study provides a prospective way to design novel inhibitors for controlling the spread of influenza virus.  相似文献   

13.
Wang W  Zhou X  He W  Fan Y  Chen Y  Chen X 《Proteins》2012,80(1):169-183
Small molecule drugs are rarely selective enough to interact solely with their designated targets. Unintended "off-target" interactions often lead to side effects, but also serendipitously lead to new therapeutic uses. Identification of the off-targets of a compound is therefore of significant value to the evaluation of its developmental potential. In computational biology, the strategy of "reverse docking" has been introduced to predict the targets of a compound, which uses a compound to virtually screen a library of proteins, reversing the bait and prey in "normal" docking screenings. The present study shows that, in reverse docking, additional optimization of the scoring function may help to improve the target prediction accuracy. In a case study with the Glide scores, we found that only 57% of the ligand-protein relationships could be correctly identified in a library of 58 complexes whose crystal binding conformations were all able to be accurately reproduced. This was likely a result of the constant over- or under-estimation of the scores for specific proteins. In other words, there were interprotein noises in the Glide scores. Introducing a correction term based on protein characteristics improved the target-prediction accuracy by 27% (57-72%). It is our hope that this focused discussion on the Glide scores would invite further efforts to characterize and normalize this type of interprotein noises in all docking scores, so that better target prediction accuracy can be achieved with the strategy of reverse docking.  相似文献   

14.
Microtubule cytoskeletons are involved in many essential functions throughout the life cycle of cells, including transport of materials into cells, cell movement, and proper progression of cell division. Small compounds that can bind at the colchicine site of tubulin have drawn great attention because these agents can suppress or inhibit microtubule dynamics and tubulin polymerization. To find novel tubulin polymerization inhibitors as anti-mitotic agents, we performed a virtual screening study of the colchicine binding site on tubulin. Novel tubulin inhibitors were identified and characterized by their inhibitory activities on tubulin polymerization in vitro. The structural basis for the interaction of novel inhibitors with tubulin was investigated by molecular modeling, and we have proposed binding models for these hit compounds with tubulin. The proposed docking models were very similar to the binding pattern of colchicine or podophyllotoxin with tubulin. These new hit compound derivatives exerted growth inhibitory effects on the HL60 cell lines tested and exhibited strong cell cycle arrest at G2/M phase. Furthermore, these compounds induced apoptosis after cell cycle arrest. In this study, we show that the validated derivatives of compound 11 could serve as potent lead compounds for designing novel anti-cancer agents that target microtubules.  相似文献   

15.
Malonyl-CoA: acyl carrier protein transacylase (MCAT) is a critical enzyme responsible for the transfer of the malonyl moiety to holo-acyl carrier protein (ACP) forming the malonyl-ACP intermediates in the initiation step of type II fatty acid synthesis (FAS II) in bacteria. MCAT has been considered as an attractive drug target in the discovery of antibacterial agents. In this study, the crystal structure of MCAT from Helicobacter pylori (Hp) at 2.5 angstroms resolution is reported, and the interaction of HpMCAT with HpACP is extensively investigated by using computational docking, GST-pull-down, and surface plasmon resonance (SPR) technology-based assays. The crystal structure results reveal that HpMCAT has a compact folding composed of a large subdomain with a similar core as in alpha/beta hydrolases, and a similar ferredoxin-like small subdomain as in acylphosphatases. The docking result suggests two positively charged areas near the entrance of the active site of HpMCAT as the ACP-binding region. Binding assay research shows that HpMCAT demonstrates a moderately binding ability against HpACP. The solved 3D structure of HpMCAT is expected to supply useful information for the structure-based discovery of novel inhibitors against MCAT, and the quantitative study of HpMCAT interaction with HpACP is hoped to give helpful hints in the understanding of the detailed catalytic mechanisms for HpMCAT.  相似文献   

16.
Multi-target EGFR, VEGFR-2 and PDGFR inhibitors are highly useful anticancer agents with improved therapeutic efficacies. In this work, we used two virtual screening methods, support vector machines (SVM) and molecular docking, to identify a novel series of benzimidazole derivatives, 2-aryl benzimidazole compounds, as multi-target EGFR, VEGFR-2 and PDGFR inhibitors. 2-Aryl benzimidazole compounds were synthesized and their biological activities against a tumor cell line HepG-2 and specific kinases were evaluated. Among these compounds, compounds 5a and 5e exhibited high cytotoxicity against HepG-2 cells with IC?? values at ~2 μM. Further kinase assay study showed that compound 5a have good EGFR inhibitory activity and moderate VEGFR-2 and PDGFR inhibitory activities, while 5e have moderate EGFR inhibitory activity and slightly weaker VEGFR-2 and PDGFR inhibitory activities. Molecular docking analysis suggested that compound 5a more tightly interacts with EGFR and PDGFR than compound 5e. Our study discovered a novel series of benzimidazole derivatives as multi-target EGFR, VEGFR-2 and PDGFR kinases inhibitors.  相似文献   

17.
Abstract

HCV NS5B polymerase has been one of the most attractive targets for developing new drugs for HCV infection and many drugs were successfully developed, but all of them were designed for targeting Hepatitis C Virus genotype 1 (HCV GT1). Hepatitis C virus genotype 4a (HCV GT4a) dominant in Egypt has paid less attention. Here, we describe our protocol of virtual screening in identification of novel potential potent inhibitors for HCV NS5B polymerase of GT4a using homology modeling, protein–ligand interaction fingerprint (PLIF), docking, pharmacophore, and 3D CoMFA quantitative structure activity relationship (QSAR). Firstly, a high-quality 3D model of HCV NS5B polymerase of GT4a was constructed using crystal structure of HCV NS5B polymerase of GT1 (PDB ID: 3hkw) as a template. Then, both the model and the template were simulated to compare conformational stability. PLIF was generated using five crystal structures of HCV NS5B (PDB ID: 4mia, 4mib, 4mk9, 4mka, and 4mkb), which revealed the most important residues and their interactions with the co-crystalized ligands. After that, a 3D pharmacophore model was developed from the generated PLIF data and then used as a screening filter for 17000328 drug-like zinc database compounds. 900 compounds passed the pharmacophore filter and entered the docking-based virtual screening stage. Finally, a 3D CoMFA QSAR was developed using 42 compounds as a training and 19 compounds as a test set. The 3D CoMFA QSAR was used to design and screen some potential inhibitors, these compounds were further evaluated by the docking stage. The highest ranked five hits from docking result (compounds (p1–p4) and compound q1) were selected for further analysis.

Communicated by Ramaswamy H. Sarma  相似文献   

18.
Liu W  Han C  Hu L  Chen K  Shen X  Jiang H 《FEBS letters》2006,580(2):697-702
Type II fatty acid synthesis (FAS II) is an essential process for bacteria survival, and malonyl-CoA:acyl carrier protein transacylase (MCAT) is a key enzyme in FAS II pathway, which is responsible for transferring the malonyl group from malonyl-CoA to the holo-ACP by forming malonyl-ACP. In this work, we described the cloning, characterization and enzymatic inhibition of a new MCAT from Helicobacter pylori strain SS1 (HpMCAT), and the gene sequence of HpfabD was deposited in the GenBank database (Accession No. AY738332 ). Enzymatic characterization of HpMCAT showed that the K(m) value for malonyl-CoA was 21.01+/-2.3 microM, and the thermal- and guanidinium hydrochloride-induced unfolding processes for HpMCAT were quantitatively investigated by circular dichroism spectral analyses. Moreover, a natural product, corytuberine, was discovered to demonstrate inhibitory activity against HpMCAT with IC(50) value at 33.1+/-3.29 microM. Further enzymatic assay results indicated that corytuberine inhibits HpMCAT in an uncompetitive manner. To our knowledge, this is the firstly reported MCAT inhibitor to date. This current work is hoped to supply useful information for better understanding the MCAT features of H. pylori strain, and corytuberine might be used as a potential lead compound in the discovery of the antibacterial agents using HpMCAT as target.  相似文献   

19.
The efficiency of Helicobacter pylori as a mucosal pathogen is caused by unique soluble and integral membrane proteins, which allow its survival at acidic pH and successful colonization of the gastric environment. With about one-fourth of the H. pylori's proteome comprising integral membrane proteins, the need for solution of their three-dimensional (3D) structures becomes persistent as it can potentially drive the generation of more effective drugs. This study presents a medium-throughput approach for cloning and expression screening of integral membrane proteins from H. pylori (26695) using Escherichia coli as the expression host. One-hundred sixteen H. pylori targets were cloned into two different vector systems and heterologously expressed in E. coli. Eighty-four percent of these proteins displayed medium to high expression. No clear-cut correlation was found between expression levels and number of putative transmembrane spans, predicted functionality, and molecular mass. Nonetheless, expression of transporters and hypothetical proteins < or =40 kDa with two to four transmembrane spans displayed generally high expression levels. To statistically strengthen the quality of the data from the medium-throughput approach, a comparison with data derived from robotic-based methodologies was conducted. Optimization of expression and solubilization conditions for selected targets was also performed. Seventeen targets have been purified and subjected to crystallization so far. Eighteen percent of these targets (2/17) produced crystals under specific sets of crystallization conditions.  相似文献   

20.
Medicinal plants and marine sources are important elements of indigenous medical systems worldwide. The natural drugs from medicinal plants and marine sources have received considerable interest in treatment of diabetes and inflammation. Based on literature, alpha glucosidase, aldose reductase and PTP1B enzymes were chosen as anti-diabetes targets and PLA2 was chosen for the anti-inflammatory target. In our study, plant and bromophenols (BPs) inhibitors were screened using High Throughput Virtual screening (HTVS) followed by Induced Fit Docking (IFD) studies were carried out against diabetes and inflammation targets. The IFD result of natural inhibitors has showed favorable docking score, glide energy and hydrogen bonds interactions with the active site residues. Some of the natural inhibitors successively satisfied all the in silico parameters among the others and seem to be potent inhibitors against diabetes and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号