首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
Biocomplexity theory is becoming increasingly important in understanding natural vegetation dynamics and interrelation among all components of the ecosystem. In this study, based on the field investigation of plant species and environmental factors (altitude, microtopography, soil water content, and soil nutrients) in an arid valley of the upper reaches of Minjiang River, Sichuan Province, southwestern China, plant community complexity and its relationship with environmental factors, community diversity, species evenness and richness were studied. Both total and structural complexities of the communities showed a “high- low-high” tendency with the increase in altitude of the area, which meant that the complexity of communities was the highest at the sites of low and high altitude, whereas it was the lowest at the sites of intermediate altitude. It was found that the total community complexity had significant quadratic correlations with soil organic matter (SOM) content, total nitrogen (N), hydrolyzable N, soil water content, and available potassium (K), whereas it had no significant correlations with soil total K, total phosphorus (P), available P, and pH value. The total community complexity positively correlated with community diversity, species evenness and species richness, whereas the structural complexity negatively correlated with the community evenness. Of the two components of the total community complexity, namely, the structural complexity and the structural diversity, the structural complexity was more sensitive than the structural diversity to the changes of species in the community, which was not only related to the community evenness but also to the community richness. The relative contribution of both the structural complexity and the structural diversity to the total complexity would be different for different study areas or ecosystems.  相似文献   

2.
Ye M S  Guan W B  Wu B  Ma K M  Liu G H  Wang X L  Chen Q Y 《农业工程》2006,26(10):3159-3165
Biocomplexity theory is becoming increasingly important in understanding natural vegetation dynamics and interrelation among all components of the ecosystem. In this study, based on the field investigation of plant species and environmental factors (altitude, microtopography, soil water content, and soil nutrients) in an arid valley of the upper reaches of Minjiang River, Sichuan Province, southwestern China, plant community complexity and its relationship with environmental factors, community diversity, species evenness and richness were studied. Both total and structural complexities of the communities showed a “high- low-high” tendency with the increase in altitude of the area, which meant that the complexity of communities was the highest at the sites of low and high altitude, whereas it was the lowest at the sites of intermediate altitude. It was found that the total community complexity had significant quadratic correlations with soil organic matter (SOM) content, total nitrogen (N), hydrolyzable N, soil water content, and available potassium (K), whereas it had no significant correlations with soil total K, total phosphorus (P), available P, and pH value. The total community complexity positively correlated with community diversity, species evenness and species richness, whereas the structural complexity negatively correlated with the community evenness. Of the two components of the total community complexity, namely, the structural complexity and the structural diversity, the structural complexity was more sensitive than the structural diversity to the changes of species in the community, which was not only related to the community evenness but also to the community richness. The relative contribution of both the structural complexity and the structural diversity to the total complexity would be different for different study areas or ecosystems.  相似文献   

3.
A variety of studies on the impact of fire disturbance on ecosystems has shown that the physical and chemical properties of soil after fire disturbance change notably. Meanwhile, little is known about the effects of different fire intensities on the soil properties and vegetation after fire disturbance, especially in the south subtropical area. In this paper, we analyzed the soil physical and chemical properties, vegetation species and species diversity of fire center, fire edge (which was burned a year ago) and non-burned Pinus massoniana plantation in Gaoyao, Guangdong province, China. The results showed that the soil conductivity, water content, total nitrogen, total potassium, and available potassium content of fire center were significantly higher than those of the non-burned land, and pH was higher than that of fire edge, whereas the available nitrogen, total phosphorus and organic matter content were much lower, which were generally existed in 0–10 cm soil layer and 10–30 cm soil layer. Changes of the soil properties of fire edge were similar with those of fire center, but less significant, and seemed to be more complex. Effects of burning on the vegetation of fire disturbance plots were found to be notable, species number and average height of plants of fire disturbance plots were lower than those of the non-burned plots, a difference of species diversity and uniformity were also shown, and finally, the composition of plant community also changed, e.g., pioneer species such as D. dichotoma, etc., dominated, and drought-resistant plants, heat-resistant plants and positive plants increased after burning.  相似文献   

4.
A variety of studies on the impact of fire disturbance on ecosystems has shown that the physical and chemical properties of soil after fire disturbance change notably. Meanwhile, little is known about the effects of different fire intensities on the soil properties and vegetation after fire disturbance, especially in the south subtropical area. In this paper, we analyzed the soil physical and chemical properties, vegetation species and species diversity of fire center, fire edge (which was burned a year ago) and non-burned Pinus massoniana plantation in Gaoyao, Guangdong province, China. The results showed that the soil conductivity, water content, total nitrogen, total potassium, and available potassium content of fire center were significantly higher than those of the non-burned land, and pH was higher than that of fire edge, whereas the available nitrogen, total phosphorus and organic matter content were much lower, which were generally existed in 0–10 cm soil layer and 10–30 cm soil layer. Changes of the soil properties of fire edge were similar with those of fire center, but less significant, and seemed to be more complex. Effects of burning on the vegetation of fire disturbance plots were found to be notable, species number and average height of plants of fire disturbance plots were lower than those of the non-burned plots, a difference of species diversity and uniformity were also shown, and finally, the composition of plant community also changed, e.g., pioneer species such as D. dichotoma, etc., dominated, and drought-resistant plants, heat-resistant plants and positive plants increased after burning.  相似文献   

5.
The aim of this research is to investigate the patterns of vascular plant species richness,diversity,and distribution along an elevation gradient in the Abune Yosef mountain range,Ethiopia.Preferential systematic sampling was employed to collect vegetation and environmental data along the elevation gradient.We found that plant species richness declines monotonically from low to high elevations.Specifically,vascular plant species richness and diversity were lower in the Afroalpine grassland(high elevation)than in the Dry evergreen Afromontane forest and Ericaceous forest(low elevations).In contrast,endemic vascular plant richness was significantly higher in the Afroalpine grassland than in the Dry evergreen Afromontane forest and Ericaceous forest.Elevation showed a significant impact on the richness,diversity,and endemism of vascular plants.According to Sorensen's coefficient,the similarity between Dry evergreen Afromontane forest and Ericaceous forest vegetation types is higher(32%)than the similarity between Ericaceous forest and Afroalpine grassland(18%).Only 5%similarity was recorded between the Dry evergreen Afromontane forest and Afroalpine grassland.Growth forms showed different elevationai richness patterns.Trees and liana increased monotonically up to 3300 m.Shrub and herb richness patterns followed a hump-shaped and inverted hump-shaped pattern along the elevation gradient.The elevation patterns of vascular plant species richness,diversity,and growth form in the present study may be attributed to differences in management intensity,spatial heterogeneity,microclimatic variations,and anthropogenic disturbances.  相似文献   

6.
Alpine Kobresia meadows are major vegetation types on the Qinghai-Tibetan Plateau. There is growing concern over their relationships among biodiversity, productivity and environments. Despite the importance of species composition, species richness, the type of different growth forms, and plant biomass structure for Kobresia meadow ecosystems, few studies have been focused on the relationship between biomass and environmental gradient in the Kobresia meadow plant communities, particularly in relation to soil moisture and edaphic gradients. We measured the plant species composition, herbaceous litter, aboveground and belowground biomass in three Kobresia meadow plant communities in Haibei Alpine Meadow Ecosystem Research Station from 2001 to 2004. Community differences in plant species composition were reflected in biomass distribution. The total biomass showed a decrease from 13196.96±719.69 g/m2 in the sedge-dominated K. tibetica swamp to 2869.58±147.52 g/m2 in the forb and sedge dominated K. pygmaea meadow, and to 2153.08±141.95 g/m2 in the forbs and grasses dominated K. humilis along with the increase of altitude. The vertical distribution of belowground biomass is distinct in the three meadow communities, and the belowground biomass at the depth of 0-10 cm in K. tibetica swamp meadow was significantly higher than that in K. humilis and K. pygmaea meadows (P<0.01). The herbaceous litter in K. tibetica swamp was significantly higher than those in K. pygnaeca and K. humilis meadows. The effects of plant litter are enhanced when ground water and soil moisture levels are raised. The relative importance of litter and vegetation may vary with soil water availability. In the K. tibetica swamp, total biomass was negatively correlated to species richness (P<0.05); aboveground biomass was positively correlated to soil organic matter, soil moisture, and plant cover (P<0.05); belowground biomass was positively correlated with soil moisture (P<0.05). However, in the K. pygnaeca and K. humilis meadow communities, aboveground biomass was positively correlated to soil organic matter and soil total nitrogen (P<0.05). This suggests that the distribution of biomass coincided with soil moisture and edaphic gradient in alpine meadows.  相似文献   

7.
Alpine Kobresia meadows are major vegetation types on the Qinghai-Tibetan Plateau. There is growing concern over their relationships among biodiversity, productivity and environments. Despite the im-portance of species composition, species richness, the type of different growth forms, and plant bio-mass structure for Kobresia meadow ecosystems, few studies have been focused on the relationship between biomass and environmental gradient in the Kobresia meadow plant communities, particularly in relation to soil moisture and edaphic gradients. We measured the plant species composition, her-baceous litter, aboveground and belowground biomass in three Kobresia meadow plant communities in Haibei Alpine Meadow Ecosystem Research Station from 2001 to 2004. Community differences in plant species composition were reflected in biomass distribution. The total biomass showed a de-crease from 13196.96±719.69 g/m2 in the sedge-dominated K. tibetica swamp to 2869.58±147.52 g/m2 in the forb and sedge dominated K. pygmaea meadow, and to 2153.08±141.95 g/m2 in the forbs and grasses dominated K. humilis along with the increase of altitude. The vertical distribution of below-ground biomass is distinct in the three meadow communities, and the belowground biomass at the depth of 0-10 cm in K. tibetica swamp meadow was significantly higher than that in K. humilis and K. pygmaea meadows (P<0.01). The herbaceous litter in K. tibetica swamp was significantly higher than those in K. pygnaeca and K. humilis meadows. The effects of plant litter are enhanced when ground water and soil moisture levels are raised. The relative importance of litter and vegetation may vary with soil water availability. In the K. tibetica swamp, total biomass was negatively correlated to species richness (P<0.05); aboveground biomass was positively correlated to soil organic matter, soil moisture, and plant cover (P<0.05); belowground biomass was positively correlated with soil moisture (P<0.05). However, in the K. pygnaeca and K. humilis meadow communities, aboveground biomass was posi-tively correlated to soil organic matter and soil total nitrogen (P<0.05). This suggests that the distribu-tion of biomass coincided with soil moisture and edaphic gradient in alpine meadows.  相似文献   

8.
This study identifies 'centers of endemism' for typhlocybine leafhoppers in China, revealing diversity patterns and congruence of patterns between total species rich- ness and endemism. Distribution patterns of 774 Typhlocybinae (607 described and 167 undescribed species) were mapped on a 1.5° × 1.5° latitude/longitude grid. Total species richness, endemic species richness and weighted endemism richness were calculated for each grid cell. Grid cells within the top 5% highest values of weighted endemism richness were considered as 'centers of endemism'. Diversity patterns by latitude and altitude were obtained through calculating the gradient richness. A congruence of diversity patterns between total species richness and endemism was confirmed using correlation analysis. To investigate the bioclimatic factors (19 variables) contributing to the congruence be- tween total species richness and endemism, we compared the factor's difference between non-endemic and endemic species using the Kruskal-Wallis test. Eleven centers of en- demism, roughly delineated by mountain ranges, were identified in central and southern China, including the south Yunnan, Hengduan Mountains, Qinling Mountains, Hainan Is- land, Taiwan Island and six mountain areas located in western Sichuan, northwest Fujian, southeast Guizhou, southeast Hunan, central and western Guangdong, and north Zhejiang. Total species richness and endemic species richness decreased with increased latitude and had a consistent unimodal response to altitude. The proportions of endemism decreased with increased latitude and increased with rising altitude. Diversity patterns between total species richness and endemism were highly consistent, and 'Precipitation of Coldest Pe- riod' and 'Temperature of Coldest Period' may contribute to the congruence of pattern. Migration ability may play a role in the relationship of endemism and species richness; climate, environment factors and important geologic isolation events can also play crucial effect  相似文献   

9.
Soil nutrition is a key factor influencing species composition in a community, but it has clearly scaledependent heterogeneity. In the present study, geostatistics methods and canonical correspondence analysis (CCA) were used to detect: (i) the variation range of soil spatial heterogeneity; (ii) the influence of topographic factors on the distribution of soil nutrition; and (iii) the relationships between soil chemical properties and species in the community. In all, 23 soil variables were measured, including total N and organic C, AI, Ba, Ca, Cr, Cu, Fe, Ga, Li, Mg, Mn, Na, NH4-N, Ni, NO3-N, Pb, pH, P, Sr, Ti, V, and Zn. Semi-variograms of these variables were calculated and mapped. All indices showed autocorrelatlons, with ranges between 29 and 200 m. When the sample method was larger than these distances, spatial autocorrelations were avoided. The distribution patterns of Ca, Cr, Ga, K, Mg, organic C, P, Pb, and pH, and total N were related to the microtopography and the distribution of these compounds was clumped in water catchments area. The CCA method was used to investigate the relationship between plant species and soil properties in this community. Fagus engleriana Seem., Lindera obtusiloba BI. Mus., and Acer griseum (Franch.) Pax were correlated with organic C, available N, and P.  相似文献   

10.
Leymus chinensis is a keystone species in the temperate zone grassland of China. Along the NECT (Northeast China Transect) in 2001, water-use efficiency of L. chinensis was analyzed with δ13C, and changes in the stoma density of its leaves were observed and computed under a microscope. Results showed that the ecological plasticity modulation of the stoma density of L. chinensis and its water-use efficiency were two important mechanisms for its broad ecological adaptability. From east to west along the NECT, the δ13C of the species varied from -27.49‰ to -23.57‰, consisting with the reduction of annual precipitation, soil water and annual average temperature, but increased with the increase of the elevation of sampling sites. The stoma density increased from 96.9/mm2 to 169.5/mm2, indicating that the water-use efficiency for the species was improved along the gradient. The linear coefficient between the two parameters was significant (R2 = 0.7338). The results of a stepwise regression analysis showed that the soil water was the first marked factor for determining the stoma density, and the next was the annual precipitation, which suggested that the water factors were the primary ecological factors influencing the stoma density of L. chinensis. The findings in this study showed that the responses of the stoma density and the water-use efficiency for L. chinensis to environmental changes were very complicated. They may be the outcome operated synthetically by all environmental factors in the long-term adaptation to different ecological environments, including human activity, for L. chinensis.  相似文献   

11.
对新疆阜康绿洲荒漠过渡带植物群落4个物种多样性指数和3层土壤19个指标进行回归分析,结果表明,土壤酸碱度,全盐量,Cl^-,K^ Na^ ,Mg^2 ,土壤有机质,全N和速效P与物种多样性有显著相关关系(P<0.05)。酸碱度和有机质与多样性的最好拟合为二项式,即高的物种多样性出现在梯度中间位置。其余6个指标与物种多样性为显著线形负相关关系。表明全盐量,Cl^-,K^ Na^ ,Mg^2 含量越多,物种多样性越小,全N和速效P与均匀度均呈显著负相关,表明全N和速效P含量上升,均匀度显著下降,植物个体数与土壤水盐的回归分析表明,植物多度受土壤水分和盐分影响显著(P<0.01)。  相似文献   

12.
用物种多样性指数(Shannon-Wienner指数、Simpson指数)、均匀度指数(Pielou)和物种丰富度指数(Margalef指数和Menhinick指数)对广元市7种人工森林群落进行多样性分析。结果表明,植被恢复与重建使生物多样性提高的同时,土壤侵蚀模数比治理前下降了45%;乔、灌、草复层经营对生物多样性与水土保持效益具有同样的贡献;水土保持效益因不同森林群落的生物多样性而异。  相似文献   

13.
马紫荆  张云玲  刘彬 《广西植物》2022,42(7):1116-1125
为探讨天山中段南坡巴伦台植物群落物种多样性随海拔梯度的分布特征及其与土壤环境因子的关系,该研究采用野外调查的方法,在和静县巴伦台地区海拔范围内设置34个样地进行了植物多样性和土壤因子的调查及室内指标的统计分析。结果表明:(1)研究区共调查到30科75属134种植物,草本层为主要优势层。不同海拔高度上土壤理化指标具有异质性,土壤含水量、全盐、有机质、全氮、全钾、有效氮和有效钾差异性显著(P<0.05),其中除全钾以外,其他土壤因子的含量均表现为中海拔大于低、高海拔区域。随海拔的升高,植物群落在低、高海拔段Pielou均匀度指数较高; 灌木层物种Patrick丰富度指数较低; 草本层物种Shannon-Wiener指数、Simpson指数随海拔升高先增加后减小。(2)RDA分析表明,影响植物群落物种多样性的主要环境因子是海拔、土壤含水量、全盐、有机质、全氮和有效氮。海拔作为主导因子,与草本层各物种多样性指数呈正相关,与灌木层各物种多样性指数呈负相关关系; 全盐是抑制植物群落总体物种Simpson指数的主要土壤因子; 氮元素一定程度上限制灌木、半灌木物种的生长。该研究结果表明土壤因子对不同生活型物种多样性的形成具有一定的筛选作用及不同物种对环境变化的适应策略不同。  相似文献   

14.
海岛植被在全球生物多样性研究中起重要作用,研究海岛植被多样性对于理解海陆相互作用下植物群落的多样性维持机制有重要意义.本研究以庙岛群岛的麻栎群落、刺槐群落、黑松群落、荆条群落4种典型植物群落为对象,采用物种多样性指数、功能多样性指数和结构多样性指数,在群落尺度上探讨了海岛典型植物群落物种、功能、结构多样性间的关系及其对环境因子的响应.结果表明: 黑松群落的物种丰富度与Rao指数高于刺槐群落与麻栎群落,而结构多样性却较低;荆条灌丛的物种、结构多样性均低于森林群落,而功能多样性高于部分森林群落.物种丰富度与Rao指数以及树高多样性间呈显著正相关,与功能均匀度呈显著负相关.结构多样性主要由坡度决定且与坡度呈负相关;功能均匀度与坡度呈正相关,而功能异质性、功能离散度和物种多样性则更多地受土壤理化性质的影响,与土壤容重及土壤总碳呈正相关,与土壤含水率呈负相关.总体而言,庙岛群岛的植物群落多样性格局既有与大陆植被相似的特征,但也有其海岛特殊性.  相似文献   

15.
采用样带与样地结合的方法在三江源自然保护区的核心区沿海拔梯度在阴坡、阳坡分别进行草本植被调查,通过因子分析和偏相关分析研究丰富度指数、多样性指数与环境梯度(包括海拔梯度、裸斑面积、坡度、土壤总碳、总氮含量、土壤pH值、土壤总可溶性盐含量)和干扰强度(鼠类干扰强度、放牧强度)之间的关系。研究结果表明:杂类草丰富度指数(DMa杂)与总物种丰富度指数(DMa总)极显著相关(P<0.01);阳坡DMa杂和DMa总均呈现“中海拔膨胀”现象,阴坡DMa杂和DMa总与海拔梯度呈正相关,莎草科和禾本科的丰富度指数(DMa莎和DMa禾)随海拔升高并无明显规律;通过主成分分析,及偏相关分析,第一主成分(裸斑面积、鼠类干扰和放牧强度)与除莎草科Margalef丰富度指数、禾本科Simpson指数和禾本科Pielou均匀度指数外的其他草地多样性指数均显著相关,是影响阳坡草地植物多样性的主要因子,土壤总碳、总氮含量对阳坡禾本科类群的多样性指数和均匀度指数有极显著影响,土壤pH值、TDS含量和坡度对阳坡莎草科类群的丰富度有显著影响;海拔梯度、土壤总碳、总氮以及pH值对阴坡草本植物群落的多样性影响较大。研究结论认为,植物群落生物多样性的空间分异特征是地理环境、土壤环境以及干扰强度等因素综合作用的结果。无干扰或干扰较弱时,物种多样性主要受土壤环境状况所影响;而在强干扰存在条件下,干扰强度对物种丰富度和多样性的影响比环境因子更显著;遏制高寒草甸植物多样性降低应首先控制放牧及鼠类等强干扰活动。  相似文献   

16.
该研究以桂林岩溶石山灌丛植物为对象,分析了灌丛群落物种丰富度指数、Shannon-Wiener指数和Pielou均匀度指数与土壤环境因子随坡向(阴坡-阳坡)梯度的变化规律。结果表明:(1)土壤含水量、土壤温度、土壤pH和土壤全磷均对植物群落类型及物种分布具有显著的影响,坡向对植物群落类型及物种分布具有极显著的影响;而土壤全氮、土壤有效氮和土壤有机碳对植物群落类型及物种分布则均无显著影响。(2)除Pielou均匀度指数在阴坡与阳坡差异不显著外,物种丰富度指数、Shannon-Wiener指数对不同坡向微生境均存在显著差异。其中,物种丰富度指数和Shannon-Wiener指数在不同坡向上均表现出相同的变化趋势,即阴坡大于阳坡。(3)除土壤pH值和土壤全磷含量差异不显著外,坡向对土壤含水量、土壤温度、土壤全氮含量、土壤有效氮含量、土壤有机碳含量均产生显著的影响。其中,土壤含水量、土壤有效氮含量、土壤有机碳含量则为阴坡大于阳坡,而土壤温度和土壤全氮含量为阴坡小于阳坡。(4)多元逐步回归分析表明,在阴坡上,各土壤环境因子对物种丰富度指数、Shannon-Wiener指数和Pielou均匀度指数作用均不显著;在阳坡上,物种丰富度指数与土壤温度呈显著负相关、与土壤有机碳含量呈显著正相关;Shannon-Wiener指数与土壤含水量和土壤有机碳含量呈显著正相关;Pielou均匀度指数与土壤有机碳含量呈显著正相关、与土壤全磷含量呈显著负相关。  相似文献   

17.
Islands are vulnerable ecosystems worldwide, increasingly exposed to human pressure, global climate change and invasive species. Thus, understanding island species diversity is key for nature conservation. Recent studies on insular plant communities indicated that habitat-specific species composition and richness might largely affect diversity patterns observed at the island scale. In consequence, habitat-based approaches are needed to (i) estimate how environmental changes at the habitat scale may affect island diversity, and to (ii) estimate the contribution of different patches of the same habitat to island diversity with respect to habitat-specific environmental constraints.In the present study, we tested these habitat-to-island diversity relationships for shoreline habitats (brackish reeds, salt marsh, rocky shore, tall herbs) and island interior habitats (rocks, semi-natural grassland, pioneer forest, coniferous forest, mixed forest) using 108 islands of three Baltic archipelagos in Sweden. These islands differed in terms of island-scale variables describing effects of island configuration and distance, and habitat-scale variables representing the effects of habitat area, abiotic environment and land-use.The studied habitats differed in their contribution to island species diversity, called habitat specificity. Shoreline habitats shared many common specialist species adapted to extreme conditions like sea salt or bird grazing, while habitats of the island interior harbored mainly species adapted to the specific conditions of a single habitat. We found high variability in habitat specificity as a consequence of habitat-specific environmental factors. Variability was highest for grasslands, where it was related to abandonment and soil fertility, stressing the importance of grassland management for maintaining island biodiversity. Habitats with high habitat specificity through either high species richness or many habitat-specific specialists should be the primary targets for biodiversity management.  相似文献   

18.
运用TWINSPAN对山西七里峪茶条槭群落类型进行划分,并采用Patrick指数、Simpson指数、Shannon-Wiener指数、Alatalo指数研究群落的物种多样性。结果表明:TWINSPAN将茶条槭群落的73个样方划分为10个群丛;各群丛的物种丰富度指数、多样性指数和均匀度指数之间存在差异,群丛Ⅲ和Ⅶ的丰富度指数和多样性指数较高,群丛Ⅰ的多样性指数较低;各群丛乔木层、灌木层和草本层之间的物种多样性也存在差异,多样性指数大致表现为草本层高于灌木层高于乔木层。土壤中的有机质、速效钾、含水量是影响茶条槭群落物种多样性的主要因素。  相似文献   

19.
盐生植物种类及其所具有的不同耐盐调节方式影响着根际微生物群落的结构与组成。为明确不同类型盐生植物根际与非根际土壤中真菌群落结构与组成的差异及其与土壤环境间的相互关系,该研究采集了黄河三角洲地区芦苇、盐地碱蓬、獐毛3种不同类型盐生植物0~20 cm土层的根际和非根际土壤,通过高通量测序对其真菌群落多样性和结构进行了分析,以探究真菌群落特征与土壤理化因子间的关系。结果表明:(1)3种不同类型盐生植物根际土壤真菌群落丰富度显著大于各自非根际土,且獐毛根际土壤真菌群落丰富度显著大于芦苇和盐地碱蓬的根际土。(2)距离热图分析表明,芦苇和盐地碱蓬非根际土壤真菌群落间的相似性最大。(3)土壤真菌多样性和丰富度与土壤总碳、总氮、有效磷、pH呈正相关关系,与土壤盐分含量呈负相关关系。(4)3种不同类型盐生植物的根际与非根际土壤中,球囊菌门(Glomeromycota)均为绝对优势门,盾巨孢囊霉属(Scutellospora)为优势属。(5)RDA分析表明,土壤盐分含量是影响土壤真菌群落结构的重要因子,球囊菌门丰度与土壤总氮、总碳、有效磷、有机碳、pH呈正相关关系,与盐分呈负相关关系。(6)植物土壤真菌群落特征随盐生植物类型的变化以及样本土壤距宿主植物根系远近存在差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号