首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   816748篇
  免费   85700篇
  国内免费   5050篇
  2018年   8685篇
  2016年   10616篇
  2015年   15014篇
  2014年   17624篇
  2013年   23954篇
  2012年   26492篇
  2011年   26229篇
  2010年   17305篇
  2009年   15887篇
  2008年   21699篇
  2007年   22397篇
  2006年   20917篇
  2005年   19786篇
  2004年   19326篇
  2003年   18495篇
  2002年   18030篇
  2001年   32812篇
  2000年   33349篇
  1999年   26849篇
  1998年   9346篇
  1997年   9834篇
  1996年   9281篇
  1995年   9079篇
  1994年   8863篇
  1993年   8709篇
  1992年   22457篇
  1991年   21916篇
  1990年   21665篇
  1989年   21038篇
  1988年   19828篇
  1987年   18739篇
  1986年   17680篇
  1985年   18099篇
  1984年   15010篇
  1983年   12940篇
  1982年   10109篇
  1981年   9204篇
  1980年   8487篇
  1979年   14434篇
  1978年   11474篇
  1977年   10656篇
  1976年   10130篇
  1975年   11184篇
  1974年   12282篇
  1973年   12092篇
  1972年   11197篇
  1971年   10165篇
  1970年   8808篇
  1969年   8809篇
  1968年   8108篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
More than 50 hereditary lysosomal storage disorders (LSDs) are currently described. Most of these disorders are due to a deficiency of certain hydrolases/glycosidases and subsequent accumulation of nonhydrolyzable carbohydrate-containing compounds in lysosomes. Such accumulation causing hypertrophy of the lysosomal compartment is a characteristic feature of affected cells in LSDs. The investigation of biochemical and cellular parameters is of particular interest for understanding “life” of lysosomes in the normal state and in LSDs. This review highlights the wide spectrum of biochemical and morphological changes during developing LSDs that are extremely critical for many metabolic processes inside the various cells and tissues of affected persons. The data presented will help establish new complex strategies for metabolic correction of LSDs.  相似文献   
2.
3.
4.
The activation of endothelial cells is essential to repair damage caused by atherosclerosis via endothelial cell proliferation and migration. Overexpression of VEGF (vascular endothelial growth factor) and the downstream gene, B-cell lymphoma-2 (BCL-2) could result in apoptosis-resistant endothelial cells, which are responsible for aggravated hyperplasia and instable plaques generation. Previous studies have shown that miRNA126 could regulate the expression of VEGF. Here, we verified the existence of a miRNA126 binding site in VEGF’s 3’UTR. Additionally, VEGF regulated BCL-2 expression via AP1 (Activator Protein 1) binding site in BCL-2’s promoter. Next, we established an apoptosis-resistant endothelial cell line and constructed a lentiviral vector to express miRNA126 under the control of the BCL-2 promoter to investigate whether conditional expression of miRNA126 could modulate VEGF and BCL-2 expression in apoptosis-resistant endothelial cells. This lentiviral system specifically expressed miRNA126 in cells with high BCL-2 levels, downregulated VEGF expression, inhibited MAPK pathway activation and downregulated BCL-2 expression via suppression of AP1, and as a whole, reduced apoptosis-resistant endothelial cells, while the effects of miRNA126 on normal endothelial cells were relatively small. Our results demonstrate that conditional miRNA126 overexpression under the control of the downstream BCL-2 promoter provides a flexible regulatory strategy for reducing the apoptosis-resistant endothelial cells without having a significant impact on normal endothelial cells.  相似文献   
5.
Human organ-on-a-chip systems for drug screening have evolved as feasible alternatives to animal models, which are unreliable, expensive, and at times erroneous. While chips featuring single organs can be of great use for both pharmaceutical testing and basic organ-level studies, the huge potential of the organ-on-a-chip technology is revealed by connecting multiple organs on one chip to create a single integrated system for sophisticated fundamental biological studies and devising therapies for disease. Furthermore, since most organ-on-a-chip systems require special protocols with organ-specific media for the differentiation and maturation of the tissues, multi-organ systems will need to be temporally customizable and flexible in terms of the time point of connection of the individual organ units. We present a customizable Lego®-like plug & play system, μOrgano, which enables initial individual culture of single organ-on-a-chip systems and subsequent connection to create integrated multi-organ microphysiological systems. As a proof of concept, the μOrgano system was used to connect multiple heart chips in series with excellent cell viability and spontaneously physiological beat rates.  相似文献   
6.
L-asparaginase (ASP) is a key element in the treatment of paediatric acute lymphoblastic leukaemia (ALL). However, hypersensitivity reactions (HSRs) to ASP are major challenges in paediatric patients. Our aim was to investigate genetic variants that may influence the risk to Escherichia coli-derived ASP hypersensitivity. Sample and clinical data collection was carried out from 576 paediatric ALL patients who were treated according to protocols from the Berlin—Frankfurt—Münster Study Group. A total of 20 single nucleotide polymorphisms (SNPs) in GRIA1 and GALNT10 genes were genotyped. Patients with GRIA1 rs4958351 AA/AG genotype showed significantly reduced risk to ASP hypersensitivity compared to patients with GG genotype in the T-cell ALL subgroup (OR = 0.05 (0.01–0.26); p = 4.70E-04), while no such association was found in pre-B-cell ALL. In the medium risk group two SNPs of GRIA1 (rs2055083 and rs707176) were associated significantly with the occurrence of ASP hypersensitivity (OR = 0.21 (0.09–0.53); p = 8.48E-04 and OR = 3.02 (1.36–6.73); p = 6.76E-03, respectively). Evaluating the genders separately, however, the association of rs707176 with ASP HSRs was confined only to females. Our results suggest that genetic variants of GRIA1 might influence the risk to ASP hypersensitivity, but subgroups of patients can differ significantly in this respect.  相似文献   
7.
8.
9.
10.
The pygmy right whale, Caperea marginata , is the least understood extant baleen whale (Cetacea, Mysticeti). Knowledge on its basic anatomy, ecology, and fossil record is limited, even though its singular position outside both balaenids (right whales) and balaenopteroids (rorquals + grey whales) gives Caperea a pivotal role in mysticete evolution. Recent investigations of the cetacean cochlea have provided new insights into sensory capabilities and phylogeny. Here, we extend this advance to Caperea by describing, for the first time, the inner ear of this enigmatic species. The cochlea is large and appears to be sensitive to low‐frequency sounds, but its hearing limit is relatively high. The presence of a well‐developed tympanal recess links Caperea with cetotheriids and balaenopteroids, rather than balaenids, contrary to the traditional morphological view of a close Caperea‐balaenid relationship. Nevertheless, a broader sample of the cetotheriid Herpetocetus demonstrates that the presence of a tympanal recess can be variable at the specific and possibly even the intraspecific level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号