首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glutathione-Mediated Alleviation of Chromium Toxicity in Rice Plants   总被引:1,自引:0,他引:1  
A hydroponic experiment was conducted to determine the possible effect of exogenous glutathione (GSH) in alleviating chromium (Cr) stress through examining plant growth, chlorophyll contents, antioxidant enzyme activity, and lipid peroxidation in rice seedlings exposed to Cr toxicity. The results showed that plant growth and chlorophyll content were dramatically reduced when rice plants were exposed to 100 μM Cr. Addition of GSH in the culture solution obviously alleviated the reduction of plant growth and chlorophyll content. The activities of some antioxidant enzymes, including superoxide dismutase, catalase (CAT) and glutathione reductase in leaves, and CAT and glutathione peroxidase in roots showed obvious increase under Cr stress. Addition of GSH reduced malondialdehyde accumulation and increased the activities of these antioxidant enzymes in both leaves and roots, suggesting that GSH may enhance antioxidant capacity in Cr-stressed plants. Furthermore, exogenous GSH caused significant decrease of Cr uptake and root-to-shoot transport in the Cr-stressed rice plants. It can be assumed that GSH is involved in Cr compartmentalization in root cells.  相似文献   

2.
The mechanisms of growth inhibition and antioxidative response were investigated in wheat roots exposed to 300 μM iron together with different zinc concentrations (0, 50, and 250 μM). All Zn concentrations decreased Fe content but increased Zn content in the roots and leaves of Fe-treated seedlings. Compared with Fe stress alone, 50 or 250 μM Zn + Fe treatment stimulated root growth, and increased cell viability but decreased malondialdehyde content, which were correlated with the decreases of total and apoplastic hydrogen peroxide and superoxide anion radical (O2 ·?) content along with apoplastic hydroxyl radical content. Generation of O2 ·? in response to 10 μM diphenylene iodonium suggested that NADPH oxidase activity was lower in Zn + Fe-treated roots than in other roots. In addition, cell wallbound peroxidase, diamine oxidase, and polyamine oxidase in Fe-treated roots were insensitive to Zn addition. Further study showed the stimulation of total superoxide dismutase and glutathione reductase (GR) activities as well as apoplastic catalase, ascorbate peroxidase, and GR in Zn + Fe-stressed roots in comparison with Fe-alone-treated ones. Taken together, Zn could alleviate iron-inhibitory effect on root growth, which might be associated with the decrease of lipid peroxidation, the increase of cell viability and the reductions of reactive oxygen species generation.  相似文献   

3.
We studied the effects of different concentrations of mercury (0.0 to 100 μM) on growth and photosynthetic efficiency in rice plants treated for 21 d. In addition, we investigated how this metal affected the malondialdehyde (MDA) content as well as the activity of five antioxidant enzymes — superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), guaiacol peroxidase (POD), and catalase (CAT). Photosynthetic efficiency (Fμ/Fm) and seedling growth decreased as the concentration of Hg was increased in the growth media. Plants also responded to Hg-induced oxidative stress by changing the levels of their antioxidative enzymes. Enhanced lipid peroxidation was observed in both leaves and roots that had been exposed to oxidative stress, with leaves showing higher enzymatic activity. Both SOD and APX activities increased in treatments with up to 50 μM Hg, then decreased at higher concentrations. In the leaves, both CAT and POD activities increased gradually, with CAT levels decreasing at higher concentrations. In the roots, however, CAT activity remained unchanged while that of POD increased a bit more than did the control for concentrations of up to 10 μM Hg. At higher Hg levels, both CAT and POD activities decreased. GR activity increased in leaves exposed to no more than 0.25 μM Hg, then decreased gradually. In contrast, its activity was greatly inhibited in the roots. Based on these results, we suggest that when rice plants are exposed to different concentrations of mercury, their antioxidative enzymes become involved in defense mechanisms against the free radicals that are induced by this stress.  相似文献   

4.
Sunflower (Helianthus annuus L.) seeds were germinated and grown in the presence of 50, 100 and 200 μM CdCl2. The lower concentration (50 μM) of Cd2 ions produced slight decrease in reduced glutathione (GSH) content and overall increase (except superoxide dismutase) in antioxidant enzyme activities, and in H2O2 concentration. Chlorophyll content, lipid peroxidation and protein oxidation were not affected under 50 μM CdCl2. GSH content was diminished under 100 and 200 μM CdCl2, and except for superoxide dismutase, which activity remained unaltered, overall decreases in the antioxidant enzyme activities (catalase, ascorbate peroxidase, dehydroascorbate peroxidase, glutathione reductase) and in guaiacol peroxidase were observed. These Cd2 concentrations caused a decrease in chlorophyll content as well as an increase in lipid peroxidation, protein oxidation and H2O2 concentration. All the observed effects were more evident with the highest concentration of cadmium chloride used. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Pea plants were exposed to 0, 20, 50, and 100 µM chromium [Cr(VI)] to investigate oxidative stress in isolated chloroplasts. Leaf area and biomass accumulation were significantly reduced at higher Cr supply. Generation of superoxide, hydrogen peroxide, and ·OH radical generation was enhanced in the chloroplasts isolated from Cr-exposed pea plants. Cr(VI) significantly reduced F v/F m ratio of chlorophyll (Chl) fluorescence, Chl content, and whole chain electron transport rate. Superoxide dismutase (SOD) activity increased at lower Cr supply while it decreased at higher Cr supply. Ascorbate peroxidase (APX) was found to be most sensitive to Cr stress. Monodehydroascorbate reductase activity remained higher at 20 and 50 µM Cr but decreased at 100 µM Cr. Increased activities of dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in the isolated chloroplasts were observed during the initial 3 days of Cr exposure of pea plants. Activities of DHAR and GR were increased up to day 3 only. Ascorbate and glutathione (GSH) pools showed similar decrease that was more evident in the GSH pool as the duration of Cr treatment increased. Observed changes in reactive oxygen species concentration, photosynthetic characteristics, and antioxidant system indicate that chloroplasts in Cr-exposed pea plants are an important target of oxidative stress.  相似文献   

6.
The aim of this study was to test the protective roles of superoxide dismutases (SODs), guaiacol peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) against oxidative damage and their activities in different phases of the dry down process in Reaumuria soongorica (Pall.) Maxim. leaves. Drought stress was imposed during 100 consecutive days and rewatering after 16, 72, and 100 days. The concentration of hydrogen peroxide (H2O2), malondialdehyde, and SODs activities were elevated significantly with progressing drought stress. POD and CAT activities increased markedly in the early phase of drought and decreased significantly with further drought stress continuation, and POD activity was unable to recover after rewatering. Ascorbate, reduced glutathione, APX, and GR activities declined in the initial stages of drought process, elevated significantly with further increasing water deficit progression and recovered after rewatering. These results indicate that: (1) iron SODs-removing superoxide anion is very effective during the whole drought stress; (2) CAT scavenges H2O2 in the early phase of drought and enzymes of ascorbate–glutathione cycle scavenge H2O2 in further increasing drought stress; and (3) POD does not contribute to protect against oxidative damage caused by H2O2 under drought stress.  相似文献   

7.
In the present study, impact of kinetin (KN; 10 and 100 μM) supplementation on growth, ammonium (NH(4)(+)) assimilation and antioxidant system in pea under hexavalent chromium toxicity (Cr VI; 50, 100 and 250 μM) was investigated. Chromium decreased growth, protein, and nitrogen, and activity of glutamine synthetase (GS) and glutamate synthase (GOGAT) while it increased NH(4)(+) content and activity of glutamate dehydrogenase (GDH). Kinetin at 100 μM decreased growth and NH(4)(+) assimilation, and together with Cr, it increased Cr toxicity. Chromium and 100 μM KN increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities while decreasing activities of catalase (CAT), glutathione reductase (GR) and dehydroascorbate reductase (DHAR). Ascorbate and glutathione levels were decreased by Cr and 100 μM KN. In contrast, supplementation of 10 μM KN under Cr (VI) toxicity, protected NH(4)(+) assimilation and promoted growth of pea by increasing levels of some of the antioxidants i.e., CAT, GR, DHAR, ascorbate and glutathione. Results showed that 10 μM KN increases Cr tolerance while 100 μM KN exhibited opposite responses. These results could contribute to an understanding of the mechanisms of KN-mediated dual influence on metal tolerance in crop plants.  相似文献   

8.
Parsley (Petroselinum hortense L.) plants cultivated under controlled conditions were exposed to different doses of cadmium to investigate the antioxidant capacity and cadmium accumulation in the samples. Two-months-old parsley seedlings were treated with four different concentrations of CdCl2 (0, 75, 150, and 300 μM) for fifteen days. Cadmium level in leaves increased significantly by increasing the Cd contamination in the soil. Total chlorophyll and carotenoid content declined considerably with Cd concentration. Cd treatment caused a significant increase lipid peroxidation in tissue of leaf. Superoxide dismutase activity (SOD, EC 1.15.1.1) increased partially at 75 and 150 μM CdCl2 concentrations whereas the activity decreased at 300 μM CdCl2. Catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11) activities were reduced by Cd application. Total phenolic compound amount increased significantly with increasing Cd concentration, as ferric reduction power, superoxide anion radical, and DPPH˙ free radical scavenging activities elevated slightly by the concentration. These results suggest that antioxidant enzymes activities were repressed depending on accumulation of cadmium in leaves of parsley while the non-enzymatic antioxidant activities slightly increased.  相似文献   

9.
The effect of short-term drought stress on the water content, antioxidant system and photosynthetic characteristics was investigated using cucumber (Cucumis sativus L.) seedlings. The results indicated that polyethylene glycol induced water stress reduced water content in shoots of cucumber seedling after treatment of 36 hours, and caused obvious reductions in net photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration of leaves. In addition, water stress significantly reduced the photosynthetic pigment content and inhibited photochemical activity, including actual photochemical efficiency, maximal quantum yield of photosystem II photochemistry and coefficient for photochemical quenching. Meanwhile non-photochemical quenching increased. As responses to drought stress, significant increases in electrolyte leakage, malondialdehyde, superoxide anion and hydrogen peroxide levels were detected in leaves. The superoxide dismutases, catalase, glutathione reductase and dehydroascorbate reductase activities, protein, ascorbate and glutathione content, all decreased and peroxidases activity increased, while ascorbate peroxidase and monodehydroascorbate reductase activities exhibited different trend under different degree of water stress. Therefore, it can be concluded that water stress strongly disrupted the normal metabolism of leaves and restrained water absorption.  相似文献   

10.
Indian mustard (Brassica juncea L. cv. Vitasso) plants exposed to 10, 30, 50 and 100 μM of Cd for 5 d in hydroponic culture were analysed with reference to the distribution of Cd2+, the accumulation of biomass and antioxidants and antioxidative enzymes in leaves. Cd induced a decrease in plant biomass. The maximum accumulation of Cd occurred in roots followed by stems and leaves. Cd induced a decrease in catalase (CAT) and guiacol peroxidase (GPX) activities but an increase in ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activities. Enhancement in dehydroascorbate reductase (DHAR) activity was also at 10 μM Cd. Glutathione reductase (GR) activity showed pronounced stimulation after all treatments, but glutathione S-transferase (GST) and glutathione peroxidase (GPOX) activities decreased. The effectiveness of ascorbate-glutathione cycle (AGC) was determined by the ratio of ascorbate to H2O2. This ratio decreased in the Cd-treated leaves which indicated that the cycle was disordered.  相似文献   

11.
To explore the significance of the ascorbate–glutathione cycle under drought stress, the leaves of 2-year-old potted apple (Malus domestica Borkh.) plants were used to investigate the changes of each component of the ascorbate–glutathione cycle as well as the gene expression of dehydroascorbate reductase (DHAR, EC 1.8.5.1), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) under drought stress. The results showed that the malondialdehyde (MDA) and H2O2 concentrations in apple leaves increased during drought stress and began to decrease after re-watering. The contents of total ascorbate, reduced ascorbic acid (AsA), total glutathione and glutathione (GSH) were obviously upregulated in apple leaves when the soil water content was 40–45%. With further increase of the drought level, the contents of the antioxidants and especially redox state of AsA and GSH declined. However, levels of them increased again after re-watering. Moreover, drought stress induced significant increase of the activities of enzymes such as APX, scavenging H2O2, and also of monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), DHAR and GR used to regenerate AsA and GSH, especially when the soil water content was above 40–45%. During severe drought stress, activities of the enzymes were decreased and after re-watering increased again. Gene expression of cytoplasmic DHAR, cytoplasmic APX and cytoplasmic GR showed similar changes as the enzyme activities, respectively. The results suggest that the ascorbate–glutathione cycle is up-regulated in response to drought stress, but cannot be regulated at severe drought stress conditions.  相似文献   

12.
Indices of oxidative stress viz., superoxide radical and H2O2 content increased in leaves of all the cultivars with the rise in salinity level, the increase was more pronounced and significant in salt-sensitive varieties and non-significant in resistant cultivars. Except for glutathione reductase (GR), basal activities of all other antioxidative enzymes viz. superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR) were significantly higher in leaves of all the resistant cultivars as compared to the sensitive ones. A differential response of salinity was observed on various enzymatic and non-enzymatic components of antioxidant system in leaves of salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). Activities of superoxide dismutase and glutathione reductase enhanced in all the tolerant cultivar while declined in the sensitive cultivars with increasing salinity from 0 to 100 mM. Salt-stress induced the activities of catalase and peroxidase in all the cultivars but the magnitude of increase was more pronounced in the sensitive cultivars than in the tolerant cultivars. Contrarily, APX activity increased in the salt-sensitive cultivars but showed no significant change in the salt-tolerant cultivars. The amount of ascorbic acid content, reduced glutathione (GSH), reduced/oxidized glutathione (GSSG) ratio was higher in leaves of the tolerant cultivars than that of the sensitive cultivars under saline conditions. It is inferred that leaves of salt-tolerant cultivars tend to attain greater capacity to perform reactions of antioxidative pathway under saline conditions to combat salinity-induced oxidative stress.  相似文献   

13.
The effects of foliar spraying with spermidine (Spd) on antioxidant system in tomato (Lycopersicon esculentum Mill.) seedlings were investigated under high temperature stress. The high temperature stress significantly inhibited plant growth and reduced chlorophyll (Chl) content. Application of exogenous 1 mM Spd alleviated the inhibition of growth induced by the high temperature stress. Malondialdehyde (MDA), hydrogen peroxide (H2O2) content and superoxide anion (O2) generation rate were significantly increased by the high temperature stress, but Spd significantly reduced the accumulation of reactive oxygen species (ROS) and MDA content under the stress. The high temperature stress significantly decreased glutathione (GSH) content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), but increased contents of dehydroascorbic acid (DHA), ascorbic acid (AsA), and oxidized glutathione (GSSG) in tomato leaves. However, Spd significantly increased the activities of antioxidant enzymes, levels of antioxidants and endogenous polyamines in tomato leaves under the high temperature stress. In addition, to varying degrees, Spd regulated expression of MnSOD, POD, APX2, APX6, GR, MDHAR, DHAR1, and DHAR2 genes in tomato leaves exposed to the high temperature stress. These results suggest that Spd could change endogenous polyamine levels and alleviate the damage by oxidative stress enhancing the non-enzymatic and enzymatic antioxidant system and the related gene expression.  相似文献   

14.
An equal concentration (100 μM) of Cr(III)- and Cr(VI)-induced changes in activities of antioxidative enzymes and metabolites of ascorbate-glutathione cycle was studied in 7-d-old black gram (Vigna mungo L Hepper cv. Co4) seedlings for 5-d after infliction of Cr stress. Seeds were germinated and grown in the presence or absence of Cr under controlled environmental conditions. Uptake and translocation of Cr rate was relatively higher during first 12 h of treatment with both speciation of Cr, Cr(III)- and Cr(VI)-treated black gram roots retained 15 times more Cr than the shoots. Significantly increased lipid peroxidation was observed in the form of accumulation of malondialdehyde (MDA) and production of hydrogen peroxide (H2O2) molecule and superoxide (O2 ) radical after 6 h of infliction with Cr(VI) and after 12 h in Cr(III)-treated black gram roots. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities were significantly increased under Cr(VI)-treatment after 12 and 6 h, respectively. However, catalase (CAT) and monodehydroascorbate reductase (MDHAR) activities were not significantly increased under Cr(Ill)-treatment. There was a steep increase of 2.71 μmol g-1 FW in ascorbic acid (AA) content was observed between 6 and 24 h of Cr(VI)-treatment. Oxidized glutathione (GSSG) content was steadily increased through the course of Cr(III)- and Cr(VI)-treatments, where as reduced glutathione (GSH) level was decreased after 24 h of treatment. GSH/GSSG ratio was rapidly decreased in treatment with Cr(III) than the Cr(VI). There was significant increase of 99 nmol g-1 FW in non-protein thiol (NPT) content was recorded between 6 and 24 h of Cr(VI)-treatment. The present results showed differential response to AA and H2O2 signaling by Cr(III) and Cr(VI), AA in combination with APX was more effective in mitigating oxidative stress as against the role of GSH as an antioxidant.  相似文献   

15.
A hydroponic experiment was conducted to study the ameliorative effects of separate or combined application of exogenous glutathione (GSH), selenium (Se) and zinc (Zn) upon 20 μM cadmium (Cd) plus 20 μM chromium (Cr) heavy metal stress (HM) in rice seedlings. The results showed that HM caused a marked reduction in seedling height, chlorophyll content (SPAD) and biomass, and activities of catalase (CAT) and ascorbate peroxidase (APX) in leaves and H+-ATPase in roots/leaves, but elevated superoxide dismutase (SOD) and guaiacol peroxidase (POD) activities in leaves with elevated malondialdehyde (MDA) accumulation both in leaves and roots over the control. The best mitigation effect was recorded in HM+GSH+Zn and HM+GSH (addition of GSH+Zn and GSH to HM solution), which greatly alleviated HM-induced growth inhibition and oxidative stress. Compared with HM alone, HM+GSH and HM+GSH+Zn markedly reduced Cr uptake and translocation but not affected Cd concentration; improved H+-ATPase activity and Fe, Zn, Mn uptake and translocation, and repressed MDA accumulation. Meanwhile exogenous GSH and GSH+Zn counteracted HM-induced response of antioxidant enzymes, via suppressing HM-induced dramatic increase of root/leaf SOD and leaf POD activities, and elevating stress-depressed leaf APX and leaf/root CAT activities.  相似文献   

16.
An efficient, rapid, and reproducible plant regeneration protocol was successfully developed for Abrus precatorius L. using mature nodal explants excised from a 5-year-old field grown plant. The highest shoot regeneration frequency (87 %) with maximum number of multiple shoots (15.0) and shoot length (4.8 cm) were recorded on Murashige and Skoog (MS) medium amended with 2.5 μM thidiazuron, 120 mg dm?3 polyvinylpyrrolidone, and 0.5 μM α-naphthalene acetic acid. The best treatment for maximum root (4.0) induction was half strength MS medium supplemented with 1.5 μM indole-3-butyric acid. The in vitro plantlets with well-developed shoots and roots were successfully transferred into plastic cups with Soilrite and acclimatized in a culture room under photon flux density (PFD) of 150 μmol m?2 s?1, thereafter transferred to a greenhouse with PFD of 300 μmol m?2 s?1, and finally to a field with 70 % survival rate. During the acclimatization period (0–49 d), leaf chlorophyll and carotenoid content increased whereas malondialdehyde and H2O2 content decreased probably due to increasing activities of antioxidant enzymes (catalase, superoxide dismutase, glutathione reductase, and ascorbate peroxidase). Our work suggests that micropropagated plants developed an antioxidant enzymatic protective system to avoid oxidative stress during establishment under ex vitro environment.  相似文献   

17.
In the present study, we have investigated the effects of nitric oxide (NO) on alleviating manganese (Mn)-induced oxidative stress in rice leaves. Exogenous MnCl2 treatment to excised rice leaves for 24 and 48 h resulted in increased production of H2O2 and lipid peroxides, decline in the levels of antioxidants, glutathione and ascorbic acid, and increased activities of antioxidative enzymes, superoxide dismutase, guaiacol peroxidase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Treatment of rice leaves with 100 μM sodium nitroprusside (SNP), a NO donor, was effective in reducing Mn-induced increased levels of H2O2, lipid peroxides and increased activities of antioxidative enzymes. The levels of reduced ascorbate and glutathione were considerably recovered due to SNP treatment. The effect of SNP was reversed by the addition of NO scavenger, 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (c-PTIO) suggesting that ameliorating effect of SNP is due to release of NO. The results indicate that MnCl2 induces oxidative stress in excised rice leaves, lowers the levels of reduced ascorbate and glutathione, and elevates activities of the key antioxidative enzymes. NO appears to provide a protection to the rice leaves against Mn-induced oxidative stress and that exogenous NO application could be advantageous in combating the deleterious effects of Mn-toxicity in rice plants.  相似文献   

18.
Chickpea plants were subjected to salt stress for 48 h with 100 mM NaCl, after 50 days of growth. Other batches of plants were simultaneously treated with 0.2 mM sodium nitroprusside (NO donor) or 0.5 mM putrescine (polyamine) to examine their antioxidant effects. Sodium chloride stress adversely affected the relative water content (RWC), electrolyte leakage and lipid peroxidation in leaves. Sodium nitroprusside and putrescine could completely ameliorate the toxic effects of salt stress on electrolyte leakage and lipid peroxidation and partially on RWC. No significant decline in chlorophyll content under salt stress as well as with other treatments was observed. Sodium chloride stress activated the antioxidant defense system by increasing the activities of peroxidase (POX), catalase (CAT) superoxide dismutase (SOD) and ascorbate peroxidase (APX). However no significant effect was observed on glutathione reductase (GR) and dehydro ascorbate reductase (DHAR) activities. Both putrescine and NO had a positive effect on antioxidant enzymes under salt stress. Putrescine was more effective in scavenging superoxide radical as it increased the SOD activity under salt stress whereas nitric oxide was effective in hydrolyzing H2O2 by increasing the activities of CAT, POX and APX under salt stress.  相似文献   

19.
以黄瓜‘津研四号’幼苗为试材, 采用Hoagland营养液栽培, 研究了不同浓度(0、0.01、0.1、1和10 μmol·L-1) IAA处理对50 mmol·L-1 NaHCO3胁迫下黄瓜幼苗光合特性及抗氧化系统的影响。结果表明, 碱胁迫对黄瓜幼苗的生长有抑制作用, 0.01-1 μmol·L-1外源IAA处理可显著增加黄瓜幼苗的生物量; 使叶中Na+积累降低, K+积累增加, 且IAA的缓解效果具有浓度效应。叶绿素a、叶绿素b和类胡萝卜素含量提高, 净光合速率(Pn)和气孔导度(Gs)增加, 以1 μmol·L-1 IAA处理的效果最好。添加1 μmol·L-1外源IAA显著提高了碱胁迫下黄瓜叶中超氧化物歧化酶(SOD)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)和谷胱甘肽还原酶(GR)的活性及还原型抗坏血酸(AsA)和谷胱甘肽(GSH)的含量, 降低了碱胁迫诱导的活性氧积累和膜脂过氧化反应; 而10 μmol·L-1外源IAA处理则加剧碱胁迫对黄瓜幼苗的危害。  相似文献   

20.
The effects of photooxidative stress induced in green barley (Hordeum vulgare L.) leaves by xanthene dye Rose Bengal (RB) on the content of low-molecular antioxidants and the activity of antioxidant enzymes were studied. During illumination (24 h, 160 mol quanta/(m2 s)) of the leaves preincubated in darkness on 10 and 100 M RB, ROS accumulated, and their level increased along with RB concentration and duration of illumination. Under these conditions, the content of reduced ascorbate and reduced glutathione (GSH) increased, the level of -and -tocopherol decreased, and the activity of ascorbate peroxidase, the enzyme participating in H2O2 degradation, increased. At the same time, the activity of catalase, also participating in H2O2 detoxification, decreased, which may be due to the enzyme inhibition during the photochemical stress. In the illuminated treated leaves, superoxide dismutase (SOD), the enzyme destroying the superoxide anion radicals, was activated. The cytosolic SOD isoform was the first to be activated and chloroplastic isoforms followed. It is supposed that photodynamic processes induced by RB in barley leaves are initiated in the cytosol. The activity of glutathione reductase, participating in glutathione oxidized form reduction, did not change at first and grew only after continuous illumination. Thus, the increase in the GSH level, which we have revealed on the initial stage of photooxidative stress development, was due to its synthesis de novo. In addition, under photooxidative stress induced by the sensitizer RB, the level of tocopherol reduced, whereas the amount of other low-molecular antioxidants increased. The exhaustion of the tocopherol pool, in its turn, could limit the resistance of barley leaves to the photooxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号