首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 214 毫秒
1.
黄山药愈伤组织的诱导与分化   总被引:3,自引:0,他引:3  
马林  杨国涛  李军   《广西植物》2006,26(1):97-100,91
以黄山药的叶片、茎段和叶柄作外植体,以MS为基本培养基,试验了不同激素组合对愈伤组织诱导的影响,采用正交试验法研究了愈伤组织的分化效果。结果表明,以MS+2,4-D1~2mg/L+6-BA2mg/L培养基对叶片的愈伤组织诱导效果最好,接种12d后初见愈伤组织,20d后可形成大量的愈伤组织,而茎段和叶柄的诱导效果较差。分化试验结果表明,生根率最高可达85.3%,而出芽率最高仅达29.6%。  相似文献   

2.
为了建立快速高效的全红型软枣猕猴桃离体再生体系,该研究以果皮、果肉均为红色的软枣猕猴桃新品种‘天源红’( Actinidia arguta)带腋芽茎段和幼嫩叶片、叶柄为外植体材料,采用组织培养的方法,研究适合其离体再生的外植体类型以及最佳植物生长物质组合。结果表明:初春带腋芽的茎段是最好的获得无菌苗的外植体材料,诱导腋芽出芽的最佳植物生长物质组合为MS+6-BA 0.5 mg·L-1+IBA 1.0 mg·L-1;研究发现叶柄比叶片更适合进行‘天源红’愈伤组织诱导,叶柄诱导的最佳植物生长物质组合为MS+ZT 0.5 mg·L-1;同时,研究了不定芽增殖的最佳植物生长物质组合为MS+ZT 1.0 mg·L-1;此外使用6-BA也可以达到较高的不定芽增殖率,在生产上可以替代ZT进行不定芽分化,即MS+6-BA 2.0 mg·L-1+IBA 0.5 mg·L-1;较适宜的生根培养基为1/2 MS+NAA 0.2 mg·L-1;生根后的组培苗在珍珠岩∶泥炭∶细沙=1∶1∶1的基质配比中能够达到98%的移栽成活率。该研究结果建立了全红型软枣猕猴桃的离体再生体系,为全红型软枣猕猴桃苗木快繁、工厂化育苗提供了技术支持,同时建立的再生体系为软枣猕猴桃遗传转化研究提供了基础。  相似文献   

3.
以银柴胡茎段为外植体,经消毒获得无菌再生材料后,筛选发根农杆菌介导毛状根诱导产生的最适条件。结果显示:最适的无菌消毒方法为:70%酒精浸5 s,0.1%升汞消毒3 min,获得了银柴胡离体培养材料;以发根农杆菌A4菌株介导的银柴胡毛状根诱导过程中,与叶片和不带腋芽茎段相比,带腋芽茎段为最适转化外植体,用OD600=0.8的菌液侵染茎段15 min,共培养3 d,800 mg/L头孢噻肟钠除菌,其诱导率及诱导密度最高,分别为100%和4.7,为最适诱导条件。研究结果说明在适合条件下,银柴胡带腋芽茎段适于诱导毛状根。  相似文献   

4.
黄独脱毒苗叶片和茎段再生体系的建立   总被引:8,自引:2,他引:6  
尹明华  洪森荣 《植物研究》2009,29(4):492-499
以黄独茎尖再生苗为试材,研究不同因素对黄独脱毒苗叶片和茎段再生体系的影响,以期对黄独脱毒苗的再生体系进行优化。结果表明,叶片和茎段诱导愈伤组织的最佳培养基是MS+KT 2 mg·L-1+2,4-D 2 mg·L-1;叶片和茎段诱导愈伤组织的最佳蔗糖浓度分别为30和50 g·L-1;叶片和茎段在黑暗中较容易诱导出愈伤组织;叶片和茎段愈伤组织分化的最佳培养基是MS+KT 4 mg·L-1+NAA 0.1 mg·L-1;继代2次的叶片和茎段愈伤组织较容易分化;黄独不定芽生根的最佳培养基是1/2MS+IBA 0.1 mg·L-1+NAA 0.5 mg·L-1+PP333 1 mg·L-1。本实验成功建立了黄独脱毒苗叶片和茎段的再生体系,为黄独脱毒苗的工厂化生产奠定了技术基础。  相似文献   

5.
虎杖的组织培养与快速繁殖   总被引:15,自引:0,他引:15  
杨培君  李会宁  赵桦 《西北植物学报》2003,23(12):2192-2195
以虎杖茎段、叶柄、叶片为外植体探讨了愈伤组织诱导、分化和植株再生的条件,筛选出茎段生长培养基为1/2MS+BA1.0mg·L-1+KT0.5mg·L-1+NAA0.2mg·L-1,茎段、叶柄和叶片外植体愈伤组织诱导培养基为MS+BA1.0~2.0mg·L-1+KT0.2~0.5mg·L-1+NAA0.2~0.5mg·L-1或MS+BA2.0~3.0mg·L-1+KT0.2~0.5mg·L-1+2,4-D0.5mg·L-1;丛生芽诱导培养基为MS+BA2.0mg·L-1+KT0.5mg·L-1+IBA0.2mg·L-1+LH1000;不定根及根状茎诱导培养基为1/2MS+IBA0.2mg·L-1.  相似文献   

6.
罗汉果不同器官直接分化再生苗的研究   总被引:1,自引:0,他引:1  
以青皮果品种的叶片、叶柄和无芽茎段作为外植体,研究其直接分化再生苗能力的差异。结果表明:⑴MS 6-BA1.0mg/L IAA0.1mg/L和MS 6-BA2.0mg/L IAA0.1mg/L两组培养基均可使叶片外植体直接分化出芽并建成再生苗。叶片基部的分化能力最强,中部稍次,尖部最弱。⑵MS 6-BA3.0mg/L IAA0.1mg/L则诱导叶片外植体首先脱分化形成愈伤组织,继而再分化成再生苗,,且畸形苗居多,无应用价值。⑶叶柄和无芽茎段在三组培养基中都只能脱分化形成大量愈伤组织,难以分化再生苗。  相似文献   

7.
甘薯外植体组织培养和植株再生   总被引:5,自引:0,他引:5  
近年来国内外开展了甘薯组织培养和花药培养的研究工作,报道了从甘薯块根愈伤组织获得再生苗和应用茎尖分生组织培养获得无病毒植株。吴耀武,Biding 和Shepard 分别报道了甘薯茎段、叶片原生质体和叶肉细胞培养形成了愈伤组织和细胞团。蔡新声等培养甘薯茎段获得愈伤组织并分化出胚状体。我们自1982年开始进行甘薯外植体——茎段、叶柄和叶片诱导成植株的探索,1983年由外植体的三个部分愈  相似文献   

8.
黑木相思愈伤组织诱导及植株再生   总被引:2,自引:0,他引:2  
胡峰  施琼  黄烈健 《植物学报》2014,49(5):603-610
以黑木相思(Acacia melanoxylon)优良单株(AMY12004)的当年新生枝条带腋芽茎段为外植体, 灭菌后接入MS培养基上培养, 以其无菌萌芽的叶片、茎段和叶柄为实验材料, 通过间接器官发生途径建立黑木相思愈伤组织诱导及高频植株再生体系。研究结果表明, 诱导愈伤组织的最佳外植体为茎段; 愈伤组织诱导的最佳培养基为MS+1.5 mg·L–16-BA+0.2 mg·L–1NAA+3%蔗糖, 诱导率为93.33%; 愈伤组织再分化的最佳培养基为MS+2.0 mg·L–16-BA+0.5 mg·L–1NAA+3%蔗糖, 分化率为79.17%, 再生系数为9.58; 再生芽生根的最佳培养基为MS+0.5 mg·L–1IBA+0.5 mg·L–1NAA+4%蔗糖, 生根率为96.05%, 移栽存活率为81.40%。  相似文献   

9.
藏药匙叶翼首草高频组织培养再生体系优化研究   总被引:1,自引:0,他引:1  
以匙叶翼首草种子为材料,探索种子最佳消毒方法,对影响无菌苗外植体愈伤组织诱导、增殖及植株再生的因素进行了研究。结果表明:(1)剥去外种皮的种子,经75%乙醇1min+0.1%HgCl_27min+50%多菌灵500倍液30min消毒后,在1/2 MS培养基中的发芽率达60.67%,无污染。(2)无菌苗的叶片和茎段都适宜诱导愈伤组织,在培养基MS+5.0mg·L~(-1) 6-BA+2.0mg·L~(-1) 2,4-D中可在10d内诱导出生长旺盛的愈伤组织,愈伤诱导率分别为84.00%、97.33%。(3)适宜的愈伤组织增殖培养基为MS+3.0mg·L~(-1) 6-BA+2.0mg·L~(-1) IAA,培养20d的叶片和茎段愈伤组织的生长率分别为74.37%、70.52%。(4)适宜的丛生芽诱导培养基为MS+3.0mg·L~(-1) 6-BA+2.0mg·L~(-1) IAA+250mg·L~(-1) L-脯氨酸+150mg·L~(-1)水解酪蛋白,30d后茎段和叶片的丛生芽发生率分别达到100%、94.44%。(5)再生苗在1/2 MS+0.5mg·L~(-1) NAA培养基中生根培养30d,生根率为100%。匙叶翼首草高效稳定的再生体系为保护其野生资源和工厂化育苗提供了有效途径。  相似文献   

10.
李娜  马祝铿  黄瑞华  刘潇晗  陈汶钊  杜勤 《广西植物》2021,41(11):1931-1938
为探求促进广金钱草萌发及生长的有效途径,该文使用不同浓度的费氏中华根瘤菌、放射型根瘤菌以及田菁茎瘤固氮根瘤菌菌液分别浸染广金钱草种子,以蒸馏水浸泡种子为空白处理,研究其对广金钱草种子萌发指标(发芽率、发芽势、发芽指数、活力指数)的影响,并在温室培养40、60、80 d后分别测定广金钱草幼苗的生长指标(叶片数、分枝数、株高)及部分生理指标(叶绿素含量、含氮量)的变化。结果表明:(1)在1×107 CFU·mL-1浓度条件下,三种菌液浸种均获得最大萌发指标,其中田菁茎瘤固氮根瘤菌实验组效果最显著,发芽率、发芽势、发芽指数和活力指数高于对照组16.00%、9.33%、9.51和41.34%。(2)除田菁茎瘤固氮根瘤菌实验组外,其余实验组的广金钱草幼苗叶片数、分枝数及株高均低于对照组。(3)放射型根瘤菌实验组和田菁茎瘤固氮根瘤菌实验组幼苗叶绿素含量相比对照组分别增加1.47%和7.47%,含氮量分别增加0.57%和5.17%。综上所述,三种根瘤菌菌液浸种均可在不同程度上提高广金钱草种子的发芽能力和植株生长期的叶绿素和含氮量,其中田菁茎瘤固氮根瘤菌具有最大正向影响,可有效提高种子萌发能力并促进植株生长。该研究可为不同地区广金钱草的种植和栽培提供技术指导,为开发田菁茎瘤固氮根瘤菌作为植物促生长菌剂提供理论支持。  相似文献   

11.
Sucrose was present in seeds of 31 species at all ages and stages of their development. The raffinose family of oligosaccharides is present in most mature and dry seeds; tomato and tobacco seeds contain planteose, whereas sesame seeds contain this sugar and a higher member of the planteose series. Cotton seeds contain raffinose, stachyose, verbascose and an unidentified ketose. Free monosaccharides were not detected in any of the dry seeds; although free glucose and fructose were detected in some immature seeds, these sugars decreased in amount and eventually disappeared during seed maturation. Sucrose, stachyose, raffinose and verbascose accumulated, in developing soybeans, in that sequence. Maltose, a sugar rarely found in plant tissues, is present in immature soybean and honey locust seeds but does not occur in the other seeds examined. It increases to a maximum during development, subsequently decreases in amount during maturation and ripening and eventually disappears completely. The petioles of old leaves and stems of the soybean plant contain maltose, but the petioles of young soybean leaves, empty pods, leaf blades and roots do not.  相似文献   

12.
Culture of segments of leaves, petioles, and stems and of germinated seeds and whole ovaries enclosing unpollinated ovules of Hyoscyamus niger in a medium containg 2, 4-dichlorophen-oxyacetic acid caused massive growth of calluses. In cultured germinated seeds and ovaries, calluses were formed from the hypocotyl and placenta, respectively. Leaf and stem explants generally gave rise to hard, white, and compact calluses. Upon transfer of these calluses to an auxin-free medium they regenerated roots or buds but showed no further signs of morphogenesis. Calluses formed on petioles, germinated seeds, and ovaries were a mixture of the white, compact and brown, friable types. Subsequent morphogenesis of the friable calluses in a medium lacking auxin was characterized by the formation of somatic embryos whose pattern of development was similar to that of zygotic embryos.  相似文献   

13.
We studied the diet and food choice of 1 group of Fran?ois’ langurs (Trachypithecus francoisi) from August 2003 to July 2004 in the Nonggang Nature Reserve, Guangxi province, China. The langurs consumed 90 plant species, including 14 unidentified species. Leaves constituted 52.8% of the diet (38.9% young leaves and 13.9% mature leaves). Fruits and seeds accounted for 17.2% and 14.2%, respectively. Flowers and other items—including petioles, stems, roots, and bark—contributed to 7.5% and 7.4% of the diet, respectively. The langur diet varied according to season. They fed on more young leaves from April to September. Consumption of seeds, petioles, and stems increased between October and March, when young leaves were scarce. The diet shift corresponded to higher dietary diversity during the young leaf-lean period. Though the langurs fed on many plant species, 10 species accounted for 62.2% of the diet, only 2 of which were among the 10 most common tree species in vegetation quadrants, and the percentage of feeding records on a plant species and the percentage of individuals of the species in vegetation quadrants does not correlate significantly. Fran?ois’ langurs fed selectively, and they did not base their diet simply on the abundance of plant species in the habitat.  相似文献   

14.
Candidatus Liberibacter asiaticus’ (CaLas), a non-cultured member of the α-proteobacteria, is the causal agent of citrus Huanglongbing (HLB). Due to the difficulties of in vitro culture, antibodies against CaLas have not been widely used in studies of this pathogen. We have used an anti-OmpA polyclonal antibody based direct tissue blot immunoassay to localize CaLas in different citrus tissues and in periwinkle leaves. In citrus petioles, CaLas was unevenly distributed in the phloem sieve tubes, and tended to colonize in phloem sieve tubes on the underside of petioles in preference to the upper side of petioles. Both the leaf abscission zone and the junction of the petiole and leaf midrib had fewer CaLas bacteria compared to the main portions of the petiole and the midribs. Colonies of CaLas in phloem sieve tubes were more frequently found in stems with symptomatic leaves than in stems with asymptomatic leaves with an uneven distribution pattern. In serial sections taken from the receptacle to the peduncle, more CaLas were observed in the peduncle sections adjacent to the stem. In seed, CaLas was located in the seed coat. Many fewer CaLas were found in the roots, as compared to the seeds and petioles when samples were collected from trees with obvious foliar symptoms. The direct tissue blot immuno assay was adapted to whole periwinkle leaves infected by CaLas. The pathogen was distributed throughout the lateral veins and the results were correlated with results of qPCR. Our data provide direct spatial and anatomical information for CaLas in planta. This simple and scalable method may facilitate the future research on the interaction of CaLas and host plant.  相似文献   

15.
银杏愈伤组织的形成及其中黄酮类化合物的产生   总被引:7,自引:0,他引:7  
单一激素种类对银杏叶片,叶柄和幼茎愈伤组织的诱导中以NAA的效果最佳,2,4-D次之,6-BA最差,除胚乳外,胚,幼苗的胚根,子叶,幼茎,叶片和叶柄,以及成年树的嫩茎,叶片和叶柄各外植体在本试验条件下都能诱发愈伤组织,其中胚,子叶和叶柄的愈伤组织形成频率均可达到100.0%,叶片和幼茎在光照下的愈伤组织诱导频率比黑暗中的略高,而叶柄和胚根则相反,MS和DCR两种培养基都适合银杏幼苗叶片及叶柄愈伤组织的诱导,两者之间不存显著性差异,测得光照培养的3个组织系(ST1,ST2,ST3)中均含银杏黄酮甙元槲皮素,山柰素和异鼠李素,总含量分别为干重的0.35%,0.29%和0.14%,而黑暗中培养的这3个愈伤组织系则没有银杏黄酮的产生。  相似文献   

16.
Variation in resistance of xylem to embolism among flowers, leaves, and stems strongly influences the survival and reproduction of plants. However, little is known about the vulnerability to xylem embolism under drought stress and their relationships to the anatomical traits of pits among reproductive and vegetative organs. In this study, we investigated the variation in xylem vulnerability to embolism in peduncles, petioles, and stems in a woody plant, Magnolia grandiflora. We analyzed the relationships between water potentials that induced 50% embolism (P50) in peduncles, petioles, and stems and the conduit pit traits hypothesized to influence cavitation resistance. We found that peduncles were more vulnerable to cavitation than petioles and stems, supporting the hypothesis of hydraulic vulnerability segmentation that leaves and stems are prioritized over flowers during drought stress. Moreover, P50 was significantly correlated with variation in the dimensions of inter-vessel pit apertures among peduncles, petioles and stems. These findings highlight that measuring xylem vulnerability to embolism in reproductive organs is essential for understanding the effect of drought on plant reproductive success and mortality under drought stress.  相似文献   

17.
It is well known that an endodermis with casparian strip always occurs in roots, but few people are aware that it also occurs in stems and leaves of some vascular plants. The rather sparse literature on endodermis in aerial organs was last included in a review in 1943. The present compilation, which does not consider hydathodes, nectaries, or other secretory structures, emphasizes distribution of cauline and foliar endodermis with casparian strip. It occurs unevenly among major taxa: quite common in rhizomes and leaves among pteridophyte groups, with exceptions; absent in gymnosperm stems but found in leaves at least among some conifers; in stems of at least 30 mostly herbaceous angiosperm families, but far less common in leaves, where it is mostly reported from petioles. Etiolation can induce casparian strips in stems and petioles of some herbaceous plants, but results from leaf blades are questionable. There are recent reports of an endodermis with casparian strip in leaves of both woody and herbaceous taxa. The physiological function, if any, of a casparian strip in aerial organs remains unknown.  相似文献   

18.
Trees of Juglans regia L. shed leaves when subjected to drought. Before shedding (when leaves are yellow), the petioles have lost 87% of their maximum hydraulic conductivity, but stems have lost only 14% of their conductivity. This is caused by the higher vulnerability of petioles than stems to water-stress induced cavitation. These data are discussed in the context of the plant segmentation hypothesis.  相似文献   

19.
The density of epiphytic bacteria on (1) leaves, (2) stems and petioles, and (3) whole shoots of submerged Nasturtium officinale, Apium nodiflorum and Glyceria fluitans was determined from January to June 1984 in a calcareous stream in North Humberside. The density on leaves was less than on stems and petioles; reasons for this are suggested. The density on all three species decreased from late January to February-March and then increased to June. This temporal change was related to environmental variables (e. g. negative correlation with discharge and positive correlation with temperature), a situation which contrasts with Baker & Orr (1986) who found no such relationships in a Southern England chalk stream.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号