首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The chemical 2,4-dichlorophenoxyacetic acid (2,4-D) regulates plant growth and development and mimics auxins in exhibiting a biphasic mode of action. Although gene regulation in response to the natural auxin indole acetic acid (IAA) has been examined, the molecular mode of action of 2,4-D is poorly understood. Data from biochemical studies, (Grossmann (2000) Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci 5:506–508) proposed that at high concentrations, auxins and auxinic herbicides induced the plant hormones ethylene and abscisic acid (ABA), leading to inhibited plant growth and senescence. Further, in a recent gene expression study (Raghavan et al. (2005) Effect of herbicidal application of 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genomics 5:4–17), we have confirmed that at high concentrations, 2,4-D induced the expression of the gene NCED1, which encodes 9-cis-epoxycarotenoid dioxygenase, a key regulatory enzyme of ABA biosynthesis. To understand the concentration-dependent mode of action of 2,4-D, we further examined the regulation of whole genome of Arabidopsis in response to a range of 2,4-D concentrations from 0.001 to 1.0 mM, using the ATH1-121501 Arabidopsis whole genome microarray developed by Affymetrix. Results of this study indicated that 2,4-D induced the expression of auxin-response genes (IAA1, IAA13, IAA19) at both auxinic and herbicidal levels of application, whereas the TIR1 and ASK1 genes, which are associated with ubiquitin-mediated auxin signalling, were down-regulated in response to low concentrations of 2,4-D application. It was also observed that in response to low concentrations of 2,4-D, ethylene biosynthesis was induced, as suggested by the up-regulation of genes encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Although genes involved in ethylene biosynthesis were not regulated in response to 0.1 and 1.0 mM 2,4-D, ethylene signalling was induced as indicated by the down-regulation of CTR1 and ERS, both of which play a key role in the ethylene signalling pathway. In response to 1.0 mM 2,4-D, both ABA biosynthesis and signalling were induced, in contrast to the response to lower concentrations of 2,4-D where ABA biosynthesis was suppressed. We present a comprehensive model indicating a molecular mode of action for 2,4-D in Arabidopsis and the effects of this growth regulator on the auxin, ethylene and abscisic acid pathways. Experiment station: Plant Biotechnology Centre, Primary Industries Research Victoria, Department of Primary Industries, La Trobe University, Bundoora, Victoria 3086, and the Victorian Microarray Technology Consortium (VMTC).  相似文献   

3.
Although structurally similar to the natural plant hormone indol-3- acetic acid, auxin herbicides were developed for purposes other than growth, and have been successfully used in agriculture for the last 60 years. Concerted efforts are being made to understand and decipher the precise mechanism of action of IAA and synthetic auxins. Innumerable results need to be interconnected to resolve the puzzle of auxin biology and action mode of auxin herbicides. To date, different breakthroughs are providing more insights into the process of plant-herbicide interactions. Here we highlight some of the latest findings on how the 2,4-dichlorophenoxyacetic acid damages susceptible broadleaf plants, emphasizing the role of ROS as a downstream component of the auxin signal transduction under herbicide treatment.  相似文献   

4.
5.
The quantitative relationships between pH-dependent ion and 2,4-D uptake in winter wheat seedlings (Triticum aestivum L. cv. Yubileynaya 50) have been investigated. The movement of various ions (potassium, phosphate, nitrate and ammonium) and 2,4-D across the root membranes was monitored with radioactive and stable isotope tracer methods. It was found that the H+ ion concentration of the absorption solution strongly influences the 2,4-D uptake of the roots. Simultaneously, the 2,4-D uptake stimulates secretion of H+ into the absorption solution, that is, a H+ efflux can accompany the uptake of 2,4-D. This finding is consistent with the acid secretion theory of auxin and fusicoccin action. At pH 4 the 2,4-D uptake was much higher than at pH 6, thereby inhibiting the ion uptake and increasing the phytotoxicity in the plant. The results indicate that 2,4-D enters the root cells rapidly at the lower pH, mostly as undissociated molecules. With reference to the 2,4-D concentration in the roots at pH 4, a possible transport mechanism of the auxin herbicide is briefly discussed.  相似文献   

6.
Gleason C  Foley RC  Singh KB 《PloS one》2011,6(3):e17245
Herbicides that mimic the natural auxin indole-3-acetic acid are widely used in weed control. One common auxin-like herbicide is dicamba, but despite its wide use, plant gene responses to dicamba have never been extensively studied. To further understand dicamba's mode of action, we utilized Arabidopsis auxin-insensitive mutants and compared their sensitivity to dicamba and the widely-studied auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The mutant axr4-2, which has disrupted auxin transport into cells, was resistant to 2,4-D but susceptible to dicamba. By comparing dicamba resistance in auxin signalling F-box receptor mutants (tir1-1, afb1, afb2, afb3, and afb5), only tir1-1 and afb5 were resistant to dicamba, and this resistance was additive in the double tir1-1/afb5 mutant. Interestingly, tir1-1 but not afb5 was resistant to 2,4-D. Whole genome analysis of dicamba-induced gene expression showed that 10 hours after application, dicamba stimulated many stress-responsive and signalling genes, including those involved in biosynthesis or signalling of auxin, ethylene, and abscisic acid (ABA), with TIR1 and AFB5 required for the dicamba-responsiveness of some genes. Research into dicamba-regulated gene expression and the selectivity of auxin receptors has provided molecular insight into dicamba-regulated signalling and could help in the development of novel herbicide resistance in crop plants.  相似文献   

7.
Glutathione S-transferases (GSTs; EC 2.5.1.18) have recently been proposed to form one large group among the auxin-induced proteins. However. the properties and regulation of such auxin-responsive GSTs in the plant still await detailed investigation. In this study, a 2,4-dichloro-phenoxyacetic acid (2,4-D)-inducible GST isozyme from soybean ( Glycine max [L.] Merr. cv. Williams) was purified to near homogeneity by anion-exchange and affinity chromatography on S-hexylglutathione agarose. The native enzyme had a molecular mass of 49 kDa, as determined by gel filtration, and consisted of 26-kDa subunits. The purified GST conjugated glutathione to 1-chloro-2,4-dinitrobenzene and to the herbicide metolachlor, but not to the other GST substrates atrazine. fluorodifen or trans-cinnamic acid. The N-termmal amino acid sequence shared significant homology with the deduced polypeptide sequences of two 2,4-D-inducible genes from tobacco, par A and CNT107 . The levels of the 26-kDa GST subunit protein in soybean hypocotyls were analysed by immunoblotting. At micromolar concentrations, 2,4-D induced a transient increase in net accumulation of GST, whereas indole-3-acetic acid or I-naphthaleneacetic acid did not increase the GST levels. Known inhibitors of polar auxin transport, including 2.3.5-tri-iodobenzoic acid. N-I-naphthylphthalamic acid and analogues thereof, differed widely in their ability to elicit GST protein accumulation. It is concluded that the induction of soybean GST by 2,4-D and by some of the auxin transport inhibitors is not related to auxin activity or to changes in the endogenous auxin levels.  相似文献   

8.
Tobacco ( Nicotiana tabacum L. cv. Samsun) plants were treated once with 2,4-dichlorophenoxyacetic acid (2,4-D) at the 8-leaf stage. The effect of the herbicide on leaf metabolism was followed over 7 days by determination of the ribonucleotide pools, including NAD+, NADP+ and UDP-sugars, by high-preformance liquid chromatography. 2,4-D treatment resulted in large changes in the nucleotide concentrations, the magnitude and sign of which were dependent upon the leafage. The nucleotide pools decreased in the apical tissue, but increased strongly in the mature leaves with the highest relative increase in the oldest leaf tested. The time course of the changes revealed a maximum on day 5 after 2,4-D treatment. The increase in the adenine nucleotide pools, energy charge and the NADVNADP+ ratio are interpreted to indicate a stress situation. The different responses of young, mature and senescent tissue to the synthetic auxin could reflect their different inherent sensitivity due to the natural auxin gradient.  相似文献   

9.
The effects of the synthetic auxin and herbicide 2,4-dichlorophenoxyaceticacid (2,4-D) on K$ and Cl uptake and H$ release by youngexcised maize roots has been studied. Brief exposure to 2,4-D(0.01 mmol dm–3) at pH 3.5 causes a large depolarizationof the electrical potential across the root plasma membranesand converts K$ uptake to K$ leakage into the bathing solution.These results can be explained by the increased H$ permeabilityof the membranes induced by the weak acid 2,4-D. The depolarizationresults in a less favourable electrochemical potential gradientfor K$ uptake across these membranes. These effects are notrelated to the auxin properties of 2,4-D as the nonauxin 3,5-dichlorophenoxyaceticacid (3,5-D) gives rise to similar effects. The relative depolarizationsinduced by a range of weak acids appear to be unrelated to theiroil/water partition coefficients. In contrast, on bathing the roots for longer periods in solutions(pH > 5) containing 2,4-D (0.01 mmol dm–3) K$ and Cluptake and H$ release are inhibited. These effects are not shownwith 3,5-D suggesting an auxin-linked action for 2,4-D. Alsothe electrical potential across the plasma membranes is onlyslightly depolarized so that a change in the electrochemicalpotential gradient cannot be invoked to explain the loweredion fluxes. The evidence is consistent with the removal of anenergy supply to a metabolically linked K/H exchangemechanism in the plasma membranes. It is likely that both modes of action would operate to lowerion uptake under soil-grown conditions, the former becomingmore manifest in acidic soils.  相似文献   

10.
The very basal, highly immature regions of dissected young leaves of Triticum aestivum L. cv. Kite formed adventitious roots on a nutrient medium supplemented with comparatively low concentrations (0.16 to 0.63 μ M ) of 2,4-dichlorophenoxyacetic acid (2,4-D). Higher concentrations (up to 640 μ M ) had to be applied to stimulate growth from more mature regions higher up the leaf. Yet, already at 2.5 μ M roots were less distinct and more callus-like, and eventually (at 10 to 640 μ M ) only a subculturable callus of apparently suppressed, slowly proliferating root primordia developed. Furthermore, at the most basal, highly immature regions growth was significantly retarded when the auxin concentration was raised. The leaf culture system appears to reflect the dual action of 2,4-D known from herbicide research, namely growth stimulation from differentiating (or differentiated) cells, but growth suppression at or in the vicinity of apical meristems. Correspondingly, when the callus of apparently suppressed, slowly proliferating root primordia was transferred to media without 2,4-D or with low concentrations (0.16–2.5 μ M ) rapid proliferation commenced, leading to profuse root outgrowth. The system demonstrates the ambiguous role which this auxin appears to have, at least in wheat tissue culture.  相似文献   

11.
It has been reported that auxin induces an epinastic growth response in plant leaf tissues. Leaf strips of tobacco (Nicotiana tabacum L. 'Bright Yellow 2') were used to study the effects of indole-3-acetic acid (IAA), the principal form of auxin in higher plants, and a synthetic auxin, 2,4-dichlorophenoxyacetic acid (2,4-D), on epinastic leaf curvature. Incubation of leaf strips with 10 micro M IAA resulted in a marked epinastic curvature response. Unexpectedly, 2,4-D showed only a weak IAA-like activity in inducing epinasty. Interestingly, the presence of 2,4-D resulted in inhibition of the IAA-dependent epinastic curvature. In vivo Lineweaver-Burk kinetic analysis clearly indicated that the interaction between IAA and 2,4-D reported here is not a result of competitive inhibition. Using kinetic analysis, it was not possible to determine whether the mode of interaction between IAA and 2,4-D was non-competitive or uncompetitive. 2,4-D inhibits the IAA-dependent epinasty via complex and as yet unidentified mechanisms.  相似文献   

12.
Plants resistant to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) were produced through the genetic engineering of a novel detoxification pathway into the cells of a species normally sensitive to 2,4-D. We cloned the gene for 2,4-D monooxygenase, the first enzyme in the plasmid-encoded 2,4-D degradative pathway of the bacterium Alcaligenes eutrophus, into a cauliflower mosaic virus 35S promoter expression vector and introduced it into tobacco plants by Agrobacterium-mediated transformation. Transgenic tobacco plants expressing the highest levels of the monooxygenase enzyme exhibited increased tolerance to 2,4-D in leaf disc and seed germination assays, and young plants survived spraying with levels of herbicide up to eight times the usual field application rate. The introduction of the gene for 2,4-D monooxygenase into broad-leaved crop plants, such as cotton, should eventually allow 2,4-D to be used as an inexpensive post-emergence herbicide on economically important dicot crops.  相似文献   

13.
The natural auxins, 4-chloroindoleacetic acid and its methyl ester have strong herbicidal effects on pea, Pisum sativum , a plant in which they occur naturally. The standard herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D) is only 5 times more effective than 4-chloroindoleacetic acid. The I50, the dose inhibiting yield by 50%, for 4-chloroindoleacetic acid and its methyl ester is 0.5 kg ha−1 or 15 mg kg−1 fresh weight, close to the concentration of 4-chloroindoleacetic acid methyl ester in maturing pea seeds. Naphthaleneacetic acid and indoleacetic acid are also inhibitory, but at much higher concentrations. In its inhibiting effect on white mustard, Sinapis alba , 4-chloroindoleacetic acid approximates that of 2,4-D, whereas in barley, Hordeum vulgare , it is a stronger herbicide than 2,4-D. All auxins tested killed white mustard at low doses, but none killed barley. Both 4-chloroindoleacetic acid and 2,4-D killed pea. The chloroindole auxins of pea may be the hypothetic death hormones or senescence factors that are secreted from the developing seeds into the parent plant which is strongly inhibited or killed and from which the nutrients are mobilized and translocated to the seeds. The action mechanism of auxin type herbicides may be to simulate the action of endogenous herbicides.  相似文献   

14.
Xin Z  Yu Z  Erb M  Turlings TC  Wang B  Qi J  Liu S  Lou Y 《The New phytologist》2012,194(2):498-510
Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest.  相似文献   

15.
Uptake, translocation and complex formation of 14C-labelled 4-amino-3,5,6-trichloropicolinic acid (picloram) and 2,4-dichlorophenoxyacetic acid (2,4-D) in seedlings of rape (Brassica napus L. cv. Nilla) and sunflower (Helianthus annuus L. var. uniflorus) were studied. Sunflower is susceptible both to 2,4-D and picloram, while rape is susceptible to 2,4-D but more tolerant to picloram. The uptake of the herbicides through the leaves was almost complete in both species. Translocation of 2,4-D into the roots took place more readily than that of picloram. In sunflower about 50 per cent of the applied 2,4-D was extruded through the roots into the nutrient solution after 9 days. In the picloram-treated sunflower most of the activity was found in the aerial parts, while in picloram-treated rape most of the activity still occurred in the treated leaf after 9 days. No activity at all was found in the roots or in the nutrient solution of the picloram-treated rape seedlings. While the major part of 2,4-D always was found in the state of free herbicide, a large fraction of picloram was rapidly bound into water-soluble complexes. This binding was especially pronounced in rape. Separation by paper chromatography showed that different radioactive compounds were formed. Most of these could be hydrolyzed, thereby releasing free herbicide. The results support the hypotheses that complex formation could counteract herbicide translocation and toxicity of auxin herbicides.  相似文献   

16.
Uptake, translocation and metabolism of 14C-labelled 4-amino-3,5,6-trichloropicolinic acid (picloram) and 2,4-dichlorophenoxyacetic acid (2,4-D) in seedlings of wheat (Triticum aestivum L.) were studied. The uptake of the herbicides through the upper surface of the first leaf was slow but was almost complete after nine days. Picloram was absorbed faster than 2,4-D. Picloram was also translocated into the stem and the untreated leaves to a greater extent than 2,4-D. Only small fractions of the activity were recovered from the roots and from the nutrient solution. Picloram and 2,4-D formed water-soluble conjugates in the tissues. These conjugates were very labile and hydrolyzed under release of the unchanged herbicides. The isotope from 2,4-D was also incorporated in an insoluble fraction, containing cell walls and proteins. Also from this fraction biologically active 2,4-D could be released by hydrolysis. The formation of the complexes was partly prevented by cycloheximide. It is suggested that herbicide detoxification through complex formation is of importance for the relatively low sensitivity of wheat to auxin herbicides.  相似文献   

17.
Summary We explored the feasibility of using mixed cultures for herbicide degradation, with the ultimate aim of application for effluent treatment. The present study reports on mixed cultures which were developed to grow aerobically with 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon substrate. Degradation of 2,4-D was verified by HPLC and UV-spectroscopic analysis of the residual 2,4-D concentration in the test cultures. Cultures that were initially developed with 2,4-D also grew readily with glucose, but the degradation of 2,4-D was effectively prevented under mixed substrate conditions. Mamor intermediates or metabolites resulting from 2,4-D degradation were not detected with the HPLC methodology except 2,4-dichlorophenol which appeared to accumulate transiently in the growth medium.  相似文献   

18.
2,4-dichlorophenoxyacetic acid (2,4-D), a chemical analogue of indole-3-acetic acid (IAA), is widely used as a growth regulator and exogenous source of auxin. Because 2,4-D evokes physiological and molecular responses similar to those evoked by IAA, it is believed that they share a common response pathway. Here, we show that a mutant, antiauxin resistant1 (aar1), identified in a screen for resistance to the anti-auxin p-chlorophenoxy-isobutyric acid (PCIB), is resistant to 2,4-D, yet nevertheless responds like the wild-type to IAA and 1-napthaleneacetic acid in root elongation and lateral root induction assays. That the aar1 mutation alters 2,4-D responsiveness specifically was confirmed by analysis of GUS expression in the DR5:GUS and HS:AXR3NT-GUS backgrounds, as well as by real-time PCR quantification of IAA11 expression. The two characterized aar1 alleles both harbor multi-gene deletions; however, 2,4-D responsiveness was restored by transformation with one of the genes missing in both alleles, and the 2,4-D-resistant phenotype was reproduced by decreasing the expression of the same gene in the wild-type using an RNAi construct. The gene encodes a small, acidic protein (SMAP1) with unknown function and present in plants, animals and invertebrates but not in fungi or prokaryotes. Taken together, these results suggest that SMAP1 is a regulatory component that mediates responses to 2,4-D, and that responses to 2,4-D and IAA are partially distinct.  相似文献   

19.
Summary The hormone-stimulated and growth-related cell surface hydroquinone (NADH) oxidase activity of etiolated hypocotyls of soybeans oscillates with a period of about 24 min or 60 times per 24-h day. Plasma membranes of soybean hypocotyls contain two such NADH oxidase activities that have been resolved by purification on concanavalin A columns. One in the apparent molecular weight range of 14–17 kDa is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The other is larger and unaffected by 2,4-D. The 2,4-D-stimulated activity absolutely requires 2,4-D for activity and exhibits a period length of about 24 min. Also exhibiting 24-min oscillations is the rate of cell enlargement induced by the addition of 2,4-D or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges at the expense of the constitutive activity. A recruitment process analogous to that exhibited by prions is postulated to explain this behavior.  相似文献   

20.
The auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was shown to modulate the activities of several phosphatases with membranes isolated from soybean hypocotyls under conditions where degradative changes in the membranes were minimized. The medium for isolation of membranes consisted of 0.1 M Tris/HCl or Tris/acetate, pH 6.5, 0.5 M sucrose, 4% choline (ww) and 4% ethanolamine (vv) to inhibit phospholipase D, 20 mM EGTA [ethyleneglycol-bis- (β aminoethyl ether) N,N-tetracetic acid] and 1 mM nupercaine, to inhibit phospholipase A. In contrast, the inactive auxin analog 2,3-D, did not influence ATPase activity. Endogenous release of inorganic phosphate from an unidentified source was also stimulated 30% by 2,4-D. Phosphatidate phosphatase was inhibited by 2,4-D, whereas hydrolysis of glucose-6-phosphate was not influenced by 2,4-D under the same conditions. These observations may be of relevance to the proton pump hypothesis of growth regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号