首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parkinson disease (PD), a prevalent neurodegenerative motor disorder, is characterized by the rather selective loss of dopaminergic neurons and the presence of α-synuclein-enriched Lewy body inclusions in the substantia nigra of the midbrain. Although the etiology of PD remains incompletely understood, emerging evidence suggests that dysregulated iron homeostasis may be involved. Notably, nigral dopaminergic neurons are enriched in iron, the uptake of which is facilitated by the divalent metal ion transporter DMT1. To clarify the role of iron in PD, we generated SH-SY5Y cells stably expressing DMT1 either singly or in combination with wild type or mutant α-synuclein. We found that DMT1 overexpression dramatically enhances Fe(2+) uptake, which concomitantly promotes cell death. This Fe(2+)-mediated toxicity is aggravated by the presence of mutant α-synuclein expression, resulting in increased oxidative stress and DNA damage. Curiously, Fe(2+)-mediated cell death does not appear to involve apoptosis. Instead, the phenomenon seems to occur as a result of excessive autophagic activity. Accordingly, pharmacological inhibition of autophagy reverses cell death mediated by Fe(2+) overloading. Taken together, our results suggest a role for iron in PD pathogenesis and provide a mechanism underlying Fe(2+)-mediated cell death.  相似文献   

2.
Parkinson's disease (PD) is a major age-related neurodegenerative disorder characterized by a massive and specific loss of dopaminergic neurons of the substantia nigra pars compacta. The cellular alterations are clinically translated into an invalidating movement disability associated to three canonical symptoms that are bradykinesia, resting tremor and rigidity. The exact causes of this neuronal loss are unknown, but a network of evidences indicates a major contribution of orchestrated cell death processes, also known as apoptosis. Apoptotic cell death is a normal process, the alteration of which triggers several pathologies including cancer and neurodegenerative disorders. Exhaustive work has been done to delineate the cellular mechanisms responsible for the exacerbated cell death of dopaminergic neurons observed in PD. Overall, the oncogene p53 has been identified as a key effector protein.This review will focus on the clues linking p53 to the etiology of PD and the evidences that this protein may be at the center of multiple signaling cascades not only altered by mutations of various proteins responsible for familial cases of PD but also on more general sporadic cases of this devastating disease.  相似文献   

3.
4.
5.
Parkinson's disease: mechanisms and models   总被引:54,自引:0,他引:54  
Dauer W  Przedborski S 《Neuron》2003,39(6):889-909
Parkinson's disease (PD) results primarily from the death of dopaminergic neurons in the substantia nigra. Current PD medications treat symptoms; none halt or retard dopaminergic neuron degeneration. The main obstacle to developing neuroprotective therapies is a limited understanding of the key molecular events that provoke neurodegeneration. The discovery of PD genes has led to the hypothesis that misfolding of proteins and dysfunction of the ubiquitin-proteasome pathway are pivotal to PD pathogenesis. Previously implicated culprits in PD neurodegeneration, mitochondrial dysfunction and oxidative stress, may also act in part by causing the accumulation of misfolded proteins, in addition to producing other deleterious events in dopaminergic neurons. Neurotoxin-based models (particularly MPTP) have been important in elucidating the molecular cascade of cell death in dopaminergic neurons. PD models based on the manipulation of PD genes should prove valuable in elucidating important aspects of the disease, such as selective vulnerability of substantia nigra dopaminergic neurons to the degenerative process.  相似文献   

6.
Parkinson's disease (PD) is a neurodegenerative disorder marked by the selective degeneration of dopaminergic neurons in the nigrostriatal pathway. Several lines of evidence indicate that mitochondrial dysfunction contributes to its etiology. Other studies have suggested that alterations in sterol homeostasis correlate with increased risk for PD. Whether these observations are functionally related is, however, unknown. In this study, we used a toxin-induced mouse model of PD and measured levels of nine sterol intermediates. We found that lanosterol is significantly (~50%) and specifically reduced in the nigrostriatal regions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, indicative of altered lanosterol metabolism during PD pathogenesis. Remarkably, exogenous addition of lanosterol rescued dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP+)-induced cell death in culture. Furthermore, we observed a marked redistribution of lanosterol synthase from the endoplasmic reticulum to mitochondria in dopaminergic neurons exposed to MPP+, suggesting that lanosterol might exert its survival effect by regulating mitochondrial function. Consistent with this model, we find that lanosterol induces mild depolarization of mitochondria and promotes autophagy. Collectively, our results highlight a novel sterol-based neuroprotective mechanism with direct relevance to PD.  相似文献   

7.
Dopaminergic neurons   总被引:2,自引:0,他引:2  
  相似文献   

8.
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta (SNPC) and the presence of intracytoplasmatic inclusions known as Lewy bodies, largely composed of alpha-synuclein (α-syn). PD is a multifactorial disease and its etiology remains largely elusive. Although more than 90% of the cases are sporadic, mutations in several nuclear encoded genes have been linked to the development of autosomal recessive and dominant familial parkinsonian syndromes (Bogaerts et al. (2008) Genes Brain Behav 7, 129-151), enhancing our understanding of biochemical and cellular mechanisms contributing to the disease. Many cellular mechanisms are thought to be involved in the dopaminergic neuronal death in PD, including oxidative stress, intracellular Ca(2+) homeostasis impairment, and mitochondrial dysfunctions. Furthermore, endoplasmic reticulum (ER) stress together with abnormal protein degradation by the ubiquitin proteasome system is considered to contribute to the PD pathogenesis. This review covers all the aspects related to the molecular mechanisms underlying the interplay between mitochondria, ER, and proteasome system in PD-associated neurodegeneration.  相似文献   

9.
Environmental toxins, genetic predisposition and old age are major risk factors for Parkinson’s disease (PD). Although the mechanism(s) underlying selective dopaminergic (DA) neurodegeneration remain unclear, molecular studies in both toxin based models and genetic based models of the disease suggest a major etiologic role for mitochondrial dysfunction in the pathogenesis of PD. Further, recent studies have presented clear evidence for a high burden of mtDNA deletions within the substantia nigra neurons in individuals with PD. Ultimately, an understanding of the molecular events which precipitate DA neurodegeneration in idiopathic PD will enable the development of targeted and effective therapeutic strategies. We review recent advances and current understanding of the genetic factors, molecular mechanisms and animal models of PD.  相似文献   

10.
Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons and a substantial decrease in the neurotransmitter dopamine in the nigro-striatal region of the brain. Increased markers of oxidative stress, activated microglias and elevated levels of pro-inflammatory cytokines have been identified in the brains of patients with PD. Although the precise mechanism of loss of neurons in PD remains unclear, these findings suggest that microglial activation may contribute directly to loss of dopaminergic neurons in PD patients. In the present study, we tested the hypothesis that activated microglia induces nitric oxide-dependent oxidative stress which subsequently causes death of dopaminergic neuronal cells in culture. We employed lipopolysaccharide (LPS) stimulated mouse macrophage cells (RAW 264.7) as a reactive microglial model and SH-SY5Y cells as a model for human dopaminergic neurons. LPS stimulation of macrophages led to increased production of nitric oxide in a time and dose dependent manner as well as subsequent generation of other reactive nitrogen species such as peroxynitrite anions. In co-culture conditions, reactive macrophages stimulated SH-SY5Y cell death characterized by increased peroxynitrite concentrations and nitration of alpha-synuclein within SH-SY5Y cells. Importantly 1400W, an inhibitor of the inducible nitric oxide synthase provided protection from cell death via decreasing the levels of nitrated alpha-synuclein. These results suggest that reactive microglias could induce oxidative stress in dopaminergic neurons and such oxidative stress may finally lead to nitration of alpha-synuclein and death of dopaminergic neurons in PD.  相似文献   

11.
12.
《Autophagy》2013,9(12):1837-1838
Parkinson disease (PD) is the most common neurodegenerative movement disorder and is characterized pathologically by the formation of ubiquitin and SNCA/α-synuclein-containing inclusions (Lewy bodies), dystrophic midbrain dopaminergic (DAergic) terminals, and degeneration of midbrain DAergic neurons. The vast majority of PD occurs sporadically, while approximately 5% of all PD cases are inherited. Genetic mutations of a few genes have been identified as causes of familiar PD, i.e., mutations in SNCA, PARK2/parkin, UCHL1, PARK7/DJ1, PINK1 and LRRK2, leading to DAergic cell death, but variable pathological changes. The evidence supports the hypothesis that several pathogenic mechanisms are likely involved at initial stages of the disease, and eventually they merge to cause parkinsonism. The current challenge facing PD research is to unravel the components in these pathways that contribute to the pathogenesis of PD. Accumulating evidence has implicated dysfunctional autophagy, a regulated lysosomal pathway with a capacity for clearing protein aggregates and cellular organelles, as one of the pathogenic systems contributing to the development of idiopathic PD.  相似文献   

13.
Oxidative and Inflammatory Pathways in Parkinson’s Disease   总被引:2,自引:0,他引:2  
Parkinson’s disease (PD) is the second most prevalent age-related neurodegenerative disease with physiological manifestations including tremors, bradykinesia, abnormal postural reflexes, rigidity and akinesia and pathological landmarks showing losses of dopaminergic neurons in the substantia nigra. Although the etiology of PD has been intensively pursued for several decades, biochemical mechanisms and genetic and epigenetic factors leading to initiation and progression of the disease remain elusive. Environmental toxins including (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP, paraquat and rotenone have been shown to increase the risk of PD in humans. Oxidative stress remains the leading theory for explaining progression of PD. Studies with cell and animal models reveal oxidative and inflammatory properties of these toxins and their ability to activate glial cells which subsequently destroy neighboring dopaminergic neurons. This review describes pathological effects of neurotoxins on cells and signaling pathways for production of reactive oxygen species (ROS) that underline the pathophysiology of PD. Special issue article in honor of Dr. George DeVries.  相似文献   

14.
15.
The etiology of Parkinson disease (PD) is unclear but may involve environmental toxins such as pesticides leading to dysfunction of the ubiquitin proteasome system (UPS). Here, we measured the relative toxicity of ziram (a UPS inhibitor) and analogs to dopaminergic neurons and examined the mechanism of cell death. UPS (26 S) activity was measured in cell lines after exposure to ziram and related compounds. Dimethyl- and diethyldithiocarbamates including ziram were potent UPS inhibitors. Primary ventral mesencephalic cultures were exposed to ziram, and cell toxicity was assessed by staining for tyrosine hydroxylase (TH) and NeuN antigen. Ziram caused a preferential damage to TH+ neurons and elevated alpha-synuclein levels but did not increase aggregate formation. Mechanistically, ziram altered UPS function through interfering with the targeting of substrates by inhibiting ubiquitin E1 ligase. Sodium dimethyldithiocarbamate administered to mice for 2 weeks resulted in persistent motor deficits and a mild reduction in striatal TH staining but no nigral cell loss. These results demonstrate that ziram causes selective dopaminergic cell damage in vitro by inhibiting an important degradative pathway implicated in the etiology of PD. Chronic exposure to widely used dithiocarbamate fungicides may contribute to the development of PD, and elucidation of its mechanism would identify a new potential therapeutic target.  相似文献   

16.
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra compacta (SNc). Although mitochondrial dysfunction is the critical factor in the pathogenesis of PD, the underlying molecular mechanisms are not well understood, and as a result, effective medical interventions are lacking. Mitochondrial fission and fusion play important roles in the maintenance of mitochondrial function and cell viability. Here, we investigated the effects of MitoQ, a mitochondria-targeted antioxidant, in 6-hydroxydopamine (6-OHDA)-induced in vitro and in vivo PD models. We observed that 6-OHDA enhanced mitochondrial fission by decreasing the expression of Mfn1, Mfn2 and OPA1 as well as by increasing the expression of Drp1 in the dopaminergic (DA) cell line SN4741. Notably, MitoQ treatment particularly upregulated the Mfn2 protein and mRNA levels and promoted mitochondrial fusion in the presence of 6-OHDA in a Mfn2-dependent manner. In addition, MitoQ also stabilized mitochondrial morphology and function in the presence of 6-OHDA, which further suppressed the formation of reactive oxygen species (ROS), as well as ameliorated mitochondrial fragmentation and cellular apoptosis. Moreover, the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) was attributed to the upregulation of Mfn2 induced by MitoQ. Consistent with these findings, administration of MitoQ in 6-OHDA-treated mice significantly rescued the decrease of Mfn2 expression and the loss of DA neurons in the SNc. Taken together, our findings suggest that MitoQ protects DA neurons in a 6-OHDA induced PD model by activating PGC-1α to enhance Mfn2-dependent mitochondrial fusion.  相似文献   

17.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s) through which familial mutations precipitate neuronal degeneration and PD.  相似文献   

18.
Redox imbalance in Parkinson's disease   总被引:2,自引:0,他引:2  
Parkinson's disease (PD) is an adult-onset neurodegenerative disorder characterized by preferential loss of dopaminergic neurons in an area of the midbrain called the substantia nigra (SN) along with occurrence of intraneuronal inclusions called Lewy bodies. The majority of cases of PD are sporadic in nature with late onset (95% of patients); however a few PD cases (5%) are seen in familial clusters with generally earlier onset. Although PD has been heavily researched, so far the exact cause of the rather selective cell death is unknown. Multiple lines of evidence suggest an important role for oxidative stress. Dopaminergic neurons (DA) are particularly prone to oxidative stress due to DA metabolism and auto-oxidation combined with increased iron, decreased total glutathione levels and mitochondrial complex I inhibition-induced ROS production in the SN which can lead to cell death by exceeding the oxidative capacity of DA-containing cells in the region. Enhancing antioxidant capabilities and chelating labile iron pools in this region therefore constitutes a rational approach to prevent or slow ongoing damage of DA neurons. In this review, we summarize the various sources of reactive oxygen species that may cause redox imbalance in PD as well as potential therapeutic targets for attenuation of oxidative stress associated with PD.  相似文献   

19.
Among age-related neurodegenerative diseases, Parkinson's disease (PD) represents the best example for which oxidative stress has been strongly implicated. The etiology of PD remains unknown, yet recent epidemiological studies have linked exposure to environmental agents, including pesticides, with an increased risk of developing the disease. As a result, the environmental hypothesis of PD has developed, which speculates that chemical agents in the environment are capable of producing selective dopaminergic cell death, thus contributing to disease development. The use of environmental agents such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, rotenone, paraquat, dieldrin, and maneb in toxicant-based models of PD has become increasingly popular and provided valuable insight into the neurodegenerative process. Understanding the unique and shared mechanisms by which these environmental agents act as selective dopaminergic toxicants is critical in identifying pathways involved in PD pathogenesis. In this review, we discuss the neurotoxic properties of these compounds with specific focus on the induction of oxidative stress. We highlight landmark studies along with recent advances that support the role of reactive oxygen and reactive nitrogen species from a variety of cellular sources as potent contributors to the neurotoxicity of these environmental agents. Finally, human risk and the implications of these studies in our understanding of PD-related neurodegeneration are discussed.  相似文献   

20.
Parkinson's disease (PD) is an adult-onset neurodegenerative disorder characterized by preferential loss of dopaminergic neurons in an area of the midbrain called the substantia nigra (SN) along with occurrence of intraneuronal inclusions called Lewy bodies. The majority of cases of PD are sporadic in nature with late onset (95% of patients); however a few PD cases (5%) are seen in familial clusters with generally earlier onset. Although PD has been heavily researched, so far the exact cause of the rather selective cell death is unknown. Multiple lines of evidence suggest an important role for oxidative stress. Dopaminergic neurons (DA) are particularly prone to oxidative stress due to DA metabolism and auto-oxidation combined with increased iron, decreased total glutathione levels and mitochondrial complex I inhibition-induced ROS production in the SN which can lead to cell death by exceeding the oxidative capacity of DA-containing cells in the region. Enhancing antioxidant capabilities and chelating labile iron pools in this region therefore constitutes a rational approach to prevent or slow ongoing damage of DA neurons. In this review, we summarize the various sources of reactive oxygen species that may cause redox imbalance in PD as well as potential therapeutic targets for attenuation of oxidative stress associated with PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号