首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plant clathrin-mediated membrane trafficking is involved in many developmental processes as well as in responses to environmental cues. Previous studies have shown that clathrin-mediated endocytosis of the plasma membrane (PM) auxin transporter PIN-FORMED1 is regulated by the extracellular auxin receptor AUXIN BINDING PROTEIN1 (ABP1). However, the mechanisms by which ABP1 and other factors regulate clathrin-mediated trafficking are poorly understood. Here, we applied a genetic strategy and time-resolved imaging to dissect the role of clathrin light chains (CLCs) and ABP1 in auxin regulation of clathrin-mediated trafficking in Arabidopsis thaliana. Auxin was found to differentially regulate the PM and trans-Golgi network/early endosome (TGN/EE) association of CLCs and heavy chains (CHCs) in an ABP1-dependent but TRANSPORT INHIBITOR RESPONSE1/AUXIN-BINDING F-BOX PROTEIN (TIR1/AFB)-independent manner. Loss of CLC2 and CLC3 affected CHC membrane association, decreased both internalization and intracellular trafficking of PM proteins, and impaired auxin-regulated endocytosis. Consistent with these results, basipetal auxin transport, auxin sensitivity and distribution, and root gravitropism were also found to be dramatically altered in clc2 clc3 double mutants, resulting in pleiotropic defects in plant development. These results suggest that CLCs are key regulators in clathrin-mediated trafficking downstream of ABP1-mediated signaling and thus play a critical role in membrane trafficking from the TGN/EE and PM during plant development.  相似文献   

2.
Al3+ and H+ toxicities predicted to occur at moderately acidic conditions (pH [water] = 5–5.5) in low-Ca soils were characterized by the combined approaches of computational modeling of electrostatic interactions of ions at the root plasma membrane (PM) surface and molecular/physiological analyses in Arabidopsis (Arabidopsis thaliana). Root growth inhibition in known hypersensitive mutants was correlated with computed {Al3+} at the PM surface ({Al3+}PM); inhibition was alleviated by increased Ca, which also reduced {Al3+}PM and correlated with cellular Al responses based on expression analysis of genes that are markers for Al stress. The Al-inducible Al tolerance genes ALUMINUM-ACTIVATED MALATE TRANSPORTER1 and ALUMINUM SENSITIVE3 were induced by levels of {Al3+}PM too low to inhibit root growth in tolerant genotypes, indicating that protective responses are triggered when {Al3+}PM was below levels that can initiate injury. Modeling of the H+ sensitivity of the SENSITIVE TO PROTON RHIZOTOXICITY1 knockout mutant identified a Ca alleviation mechanism of H+ rhizotoxicity, possibly involving stabilization of the cell wall. The phosphatidate phosphohydrolase1 (pah1) pah2 double mutant showed enhanced Al susceptibility under low-P conditions, where greater levels of negatively charged phospholipids in the PM occur, which increases {Al3+}PM through increased PM surface negativity compared with wild-type plants. Finally, we found that the nonalkalinizing Ca fertilizer gypsum improved the tolerance of the sensitive genotypes in moderately acidic soils. These findings fit our modeling predictions that root toxicity to Al3+ and H+ in moderately acidic soils involves interactions between both toxic ions in relation to Ca alleviation.Aluminum (Al), principally in the form of Al3+ released from soil clay minerals, is one of the most important rhizotoxic ions in acidic soils and is abundant in soil solutions at pH (water) of less than 5.0. Many forest and grass land species naturally adapted to acid soils are very tolerant of H+ and Al3+ and thrive in soils where the pH is less than 4.0. However, most crop plants used for agriculture show inhibitory growth effects, even when the soil pH is neutralized by liming to moderately acidic pH values in the range of pH 5 to 5.5. For example, crops sensitive to Al3+ and H+ such as turnip (Brassica rapa; Kinraide and Parker, 1990) and alfalfa (Medicago sativa; Yokota and Ojima, 1995) show growth inhibition at these soil pH values. Field research and soil experiments have shown that inhibitory effects of moderately acidic soils (pH > 5) can be ameliorated by the application of Ca fertilizers, even if they are nonalkalinizing, such as gypsum, and this leads to improvement in crop productivity (Carvalho and Van Raij, 1997; Mora et al., 1999). This indicates that the soil Ca status is an important factor in determining crop yield at moderately low soil pH values with regard to Al3+ and H+ rhizotoxicity occurring in these soils. An understanding of the complex situation of acid soil stress in soil pH in the range of pH (water) 5 to 5.5 is important for designing efficient soil acidity management and breeding programs for resistant crop use in low-input agricultural systems.The complex rhizotoxicities at moderately acidic conditions that can be alleviated by Ca have been predicted by modeling studies in wheat (Triticum aestivum; Kinraide, 2003). The model first computes the activity of the rhizotoxicants and alleviants at the plasma membrane (PM) surface, for example {Al3+}PM and {H+}PM, and {Ca2+}PM, using a speciation-based Gouy-Chapman-Stern electrostatic (SGCS) model (Kinraide and Wang, 2010). The mechanisms of toxicity and alleviation are then modeled by regression analyses for root growth inhibition fitted to the nonlinear equations (Kinraide, 2003; Kinraide et al., 2004). The modeling studies well describe the complicated events in the Al-toxic solutions near the PM surface under moderately acidic conditions. For example, the elevation of pH from 4.5 to between 5 and 5.5 decreases the activity of the most rhizotoxic Al species, Al3+ in the solution ({Al3+}bulk), while it increases the negativity of the PM surface because of dissociation of H+ from potentially negative ligands such as phospholipids. As a result, {Al3+}PM remains at moderately high levels at the PM surface at pH greater than 5 due to the attraction to negative charges on the PM surface, but it can be alleviated by coexisting cations such as Ca2+ and even by another rhizotoxic cation, H+. These modeling studies have proposed different mechanisms of Ca alleviation in this complex situation (Kinraide, 1998; Kinraide et al., 2004). Mechanisms I (the electrostatic displacement of toxicant at the PM surface) and II (the restoration at the PM surface of Ca2+ electrostatically displaced by the toxicant) are events at the PM surface, but mechanism III, which explains the remaining portion of the Ca alleviation, may involve other physiological responses, including unknown mechanisms. These predictions, derived from the modeling study, likely explain the complex nature of moderately acidic soils but may require further validation because they were developed using root growth as the sole criterion for rhizotoxicity.Although these types of modeling approaches have not been performed using Arabidopsis (Arabidopsis thaliana) plants, clear symptoms of Al3+ and H+ rhizotoxicity at moderately acidic conditions (pH ≥ 5) has been identified in Arabidopsis (Kobayashi and Koyama, 2002; Iuchi et al., 2007). A quantitative trait locus study of Al tolerance at moderately acidic conditions (4 μm Al, pH 5; Kobayashi and Koyama, 2002) identified a very similar genetic architecture of Al tolerance to that derived from a study that employed a lower pH value but with a greater level of Al (50 μm Al, pH 4.2; Hoekenga et al., 2003). The former conditions employed a lower Ca concentration (200 μm) than the latter (3 mm), which accounted for the predictions of {Al3+}PM in relation to {Ca2+}PM by electrostatics. On the other hand, several Al3+- and H+-sensitive transfer DNA insertion knockout (KO) mutant genotypes have been identified using the lower ionic-strength moderately acidic media (Sawaki et al., 2009). These lines exhibit different degrees of hypersensitivity to moderately acidic conditions because of the dysfunction of different tolerance genes, suggesting the involvement of different mechanisms. In Arabidopsis, ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1) regulates Al-activated root malate excretion that protects the root tip from acute Al toxicity by Al exclusion (Hoekenga et al., 2006), and ALUMINUM SENSITIVE3 (ALS3) regulates internal Al sequestration involved in long term Al tolerance (Larsen et al., 1997, 2005). The KO mutants for these genes display Al hypersensitivity. In addition, SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1)-KO, a suppressor of multiple genes for Al and H+ tolerance, shows sensitivity to Al3+ and H+ (Iuchi et al., 2007; Sawaki et al., 2009). These sensitive genotypes are useful tools for evaluating Al3+ and H+ toxicity in the pH range 5 to 5.5. On the other hand, several cellular responses, such as the induction of gene expression, have been identified in Arabidopsis that could be useful in the estimation of the attraction of {Al3+} to the PM, which is computed by our electrostatic-based model. Therefore, Arabidopsis appears to be a useful model system for the validation of modeling based on the SGCS model and to further our understanding of Al3+ and H+ rhizotoxicities at moderately acidic conditions in relation to Ca2+ alleviation.Computation of {Al3+}PM requires accurate speciation of Al and other solutes in the bulk solution. The original SGCS program is suitable for relatively simple solutions (Kinraide and Wang, 2010). However, the rooting medium used for the Arabidopsis assays exceeds the number of solutes that can be accurately assessed by the SGCS program (Kobayashi et al., 2007). Consequently, we updated the modeling methodology using the speciation program GEOCHEM-EZ, which is suitable for complex media (Famoso et al., 2010; Shaff et al., 2010). This improved model, used in conjunction with molecular biological assays such as biomarker analysis of Al-inducible gene expression, has allowed us in this study to validate the predicted {Al3+}PM rhizotoxicity in relation to {Ca2+}PM alleviation from the wheat modeling studies. The updated modeling of Ca alleviation in mutants uncovered one of the mechanisms of Ca alleviation in the H+-sensitive mutant and identified an Al-sensitive double mutant genotype, phosphatidate phosphohydrolase1 (pah1) and pah2 (Nakamura et al., 2009), that fitted previous predictions. Finally, we demonstrate the ability of gypsum to ameliorate the sensitive phenotype of selected genotypes, when they were grown in moderately acidic soil culture. Taken together, we present here experimental validation of the SGCS-based modeling, and its combination with molecular physiology provides a deeper understanding of plant Al3+ and H+ toxicity in relation to Ca2+ alleviation at pΗ of at least 5.0.  相似文献   

3.
Alkaline stress is a common environmental stress, in particular in salinized soils. Plant roots respond to a variety of soil stresses by regulating their growth, but the nature of the regulatory pathways engaged in the alkaline stress response (ASR) is not yet understood. Previous studies show that PIN-FORMED2, an auxin (indole-3-acetic acid [IAA]) efflux transporter, PKS5, a protein kinase, and DNAJ HOMOLOG3 (J3), a chaperone, play key roles in root H+ secretion by regulating plasma membrane (PM) H+-ATPases directly or by targeting 14-3-3 proteins. Here, we investigated the expression of all 14-3-3 gene family members (TOMATO 14-3-3 PROTEIN1 [TFT1]–TFT12) in tomato (Solanum lycopersicum) under ASR, showing the involvement of four of them, TFT1, TFT4, TFT6, and TFT7. When these genes were separately introduced into Arabidopsis (Arabidopsis thaliana) and overexpressed, only the growth of TFT4 overexpressors was significantly enhanced when compared with the wild type under stress. H+ efflux and the activity of PM H+-ATPase were significantly enhanced in the root tips of TFT4 overexpressors. Microarray analysis and pharmacological examination of the overexpressor and mutant plants revealed that overexpression of TFT4 maintains primary root elongation by modulating PM H+-ATPase-mediated H+ efflux and basipetal IAA transport in root tips under alkaline stress. TFT4 further plays important roles in the PKS5-J3 signaling pathway. Our study demonstrates that TFT4 acts as a regulator in the integration of H+ efflux, basipetal IAA transport, and the PKS5-J3 pathway in the ASR of roots and coordinates root apex responses to alkaline stress for the maintenance of primary root elongation.Alkaline soils occur commonly in terrestrial ecology, in particular in areas affected by salinity, thus contributing to one of the most widespread environmental challenges that limit agricultural productivity globally (Kawanabe and Zhu, 1991; Ge et al., 2010; Xu et al., 2012a). Worldwide, it is estimated that up to 831 × 106 ha of land is saline, and more than half of this area is alkalinized. High-pH stress limits the survival of most plants under these conditions and can be a more significant factor in reducing plant growth than the stress resulting from salinity (Guo et al., 2010). Improved understanding of the basic mechanisms of plant responses to alkaline stress is urgently needed and will aid biotechnological efforts focused on breeding suitable crops for fodder and human food on these unproductive lands.Primary root elongation regulated by a sensory zone in the root tip plays a pivotal role in the plastic acclimation response to fluctuating soil environments (Baluška et al., 2010). The root functions simultaneously as an organ for the uptake and transport of water and nutrients and as the primary site for the perception of soil stresses. Thus, roots must be the obvious first focus in any examination of the adaptive and acclimation mechanisms underpinning the alkaline stress response. However, currently, only limited information is available on this particular form of stress (Degenhardt et al., 2000; Zhu, 2001; Yang et al., 2008).Acidification of the aqueous fraction of the cell wall apoplast by H+ excretion via the plasma membrane (PM) H+-ATPase is a critical component of the growth-promoting effect and a key factor determining the elongation of the primary root (Moloney et al., 1981; Palmgren, 2001). Optimal primary root elongation requires the fine regulation of H+-ATPase-mediated H+ efflux, particularly at the root tip (Staal et al., 2011; Haruta and Sussman, 2012). Under alkaline stress, in Arabidopsis (Arabidopsis thaliana), PROTEIN KINASE5 (PKS5) and the chaperone DNAJ HOMOLOG3 (J3) play important roles in H+ efflux by regulating the interaction between PM H+-ATPase and 14-3-3 proteins (Fuglsang et al., 2007; Yang et al., 2010). Furthermore, PIN-FORMED2 (PIN2), an auxin (indole-3-acetic acid [IAA]) efflux transporter, is required for the acclimation of roots to alkaline stress through the modulation of H+ secretion in the root tip, maintaining primary root elongation (Xu et al., 2012a). However, these mechanisms, and other physiologically relevant processes that may fine-tune root-apical responses to alkaline stress, have not been investigated in depth.The 14-3-3 proteins are highly conserved, and nearly ubiquitous, phosphoserine-binding proteins that regulate the activities of a wide array of targets via direct protein-protein interactions (Moore and Perez, 1967; Comparot et al., 2003). In higher plants, 14-3-3 proteins are encoded by a multigene family and play important roles in regulating plant development and stress responses (Mayfield et al., 2012). Although 14-3-3 proteins in plants possess a highly conserved target-binding domain, several studies indicate that various 14-3-3 isoforms may regulate different targets or act in distinct locations under variable abiotic stresses (Sehnke et al., 2002; Xu et al., 2012b). At least 12 genes predicted to encode 14-3-3 proteins (TOMATO 14-3-3 PROTEIN1 [TFT1]–TFT12) have been identified in tomato (Solanum lycopersicum; Roberts, 2003; Xu and Shi, 2006). However, little is known about the detailed actions of tomato 14-3-3 proteins in response to alkaline stress in relation to H+ secretion, auxin modulation, or specific signaling pathways. Thus, in this study, we investigated the roles of tomato 14-3-3 proteins, incorporated into Arabidopsis, in root acclimation to alkaline stress and the involvement of PKS5 and J3 in modulating H+ secretion and basipetal (shoot-ward) IAA transport for maintaining primary root elongation.  相似文献   

4.
Most plant species form symbioses with arbuscular mycorrhizal (AM) fungi, which facilitate the uptake of mineral nutrients such as phosphate from the soil. Several transporters, particularly proton-coupled phosphate transporters, have been identified on both the plant and fungal membranes and contribute to delivering phosphate from fungi to plants. The mechanism of nutrient exchange has been studied in plants during mycorrhizal colonization, but the source of the electrochemical proton gradient that drives nutrient exchange is not known. Here, we show that plasma membrane H+-ATPases that are specifically induced in arbuscule-containing cells are required for enhanced proton pumping activity in membrane vesicles from AM-colonized roots of rice (Oryza sativa) and Medicago truncatula. Mutation of the H+-ATPases reduced arbuscule size and impaired nutrient uptake by the host plant through the mycorrhizal symbiosis. Overexpression of the H+-ATPase Os-HA1 increased both phosphate uptake and the plasma membrane potential, suggesting that this H+-ATPase plays a key role in energizing the periarbuscular membrane, thereby facilitating nutrient exchange in arbusculated plant cells.  相似文献   

5.
6.
The presence of a large central vacuole is one of the hallmarks of a prototypical plant cell, and the multiple functions of this compartment require massive fluxes of molecules across its limiting membrane, the tonoplast. Transport is assumed to be energized by the membrane potential and the proton gradient established by the combined activity of two proton pumps, the vacuolar H+-pyrophosphatase (V-PPase) and the vacuolar H+-ATPase (V-ATPase). Exactly how labor is divided between these two enzymes has remained elusive. Here, we provide evidence using gain- and loss-of-function approaches that lack of the V-ATPase cannot be compensated for by increased V-PPase activity. Moreover, we show that increased V-ATPase activity during cold acclimation requires the presence of the V-PPase. Most importantly, we demonstrate that a mutant lacking both of these proton pumps is conditionally viable and retains significant vacuolar acidification, pointing to a so far undetected contribution of the trans-Golgi network/early endosome-localized V-ATPase to vacuolar pH.  相似文献   

7.
8.
Abscisic acid (ABA) induces stomatal closure and inhibits light-induced stomatal opening. The mechanisms in these two processes are not necessarily the same. It has been postulated that the ABA receptors involved in opening inhibition are different from those involved in closure induction. Here, we provide evidence that four recently identified ABA receptors (PYRABACTIN RESISTANCE1 [PYR1], PYRABACTIN RESISTANCE-LIKE1 [PYL1], PYL2, and PYL4) are not sufficient for opening inhibition in Arabidopsis (Arabidopsis thaliana). ABA-induced stomatal closure was impaired in the pyr1/pyl1/pyl2/pyl4 quadruple ABA receptor mutant. ABA inhibition of the opening of the mutant’s stomata remained intact. ABA did not induce either the production of reactive oxygen species and nitric oxide or the alkalization of the cytosol in the quadruple mutant, in accordance with the closure phenotype. Whole cell patch-clamp analysis of inward-rectifying K+ current in guard cells showed a partial inhibition by ABA, indicating that the ABA sensitivity of the mutant was not fully impaired. ABA substantially inhibited blue light-induced phosphorylation of H+-ATPase in guard cells in both the mutant and the wild type. On the other hand, in a knockout mutant of the SNF1-related protein kinase, srk2e, stomatal opening and closure, reactive oxygen species and nitric oxide production, cytosolic alkalization, inward-rectifying K+ current inactivation, and H+-ATPase phosphorylation were not sensitive to ABA.The phytohormone abscisic acid (ABA), which is synthesized in response to abiotic stresses, plays a key role in the drought hardiness of plants. Reducing transpirational water loss through stomatal pores is a major ABA response (Schroeder et al., 2001). ABA promotes the closure of open stomata and inhibits the opening of closed stomata. These effects are not simply the reverse of one another (Allen et al., 1999; Wang et al., 2001; Mishra et al., 2006).A class of receptors of ABA was identified (Ma et al., 2009; Park et al., 2009; Santiago et al., 2009; Nishimura et al., 2010). The sensitivity of stomata to ABA was strongly decreased in quadruple and sextuple mutants of the ABA receptor genes PYRABACTIN RESISTANCE/PYRABACTIN RESISTANCE-LIKE/REGULATORY COMPONENT OF ABSCISIC ACID RECEPTOR (PYR/PYL/RCAR; Nishimura et al., 2010; Gonzalez-Guzman et al., 2012). The PYR/PYL/RCAR receptors are involved in the early ABA signaling events, in which a sequence of interactions of the receptors with PROTEIN PHOSPHATASE 2Cs (PP2Cs) and subfamily 2 SNF1-RELATED PROTEIN KINASES (SnRK2s) leads to the activation of downstream ABA signaling targets in guard cells (Cutler et al., 2010; Kim et al., 2010; Weiner et al., 2010). Studies of Commelina communis and Vicia faba suggested that the ABA receptors involved in stomatal opening are not the same as the ABA receptors involved in stomatal closure (Allan et al., 1994; Anderson et al., 1994; Assmann, 1994; Schwartz et al., 1994). The roles of PYR/PYL/RCAR in either stomatal opening or closure remained to be elucidated.Blue light induces stomatal opening through the activation of plasma membrane H+-ATPase in guard cells that generates an inside-negative electrochemical gradient across the plasma membrane and drives K+ uptake through voltage-dependent inward-rectifying K+ channels (Assmann et al., 1985; Shimazaki et al., 1986; Blatt, 1987; Schroeder et al., 1987; Thiel et al., 1992). Phosphorylation of the penultimate Thr of the plasma membrane H+-ATPase is a prerequisite for blue light-induced activation of the H+-ATPase (Kinoshita and Shimazaki, 1999, 2002). ABA inhibits H+-ATPase activity through dephosphorylation of the penultimate Thr in the C terminus of the H+-ATPase in guard cells, resulting in prevention of the opening (Goh et al., 1996; Zhang et al., 2004; Hayashi et al., 2011). Inward-rectifying K+ currents (IKin) of guard cells are negatively regulated by ABA in addition to through the decline of the H+ pump-driven membrane potential difference (Schroeder and Hagiwara, 1989; Blatt, 1990; McAinsh et al., 1990; Schwartz et al., 1994; Grabov and Blatt, 1999; Saito et al., 2008). This down-regulation of ion transporters by ABA is essential for the inhibition of stomatal opening.A series of second messengers has been shown to mediate ABA-induced stomatal closure. Reactive oxygen species (ROS) produced by NADPH oxidases play a crucial role in ABA signaling in guard cells (Pei et al., 2000; Zhang et al., 2001; Kwak et al., 2003; Sirichandra et al., 2009; Jannat et al., 2011). Nitric oxide (NO) is an essential signaling component in ABA-induced stomatal closure (Desikan et al., 2002; Guo et al., 2003; Garcia-Mata and Lamattina, 2007; Neill et al., 2008). Alkalization of cytosolic pH in guard cells is postulated to mediate ABA-induced stomatal closure in Arabidopsis (Arabidopsis thaliana) and Pisum sativum and Paphiopedilum species (Irving et al., 1992; Gehring et al., 1997; Grabov and Blatt, 1997; Suhita et al., 2004; Gonugunta et al., 2008). These second messengers transduce environmental signals to ion channels and ion transporters that create the driving force for stomatal movements (Ward et al., 1995; MacRobbie, 1998; Garcia-Mata et al., 2003).In this study, we examined the mobilization of second messengers, the inactivation of IKin, and the suppression of H+-ATPase phosphorylation evoked by ABA in Arabidopsis mutants to clarify the downstream signaling events of ABA signaling in guard cells. The mutants included a quadruple mutant of PYR/PYL/RCARs, pyr1/pyl1/pyl2/pyl4, and a mutant of a SnRK2 kinase, srk2e.  相似文献   

9.
Rapid stomatal closure is essential for water conservation in plants and is thus critical for survival under water deficiency. To close stomata rapidly, guard cells reduce their volume by converting a large central vacuole into a highly convoluted structure. However, the molecular mechanisms underlying this change are poorly understood. In this study, we used pH-indicator dyes to demonstrate that vacuolar convolution is accompanied by acidification of the vacuole in fava bean (Vicia faba) guard cells during abscisic acid (ABA)–induced stomatal closure. Vacuolar acidification is necessary for the rapid stomatal closure induced by ABA, since a double mutant of the vacuolar H+-ATPase vha-a2 vha-a3 and vacuolar H+-PPase mutant vhp1 showed delayed stomatal closure. Furthermore, we provide evidence for the critical role of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] in changes in pH and morphology of the vacuole. Single and double Arabidopsis thaliana null mutants of phosphatidylinositol 3-phosphate 5-kinases (PI3P5Ks) exhibited slow stomatal closure upon ABA treatment compared with the wild type. Moreover, an inhibitor of PI3P5K reduced vacuolar acidification and convolution and delayed stomatal closure in response to ABA. Taken together, these results suggest that rapid ABA-induced stomatal closure requires PtdIns(3,5)P2, which is essential for vacuolar acidification and convolution.  相似文献   

10.
Different PIN-FORMED proteins (PINs) contribute to intercellular and intracellular auxin transport, depending on their distinctive subcellular localizations. Arabidopsis thaliana PINs with a long hydrophilic loop (HL) (PIN1 to PIN4 and PIN7; long PINs) localize predominantly to the plasma membrane (PM), whereas short PINs (PIN5 and PIN8) localize predominantly to internal compartments. However, the subcellular localization of the short PINs has been observed mostly for PINs ectopically expressed in different cell types, and the role of the HL in PIN trafficking remains unclear. Here, we tested whether a long PIN-HL can provide its original molecular cues to a short PIN by transplanting the HL. The transplanted long PIN2-HL was sufficient for phosphorylation and PM trafficking of the chimeric PIN5:PIN2-HL but failed to provide the characteristic polarity of PIN2. Unlike previous observations, PIN5 showed clear PM localization in diverse cell types where PIN5 is natively or ectopically expressed and even polar PM localization in one cell type. Furthermore, in the root epidermis, the subcellular localization of PIN5 switched from PM to internal compartments according to the developmental stage. Our results suggest that the long PIN-HL is partially modular for the trafficking behavior of PINs and that the intracellular trafficking of PIN is plastic depending on cell type and developmental stage.  相似文献   

11.
12.
The current dogma for cell wall polysaccharide biosynthesis is that cellulose (and callose) is synthesized at the plasma membrane (PM), whereas matrix phase polysaccharides are assembled in the Golgi apparatus. We provide evidence that (1,3;1,4)-β-d-glucan (mixed-linkage glucan [MLG]) does not conform to this paradigm. We show in various grass (Poaceae) species that MLG-specific antibody labeling is present in the wall but absent over Golgi, suggesting it is assembled at the PM. Antibodies to the MLG synthases, cellulose synthase-like F6 (CSLF6) and CSLH1, located CSLF6 to the endoplasmic reticulum, Golgi, secretory vesicles, and the PM and CSLH1 to the same locations apart from the PM. This pattern was recreated upon expression of VENUS-tagged barley (Hordeum vulgare) CSLF6 and CSLH1 in Nicotiana benthamiana leaves and, consistent with our biochemical analyses of native grass tissues, shown to be catalytically active with CSLF6 and CSLH1 in PM-enriched and PM-depleted membrane fractions, respectively. These data support a PM location for the synthesis of MLG by CSLF6, the predominant enzymatically active isoform. A model is proposed to guide future experimental approaches to dissect the molecular mechanism(s) of MLG assembly.  相似文献   

13.
Osmotic adjustment plays a fundamental role in water stress responses and growth in plants; however, the molecular mechanisms governing this process are not fully understood. Here, we demonstrated that the KUP potassium transporter family plays important roles in this process, under the control of abscisic acid (ABA) and auxin. We generated Arabidopsis thaliana multiple mutants for K+ uptake transporter 6 (KUP6), KUP8, KUP2/SHORT HYPOCOTYL3, and an ABA-responsive potassium efflux channel, guard cell outward rectifying K+ channel (GORK). The triple mutants, kup268 and kup68 gork, exhibited enhanced cell expansion, suggesting that these KUPs negatively regulate turgor-dependent growth. Potassium uptake experiments using 86radioactive rubidium ion (86Rb+) in the mutants indicated that these KUPs might be involved in potassium efflux in Arabidopsis roots. The mutants showed increased auxin responses and decreased sensitivity to an auxin inhibitor (1-N-naphthylphthalamic acid) and ABA in lateral root growth. During water deficit stress, kup68 gork impaired ABA-mediated stomatal closing, and kup268 and kup68 gork decreased survival of drought stress. The protein kinase SNF1-related protein kinases 2E (SRK2E), a key component of ABA signaling, interacted with and phosphorylated KUP6, suggesting that KUP functions are regulated directly via an ABA signaling complex. We propose that the KUP6 subfamily transporters act as key factors in osmotic adjustment by balancing potassium homeostasis in cell growth and drought stress responses.  相似文献   

14.
15.
CATION EXCHANGERs CAX1 and CAX3 are vacuolar ion transporters involved in ion homeostasis in plants. Widely expressed in the plant, they mediate calcium transport from the cytosol to the vacuole lumen using the proton gradient across the tonoplast. Here, we report an unexpected role of CAX1 and CAX3 in regulating apoplastic pH and describe how they contribute to auxin transport using the guard cell’s response as readout of hormone signaling and cross talk. We show that indole-3-acetic acid (IAA) inhibition of abscisic acid (ABA)-induced stomatal closure is impaired in cax1, cax3, and cax1/cax3. These mutants exhibited constitutive hypopolarization of the plasma membrane, and time-course analyses of membrane potential revealed that IAA-induced hyperpolarization of the plasma membrane is also altered in these mutants. Both ethylene and 1-naphthalene acetic acid inhibited ABA-triggered stomatal closure in cax1, cax3, and cax1/cax3, suggesting that auxin signaling cascades were functional and that a defect in IAA transport caused the phenotype of the cax mutants. Consistent with this finding, chemical inhibition of AUX1 in wild-type plants phenocopied the cax mutants. We also found that cax1/cax3 mutants have a higher apoplastic pH than the wild type, further supporting the hypothesis that there is a defect in IAA import in the cax mutants. Accordingly, we were able to fully restore IAA inhibition of ABA-induced stomatal closure in cax1, cax3, and cax1/cax3 when stomatal movement assays were carried out at a lower extracellular pH. Our results suggest a network linking the vacuolar cation exchangers to apoplastic pH maintenance that plays a crucial role in cellular processes.Stomata are pores at the surface of the leaves, gating water loss and gas exchange between plants and the atmosphere. One stoma is formed by two specialized guard cells that are able to modulate their size and shape to control stomatal aperture in response to various signals, including water status, hormonal stimuli, CO2 levels, light, or temperature (Kwak et al., 2008). These stomatal movements are regulated by ion fluxes in guard cells, the changes in the osmoticum status being compensated by water movement, which modifies the cell’s volume. Ion transport between the cell and ion stores (vacuole, apoplastic space) must be therefore tightly controlled, and any change in the guard cell’s ability to regulate this can compromise its faculty to trigger stomatal movement.Calcium ion (Ca2+) is one ion that regulates stomatal movements, and its cytosolic concentration is controlled by both influx, via plasma membrane channels, and release from internal stores such as vacuoles and the endoplasmic reticulum. Calcium transport from the vacuole is ensured, at least in part, by members of the Cation Exchanger (CAX) family (Punshon et al., 2012). Six members of this family are found in Arabidopsis (Arabidopsis thaliana); all use a proton gradient generated by the vacuolar H+-ATPase (VHA) or the vacuolar pyrophosphatase (AVP1) to energize their activity. CAX1 and CAX3 are the closest homologs within the family and have been proposed to play similar roles in Ca2+ homeostasis (Zhao et al., 2008). However, biochemical characterization highlighted differences in their respective rates of Ca2+ transport, and they have been proposed to function as heterodimers, with unique properties associated with this structure (Cheng et al., 2005).Among common phenotypes of cax1 and cax3, an increased sensitivity to abscisic acid (ABA; Zhao et al., 2008) suggests a function for these transporters in modulating hormone signaling. ABA is well known for its role in triggering stomatal closure, whereas auxin, ethylene, or cytokinins can counteract its effect. Auxin in particular is also essential in governing plant development, including root architecture, tropisms and polarity, apical dominance, tissue differentiation, and plant development. Tight control of its distribution throughout the plant is achieved via ubiquitous and specific expression of members of three transporter families, acting together in mediating indole-3-acetic acid (IAA) fluxes (Krecek et al., 2009).The unique pattern of auxin distribution is predominately due to the asymmetrical localization of members of the PIN-FORMED (PIN) family of auxin exporters (Zazímalová et al., 2010). In Arabidopsis, this family comprises eight members, whose spatiotemporal expression is responsible for the auxin gradient observed in many plant tissues (Paponov et al., 2005). In addition, most members of the ATP-binding cassette (ABC)-type family of exporter ABCB (ABCB/multidrug resistance/phosphoglycoprotein) have been shown to mediate auxin export from the cell (Geisler and Murphy, 2006). Auxin import is mainly ensured by (1) active transport of IAA by members of the AUX1/LAX family proteins (Geisler and Murphy, 2006), and (2) passive diffusion across the plasma membrane. AUX1 activity was demonstrated to be pH-dependent (Yang et al., 2006), IAA transport being optimal at acidic pH (5.5–6), and dramatically reduced at higher values. It is interesting that passive, pH-dependent IAA diffusion across the plasma membrane also accounts for an important part of IAA transport and signaling. At apoplastic pH (5.5), between 10% and 25% of IAA is protonated (Yang et al., 2006), which allows for free diffusion of IAA through the membrane. In contrast, the ratio between protonated and deprotonated IAA (IAAH/IAA) falls to 1% to 5% when pH exceeds 6.5, preventing it from being passively transported into the cytoplasm (Yang et al., 2006). These two aspects make control of the apoplastic pH crucial in the regulation of auxin signaling, as it modulates all the known routes of IAA import. Such a tight pH constraint is ensured by plasma membrane-localized Arabidopsis H+-ATPases (AHA; Haruta et al., 2010) that transport protons from the cytosol to the extracellular space.Our work presents the characterization of two vacuolar transporters’ abilities to modulate the apoplastic pH, and therefore contribute to proper auxin transport and signaling. Our results highlight the effects of mutations in CAX1 and CAX3 in plant development and in stomatal functioning, providing new insights for understanding hormone signaling in plants as well as plant adaptation to stress conditions via hormone cross talk.  相似文献   

16.
Hydrogen sulfide (H2S) is the third biological gasotransmitter, and in animals, it affects many physiological processes by modulating ion channels. H2S has been reported to protect plants from oxidative stress in diverse physiological responses. H2S closes stomata, but the underlying mechanism remains elusive. Here, we report the selective inactivation of current carried by inward-rectifying K+ channels of tobacco (Nicotiana tabacum) guard cells and show its close parallel with stomatal closure evoked by submicromolar concentrations of H2S. Experiments to scavenge H2S suggested an effect that is separable from that of abscisic acid, which is associated with water stress. Thus, H2S seems to define a unique and unresolved signaling pathway that selectively targets inward-rectifying K+ channels.Hydrogen sulfide (H2S) is a small bioactive gas that has been known for centuries as an environmental pollutant (Reiffenstein et al., 1992). H2S is soluble in both polar and, especially, nonpolar solvents (Wang, 2002), and has recently come to be recognized as the third member of a group of so-called biological gasotransmitters. Most importantly, H2S shows both physical and functional similarities to the other gasotransmitters nitric oxide (NO) and carbon monoxide (Wang, 2002), and it has been shown to participate in diverse physiological processes in animals, including cardioprotection, neuromodulation, inflammation, apoptosis, and gastrointestinal functions among others (Kabil et al., 2014). Less is known about H2S molecular targets and its modes of action. H2S can directly modify specific targets through protein sulfhydration (the addition of an -SH group to thiol moiety of proteins; Mustafa et al., 2009) or reaction with metal centers (Li and Lancaster, 2013). It can also act indirectly, reacting with NO to form nitrosothiols (Whiteman et al., 2006; Li and Lancaster, 2013). Among its molecular targets, H2S has been reported to regulate ATP-dependent K+ channels (Yang et al., 2005), Ca2+-activated K+ channels, T- and L-type Ca2+ channels, and transient receptor potential channels (Tang et al., 2010; Peers et al., 2012), suggesting H2S as a key regulator of membrane ion transport.In plants, H2S is produced enzymatically by the desulfhydration of l-Cys to form H2S, pyruvate, and ammonia in a reaction catalyzed by the enzyme l-Cys desulfhydrase (Riemenschneider et al., 2005a, 2005b), DES1, that has been characterized in Arabidopsis (Arabidopsis thaliana; Alvarez et al., 2010). Alternatively, H2S can be produced from d-Cys by d-Cys desulfhydrase (Riemenschneider et al., 2005a, 2005b) and in cyanide metabolism by β-cyano-Ala synthase (García et al., 2010). H2S action was originally related to pathogenesis resistance (Bloem et al., 2004), but in the last decade it has been proven to have an active role in signaling, participating in key physiological processes, such as germination and root organogenesis (Zhang et al., 2008, 2009a), heat stress (Li et al., 2013a, 2013b), osmotic stress (Zhang et al., 2009b), and stomatal movement (García-Mata and Lamattina, 2010; Lisjak et al., 2010, 2011; Jin et al., 2013). Moreover, H2S was reported to participate in the signaling of plant hormones, including abscisic acid (ABA; García-Mata and Lamattina, 2010; Lisjak et al., 2010; Jin et al., 2013; Scuffi et al., 2014), ethylene (Hou et al., 2013), and auxin (Zhang et al., 2009a).ABA is an important player in plant physiology. Notably, upon water stress, ABA triggers a complex signaling network to restrict the loss of water through the transpiration stream, balancing these needs with those of CO2 for carbon assimilation. In the guard cells that surround the stomatal pore, ABA induces an increase of cytosolic-free Ca2+ concentration ([Ca2+]cyt), elevates cytosolic pH (pHi), and activates the efflux of anions, mainly chloride, through S- and R-type anion channels. The increase in [Ca2+]cyt inactivates inward-rectifying K+ channels (IKIN); anion efflux depolarizes the plasma membrane, and together with the rise in pHi, it activates K+ efflux through outward-rectifying K+ channels (IKOUT; Blatt, 2000; Schroeder et al., 2001). These changes in ion flux, in turn, generate an osmotically driven reduction in turgor and volume and closure of the stomatal pore. All three gasotransmitters have been implicated in regulating the activity of guard cell ion channels, but direct evidence is available only for NO (Garcia-Mata et al., 2003; Sokolovski et al., 2005). Here, we have used two-electrode voltage clamp measurements to study the role of H2S in the regulation of the guard cell K+ channels of tobacco (Nicotiana tabacum). Our results show that H2S selectively inactivates IKIN and that this action parallels that of stomatal closure. These results confirm H2S as a unique factor regulating guard cell ion transport and indicate that H2S acts in a manner separable from that of ABA.  相似文献   

17.
18.
Halophyte species implement a “salt-including” strategy, sequestering significant amounts of Na+ to cell vacuoles. This requires a reduction of passive Na+ leak from the vacuole. In this work, we used quinoa (Chenopodium quinoa) to investigate the ability of halophytes to regulate Na+-permeable slow-activating (SV) and fast-activating (FV) tonoplast channels, linking it with Na+ accumulation in mesophyll cells and salt bladders as well as leaf photosynthetic efficiency under salt stress. Our data indicate that young leaves rely on Na+ exclusion to salt bladders, whereas old ones, possessing far fewer salt bladders, depend almost exclusively on Na+ sequestration to mesophyll vacuoles. Moreover, although old leaves accumulate more Na+, this does not compromise their leaf photochemistry. FV and SV channels are slightly more permeable for K+ than for Na+, and vacuoles in young leaves express less FV current and with a density unchanged in plants subjected to high (400 mm NaCl) salinity. In old leaves, with an intrinsically lower density of the FV current, FV channel density decreases about 2-fold in plants grown under high salinity. In contrast, intrinsic activity of SV channels in vacuoles from young leaves is unchanged under salt stress. In vacuoles of old leaves, however, it is 2- and 7-fold lower in older compared with young leaves in control- and salt-grown plants, respectively. We conclude that the negative control of SV and FV tonoplast channel activity in old leaves reduces Na+ leak, thus enabling efficient sequestration of Na+ to their vacuoles. This enables optimal photosynthetic performance, conferring salinity tolerance in quinoa species.The increasing problem of global land salinization (Flowers, 2004; Rengasamy, 2006) and its associated multibillion dollar losses in agricultural production require a better understanding of the key physiological mechanisms that confer salinity tolerance in crops. One effective way of gaining such knowledge comes from studying halophytes (Glenn et al., 1999; Flowers and Colmer, 2008; Shabala and Mackay, 2011).One of the prominent features of halophytes is their ability to efficiently sequester cytosolically toxic Na+ to the cell vacuole. The classic view is that this sequestration is achieved by tonoplast Na+/H+ antiporters (Barkla et al., 1995; Flowers and Colmer, 2008), a process energized by both vacuolar H+ pumps: ATPase (Ayala et al., 1996; Vera-Estrella et al., 1999; Wang et al., 2001) and pyrophosphatase (Parks et al., 2002; Vera-Estrella et al., 2005; Guo et al., 2006; Krebs et al., 2010). However, recent studies have added more complexity to the relationship between Na+/H+ antiporters and vacuolar Na+ sequestration, assigning a role to the transporter in the regulation of K+ and H+ homeostasis (for review, see Rodríguez-Rosales et al., 2009; Jiang et al., 2010; Bassil et al., 2011). Vacuolar Na+/H+ antiporters encoded by NHX genes have been shown to also act as K+/H+ antiporters, with a relatively weak selectivity between Na+ and K+. The Na+/K+ selectivity ratio, in turn, is regulated by vacuolar calmodulin in a pH- and Ca2+-dependent manner (Yamaguchi et al., 2005). Consequently, other transporters, in addition to and different from NHX, are likely to be involved in vacuolar Na+ sequestration. In addition, salt-induced up-regulation of Na+/H+ antiporter expression levels has been observed in leaves but not in roots (Cosentino et al., 2010), suggesting the importance of Na+ exclusion and intracellular sequestration, primarily in photosynthesizing cells. Thus, tissue- and species-specific differences in the respective mechanisms should be considered as well.Whatever the actual mechanisms are for intracellular Na+ sequestration, efficient Na+ pumping into vacuole is only one side of the coin. To confer salinity tolerance, toxic Na+ ions must be prevented from leaking back into the cytosol. Indeed, given the at least 4- to 5-fold concentration gradient between the vacuole and the cytosol (Shabala and Mackay, 2011) and a zero or slightly negative cytosol-to-vacuole voltage difference across the tonoplast, Na+ leakage from the vacuole is thermodynamically favorable. Thus, to avoid energy-consuming futile Na+ cycling between the cytosol and the vacuole, and to achieve efficient vacuolar sequestration of toxic Na+, passive tonoplast Na+ conductance has to be kept to an absolute minimum. This implies strict and efficient control over Na+-permeable tonoplast channels.Two major types of Na+-permeable channels are present in the tonoplast, the slow-activating (SV) and fast-activating (FV) vacuolar channels. The SV channel is permeable to both monovalent and divalent cations and is activated by cytosolic Ca2+ and positive vacuolar voltage (Hedrich and Neher, 1987; Ward and Schroeder, 1994; Pottosin et al., 1997, 2001). The FV channel is permeable for monovalent cations only, is activated by large voltages of either sign, and is inhibited by divalent cations from either side of the membrane (Tikhonova et al., 1997; Brüggemann et al., 1999a, 1999b). In Arabidopsis (Arabidopsis thaliana), SV channels are shown to be encoded by a TPC1 (for two-pore channel1) protein (Peiter et al., 2005; Pottosin and Schönknecht, 2007; Hedrich and Marten, 2011). Importantly, recent studies on mammalian two-pore channels have suggested that endolysosomal TPCs are, in fact, Na+-selective channels (Wang et al., 2012). In contrast, the molecular identity of FV channels remains elusive. Both SV and FV channels are ubiquitous and abundant (up to several copies per μm2) in plant tissues, including mesophyll cell vacuoles (Pottosin and Muñiz, 2002; Pottosin and Schönknecht, 2007). SV and FV channel activity is strongly controlled at physiologically attainable conditions (physiological tonoplast voltages and vacuolar and cytosolic divalent and polyvalent cation concentrations). Importantly, even with 0.1% to 1% of the total population of channels open at any one time, impressive monovalent cation currents in the range of tens of pA per vacuole can be conducted. This is equivalent to a current mediated by the whole vacuole population of H+ pumps (Hedrich et al., 1988). Thus, under saline conditions, SV and FV channel activity probably needs to be further reduced.Early attempts to unravel any dramatic differences between the properties of tonoplast cation channels in salt-tolerant and salt-sensitive plants did not yield a clear outcome. Ivashikina and Hedrich (2005) studied the voltage dependence of the SV channels in vacuoles from Arabidopsis cell culture and found that an increase in luminal Na+/K+ ratio, mimicking the accumulation of Na+ in vacuoles during salt stress, shifted the threshold for SV activation to positive potentials, reducing SV channel open probability under saline conditions. Maathuis and coworkers (1992) found significant SV channel activity in leaf vacuoles isolated from the extreme halophyte Suaeda maritima, even when plants were grown under high (200 mm) NaCl conditions. The estimated activity of the transporter at physiologically relevant cytosolic Ca2+ levels and relatively small transmembrane voltage differences was low. Thus, the authors suggested that, rather than possessing some specific salt-induced control over the SV channel, the transporter’s low activity would mean that even under highly saline conditions, it would consume only about 30% of the H+-ATPase-generated power. Further studies from this laboratory demonstrated that voltage gating, unitary conductance, and Na+/K+ selectivity (PK = PNa) of SV channels from roots of Plantago media (salt sensitive) and Plantago maritima (salt tolerant) were essentially the same (Maathuis and Prins, 1990). However, when both species were grown under saline conditions, the SV channel activity greatly diminished. Yet, based on the original data of this study, it is not possible to decipher whether the SV channel activity in the two species was the same or different under control conditions and whether it was a statistically significant difference between the salt-induced decrease in the open probability of SV channels between P. media and P. maritima. As for FV channels, we are not aware of a single study on their properties/expression in relation to the salt tolerance.While the total number of halophytic species is relatively small compared with glycophytes, it still amounts to at least several thousand species (Glenn et al., 1999; Flowers et al., 2010). Moreover, halophytes are present in about one-half of higher plant families (Flowers and Colmer, 2008). These species possess a wide range of anatomical and morphological features that may potentially enable their superior performance under saline conditions (Shabala and Mackay, 2011). Nonetheless, the extent to which the above considerations could be extrapolated to all halophytes remains to be assessed. In this work, we used quinoa (Chenopodium quinoa) mesophyll leaf vacuoles to address some of these issues. Quinoa is a facultative halophyte species that originates from the Andean region of South America and was domesticated for human consumption some 3,000 to 4,000 years ago. It can grow under extreme saline conditions with a soil electrical conductivity exceeding 40 dS m−1, approximately 500 mm NaCl (Jacobsen et al., 2003; Razzaghi et al., 2011). Optimal plant growth is usually observed at NaCl concentrations of around 100 mm (Hariadi et al., 2011), but this may be genotype specific (Adolf et al., 2012). Quinoa possesses some degree of leaf succulence as well as epidermal bladder cells (EBC), so it has the potential to employ two different sequestration strategies for cytosolic Na+ exclusion: internal (e.g. vacuolar sequestration) and external (sequestration in EBC). This makes quinoa an excellent model species to investigate the role of vacuolar Na+ sequestration in the overall salinity tolerance in this crop plant as well as to determine the contribution of SV and FV channels in this process. Here, we report a highly significant difference in SV and FV channel activity between old and young leaves of quinoa plants, a difference that is further enhanced under saline conditions. We conclude that the ability of quinoa plants to control ion leak via SV and FV tonoplast channels is essential for conferring salinity tolerance in this species. The possible implications of these findings for crop breeding for salinity tolerance are discussed.  相似文献   

19.
On the Inside     
Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls.Plant cell expansion and anisotropic cell growth are driven by vacuolar turgor pressure and cell wall extensibility, which in a dynamic and restrictive manner direct cell morphogenesis (Baskin, 2005). Cellulose is the major load-bearing component of the cell wall and is thus a major determinant for anisotropic growth (Baskin, 2001). Cellulose is made up of β-1,4-linked glucan chains that may aggregate to form microfibrils holding 18 to 36 chains (Somerville, 2006; Fernandes et al., 2011; Jarvis, 2013; Newman et al., 2013; Thomas et al., 2013). In contrast to cell wall structural polysaccharides, including pectin and hemicellulose, which are synthesized by Golgi-localized enzymes, cellulose is synthesized at the plasma membrane (PM) by cellulose synthase complexes (CSCs; Somerville, 2006; Scheller and Ulvskov, 2010; Atmodjo et al., 2013). The cellulose synthases (CESAs) are the principal catalytic units of cellulose biosynthesis and in higher plants are organized into globular rosettes (Haigler and Brown, 1986). For their biosynthetic function, each primary cell wall CSC requires a minimum of three catalytic CESA proteins (Desprez et al., 2007; Persson et al., 2007).On the basis of observations that cellulose microfibrils align with cortical microtubules (MTs) and that MT disruption leads to a loss of cell expansion, it was hypothesized that cortical MTs guide the deposition and, therefore, the orientation of cellulose (Green, 1962; Ledbetter and Porter, 1963; Baskin, 2001; Bichet et al., 2001; Sugimoto et al., 2003; Baskin et al., 2004; Wasteneys and Fujita, 2006). Confocal microscopy of CESA fluorescent fusions has advanced our understanding of CESA trafficking and dynamics. CSCs are visualized as small particles moving within the plane of the PM, with an average velocity of approximately 200 to 400 nm min−1. Their movement in linear tracks along cortical MTs (Paredez et al., 2006) supports the MT-cellulose alignment hypothesis.Our current understanding of cellulose synthesis suggests that CESAs are assembled into CSCs in either the endoplasmic reticulum (ER) or the Golgi apparatus and trafficked by vesicles to the PM (Bashline et al., 2014; McFarlane et al., 2014). The presence of CESAs in isolated Golgi and vesicles from the trans-Golgi network (TGN) has been established by proteomic studies (Dunkley et al., 2006; Drakakaki et al., 2012; Nikolovski et al., 2012; Parsons et al., 2012; Groen et al., 2014). Their localization at the TGN has been corroborated by electron microscopy and colocalization with TGN markers, such as vacuolar H+-ATP synthase subunit a1 (VHA-a1), and the Soluble NSF Attachment Protein Receptor (SNARE) protein SYNTAXIN OF PLANTS41 (SYP41), SYP42, and SYP61 (Crowell et al., 2009; Gutierrez et al., 2009; Drakakaki et al., 2012). A population of post-Golgi compartments carrying CSCs, referred to as microtubule-associated cellulose synthase compartments (MASCs) or small cellulose synthase compartments (SmaCCs), may be associated with MTs or actin filaments and are thought to be directly involved in either CSC delivery to, or internalization from, the PM (Crowell et al., 2009; Gutierrez et al., 2009).In addition to the CESAs, auxiliary proteins have been identified that play a vital role in the cellulose-synthesizing machinery. These include COBRA (Roudier et al., 2005), the endoglucanase KORRIGAN1 (KOR1; Lane et al., 2001; Lei et al., 2014b; Vain et al., 2014), and the recently identified POM-POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (POM2/CSI1; Gu et al., 2010; Bringmann et al., 2012). The latter protein functions as a linker between the cortical MTs and CSCs, as genetic lesions in POM2/CSI1 result in a lower incidence of coalignment between CSCs and cortical MTs (Bringmann et al., 2012). Given the highly regulated process of cellulose biosynthesis and deposition, it can be expected that many more accessory proteins participate in the delivery of CSCs and their interaction with MTs. Identification of these unique CSC-associated proteins can ultimately provide clues for the mechanisms behind cell growth and cell shape formation.Arabidopsis (Arabidopsis thaliana) mutants with defects in the cellulose biosynthetic machinery exhibit a loss of anisotropic growth, which results in organ swelling. This phenotype may be used as a diagnostic tool in genetic screens to identify cellulose biosynthetic and CSC auxiliary proteins (Mutwil et al., 2008). Chemical inhibitors complement genetic lesions to perturb, study, and control the cellular and physiological function of proteins (Drakakaki et al., 2009). A plethora of bioactive small molecules have been identified, and their analytical use contributes to our understanding of cellulose biosynthesis and CESA subcellular behavior (for review, see Brabham and Debolt, 2012). Small molecule treatment can induce distinct characteristic subcellular CESA patterns that can be broadly grouped into three categories (Brabham and Debolt, 2012). The first is characterized by the depletion of CESAs from the PM and their accumulation in cytosolic compartments, as observed for the herbicide isoxaben {N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl]-2,6-dimethyoxybenzamide}, CGA 325615 [1-cyclohexyl-5-(2,3,4,5,6-pentafluorophe-noxyl)-1λ4,2,4,6-thiatriazin-3-amine], thaxtomin A (4-nitroindol-3-yl containing 2,5-dioxopiperazine), AE F150944 [N2-(1-ethyl-3-phenylpropyl)-6-(1-fluoro-1-methylethyl)-1,3,5-triazine-2,4-di-amine], and quinoxyphen [4-(2-bromo-4,5-dimethoxyphenyl)-3,4-dihydro-1H-benzo-quinolin-2-one]; (Paredez et al., 2006; Bischoff et al., 2009; Crowell et al., 2009; Gutierrez et al., 2009; Harris et al., 2012). The second displays hyperaccumulation of CESAs at the PM, as seen for the herbicides dichlobenil (2,6-dichlorobenzonitrile) and indaziflam {N-[(1R,2S)-2,3-dihydro-2,6-dimethyl-1H-inden-1-yl)-6-(1-fluoroethyl]-1,3,5-triazine-2,4-diamine} (Herth, 1987; DeBolt et al., 2007b; Brabham et al., 2014). The third exhibits disturbance of both CESAs and MTs and alters CESA trajectories at the PM, as exemplified by morlin (7-ethoxy-4-methylchromen-2-one; DeBolt et al., 2007a). Unique compounds inducing a phenotype combining CESA accumulation in intermediate compartments and disruption of CSC-MT interactions can contribute to both the identification of the accessory proteins linking CSCs with MTs and the vesicular delivery mechanisms of CESAs.In this study, we identified and characterized a unique cellulose deposition inhibitor, the small molecule CESA TRAFFICKING INHIBITOR (CESTRIN), which affects the localization pattern of CSCs and their interacting proteins in a unique way. The induction of cytoplasmic CESTRIN bodies might provide further clues for trafficking routes that carry CESAs to the PM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号