首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Breast tumors are typically heterogeneous and contain diverse subpopulations of tumor cells with differing phenotypic properties. Planar cultures of cancer cell lines are not viable models of investigation of cell-cell and cell-matrix interactions during tumor development. This article presents an in vitro coculture-based 3-dimensional heterogeneous breast tumor model that can be used in drug resistance and drug delivery investigations. Breast cancer cell lines of different phenotypes (MDAMB231, MCF7, and ZR751) were cocultured in a rotating wall vessel bioreactor to form a large number of heterogeneous tumoroids in a single cell culture experiment. Cells in the rotating vessels were labeled with Cell Tracker fluorescent probes to allow for time course fluorescence microscopy to monitor cell aggregation. Histological sections of tumoroids were stained with hematoxylin and eosin, progesterone receptor, E-cadherin (E-cad), and proliferation marker ki67. In vitro tumoroids developed in this study recapture important features of the temporal-spatial organization of solid tumors, including the presence of necrotic areas at the center and higher levels of cell division at the tumor periphery. E-cad-positive MCF7 cells form larger tumoroids than E-cad-negative MDAMB231 cells. In heterogeneous tumors, the irregular surface roughness was mainly due to the presence of MDAMB231 cells, whereas MCF7 cells formed smooth surfaces. Moreover, when heterogeneous tumoroids were placed onto collagen gels, highly invasive MDAMB231 cell-rich surface regions produced extensions into the matrix, whereas poorly invasive MCF7 cells did not. The fact that one can form a large number of 1-mm tumoroids in 1 coculture attests to the potential use of this system at high-throughput investigations of cancer drug development and drug delivery into the tumor.  相似文献   

2.
The interferon induced, dsRNA-activated, protein kinase, PKR, is a key regulator of translational initiation, playing an important role in the regulation of cell proliferation, apoptosis and transformation. PKR levels correlate inversely with proliferative activity in several human tumor systems. This inverse relationship breaks down in human invasive ductal breast carcinomas which exhibit high levels of PKR (Haines et al., Tumor Biol. 17 (1996) 5-12). Consistent with the data from human tumors, the levels of PKR in several breast carcinoma cell lines, MCF7, T47D, BT20, MDAMB231 and MDAMB468, are paradoxically high compared to those found in the normal breast cell lines MCF10A and Hs578Bst. The activity of affinity- or immuno-purified PKR from MCF7, T47D, and BT20 cells appears to be severely attenuated, as judged by its ability to autophosphorylate, or phosphorylate eIF2 alpha. Furthermore, the activity of the kinase from breast carcinoma cells is refractory to stimulation by dsRNA or heparin. However, PKR from breast carcinoma cells remains functional with respect to its ability to bind dsRNA. The activity of PKR from MCF10A cells is reduced by prior incubation with extracts from MCF7 cells, suggesting that MCF7 extracts contain a transdominant inhibitor of PKR. Deregulation of PKR may therefore provide a mechanism for the development or maintenance of a transformed phenotype of human breast carcinomas, mimicking the effects of manipulation of PKR or eIF2 activity observed in experimental systems. Thus, breast carcinomas may provide the first indication of a role for PKR in the pathogenesis of a naturally occurring human cancer.  相似文献   

3.

Background

Clotrimazole is an azole derivative with promising anti-cancer effects. This drug interferes with the activity of glycolytic enzymes altering their cellular distribution and inhibiting their activities. The aim of the present study was to analyze the effects of clotrimazole on the growth pattern of breast cancer cells correlating with their metabolic profiles.

Methodology/Principal Findings

Three cell lines derived from human breast tissue (MCF10A, MCF-7 and MDA-MB-231) that present increasingly aggressive profiles were used. Clotrimazole induces a dose-dependent decrease in glucose uptake in all three cell lines, with Ki values of 114.3±11.7, 77.1±7.8 and 37.8±4.2 µM for MCF10A, MCF-7 and MDA-MB-231, respectively. Furthermore, the drug also decreases intracellular ATP content and inhibits the major glycolytic enzymes, hexokinase, phosphofructokinase-1 and pyruvate kinase, especially in the highly metastatic cell line, MDA-MB-231. In this last cell lineage, clotrimazole attenuates the robust migratory response, an effect that is progressively attenuated in MCF-7 and MCF10A, respectively. Moreover, clotrimazole reduces the viability of breast cancer cells, which is more pronounced on MDA-MB-231.

Conclusions/Significance

Clotrimazole presents deleterious effects on two human breast cancer cell lines metabolism, growth and migration, where the most aggressive cell line is more affected by the drug. Moreover, clotrimazole presents little or no effect on a non-tumor human breast cell line. These results suggest, at least for these three cell lines studied, that the more aggressive the cell is the more effective clotrimazole is.  相似文献   

4.
Carcinoma-associated fibroblasts (CAF) are considered to contribute to tumor growth, invasion and metastasis. However, the cell type of origin remains unknown. Since human adipose tissue-derived stem cells (hASCs) are locally adjacent to breast cancer cells and might directly interact with tumor cells, we investigated whether CAFs may originate from hASCs. We demonstrated that a significant percentage of hASCs differentiated into a CAF-like myofibroblastic phenotype (e.g., expression of alpha smooth muscle actin and tenascin-C) when exposed to conditioned medium from the human breast cancer lines MDAMB231 and MCF7. The conditioned medium from MDAMB231 and MCF7 contains significant amounts of transforming growth factor-beta 1 (TGFβ1) and the differentiation of hASCs towards CAFs is dependent on TGFβ1 signaling via Smad3 in hASCs. The induction of CAFs can be abolished using a neutralizing antibody to TGFβ1 as well as by pretreatment of the hASCs with SB431542, a TGFβ1 receptor kinase inhibitor. Additionally, we found that these hASC-derived CAF-like cells exhibit functional properties of CAFs, including the ability to promote tumor cell invasion in an in vitro invasion assay, as well as increased expression of stromal-cell-derived factor 1 (SDF-1) and CCL5. Taken together, these data suggest that hASCs are a source of CAFs which play an important role in the tumor invasion.  相似文献   

5.
The natural antioxidant flavonoid diosmin, found in citric fruits, showed low antioxidant properties among other flavonoids due to its structural characteristics and low cytotoxicity against lung (A549) and breast (T47D, SKBR3 and MDAMB231) cancer cell lines. The anticancer behavior has been improved by the metal complex generated with the flavonoid and the oxidovanadium(IV) ion. This new complex, [VO(dios)(OH)3]Na5·6H2O (VOdios), has been synthesized and characterized both in solid and solution states. The interaction of the metal ion through the sugar moiety of diosmin precluded the improvement of the antioxidant effects. However, the cell-killing effects tested in human lung A549 and breast T47D, SKBR3 and MDAMB231 cancer cell lines, were enhanced by complexation. The anti-proliferative effects on the human lung cancer cell line were accompanied by cellular ROS generation and an increase in cytoplasm condensation. The breast cancer cell lines did not produce caspase3/7 activation, mitochondrial potential reduction and ROS generation. Therefore, a non-apoptotic form of cell death in a caspase- and oxidative stress-independent manner has been proposed. The protein binding ability has been monitored by the quenching of tryptophan emission in the presence of the compounds using bovine serum albumin (BSA) as a model protein. Both compounds could be distributed and transported in vivo and the complex displayed stronger binding affinity and higher contributions to the hydrogen bond and van der Waals forces.  相似文献   

6.
Breast cancer remains a world-wide challenge, and additional anti-cancer therapies are still urgently needed. Emerging evidence has demonstrated the potent anti-tumor effect of biguanides, among which phenformin was reported to potentially be a more active anti-cancer agent than metformin. However, little attention has been given to the role of phenformin in breast cancer. In this study, we reveal the role of phenformin in cell death of the MCF7, ZR-75-1, MDA-MB-231 and SUM1315 breast cancer cell lines. The respective IC50 values of phenformin in MCF7, ZR-75-1, MDA-MB-231 and SUM1315 cells were 1.184±0.045 mM, 0.665±0.007 mM, 2.347±0.010 mM and 1.885±0.015 mM (mean± standard error). Phenformin induced cell cycle change and apoptosis in breast cancer cells via the AMPK/mTOR/p70s6k and MAPK/ERK pathways. Interestingly, phenformin induced MET (mesenchymal-epithelial transition) and decreased the migration rate in breast cancer cell lines. Furthermore, our results suggest that phenformin inhibits breast cancer cell metastasis after intracardiac injection into nude mice. Taken together, our study further confirms the potential benefit of phenformin in breast cancer treatment and provides novel mechanistic insight into its anti-cancer activity in breast cancer.  相似文献   

7.
Epidemiological studies suggest that precursor steroids are implicated in the aetiology of breast cancer. However, our understanding of the role of precursor steroids in breast cancer is complicated by fact that there are many precursor steroids, which are metabolically inter-related and have divergent proliferative activities on the growth of breast cancer cell lines. In this study the proliferative affects of 5 alpha-dihydrotestosterone and 5-androstene-3 beta,17 beta-diol, which may be considered true metabolites acting at a tissue level, on MCF7, T47D and MDAMB231 breast cancer cell lines have been examined by a flow cytometric technique. DNA cell cycle analysis demonstrates that 5-androstene-3 beta,17 beta-diol stimulates the proliferation of hormone-dependent cell lines at physiological levels by an oestrogen receptor mediated mechanism whereas 5 alpha-dihydrotestosterone does not affect the proliferation of MCF7 and T47D cell lines at physiological levels over short (48 h) incubations. Both 5 alpha-dihydrotestosterone and 5-androstene-3 beta,17 beta-diol stimulate proliferation of hormone-dependent cell lines at pharmacological levels via and interaction with the oestrogen receptor. In long (6-9 days) incubations both 5 alpha-dihydrotestosterone and 5-androstene-3 beta,17 beta-diol inhibit the 17 beta-oestradiol induced proliferation of MCF7 and T47D cell lines, however, 5 alpha-dihydrotestosterone inhibits while 5-androstene-3 beta,17 beta-diol stimulates basal proliferation. These cell line studies suggest a model for the role of precursor steroids in pre- and postmenopausal breast cancer.  相似文献   

8.
Different cancer cells exhibit altered sensitivity to metformin treatment. Recent studies suggest these findings may be due in part to the common cell culture practice of utilizing high glucose, and when glucose is lowered, metformin becomes increasingly cytotoxic to cancer cells. In low glucose conditions ranging from 0 to 5 mM, metformin was cytotoxic to breast cancer cell lines MCF7, MDAMB231 and SKBR3, and ovarian cancer cell lines OVCAR3, and PA-1. MDAMB231 and SKBR3 were previously shown to be resistant to metformin in normal high glucose medium. When glucose was increased to 10 mM or above, all of these cell lines become less responsive to metformin treatment. Metformin treatment significantly reduced ATP levels in cells incubated in media with low glucose (2.5 mM), high fructose (25 mM) or galactose (25 mM). Reductions in ATP levels were not observed with high glucose (25 mM). This was compensated by enhanced glycolysis through activation of AMPK when oxidative phosphorylation was inhibited by metformin. However, enhanced glycolysis was either diminished or abolished by replacing 25 mM glucose with 2.5 mM glucose, 25 mM fructose or 25 mM galactose. These findings suggest that lowering glucose potentiates metformin induced cell death by reducing metformin stimulated glycolysis. Additionally, under low glucose conditions metformin significantly decreased phosphorylation of AKT and various targets of mTOR, while phospho-AMPK was not significantly altered. Thus inhibition of mTOR signaling appears to be independent of AMPK activation. Further in vivo studies using the 4T1 breast cancer mouse model confirmed that metformin inhibition of tumor growth was enhanced when serum glucose levels were reduced via low carbohydrate ketogenic diets. The data support a model in which metformin treatment of cancer cells in low glucose medium leads to cell death by decreasing ATP production and inhibition of survival signaling pathways. The enhanced cytotoxicity of metformin against cancer cells was observed both in vitro and in vivo.  相似文献   

9.
Alepterolic acid is a natural diterpenoid isolated from Aleuritopteris argentea with potential anti-cancer activity. In this study, alepterolic acid was modified to construct a series of arylformyl piperazinyl derivatives ( 3a – 3p ). The synthesized derivatives were fully characterized with HRMS, NMR, and IR. Four compounds with inhibition rate higher than 30 % at 10 μM ( 3f , 3n , 3g and 3k ) were further measured to obtain the IC50 values against four cancer cell lines, including hepatoma cell lines HepG2, lung cancer cell lines A549, estrogen receptor-positive cell lines MCF7, and triple-negative breast cancer (TNBC) cell lines MDA-MB-231 by MTT assay. It was found that these compounds were more effective to HepG2 and MDA-MB-231 cells, while less toxic to A549 and MCF7 cells, and compound 3n as the most toxic derivatve against MDA-MB-231 cell lines, with IC50 value of 5.55±0.56 μM. Trypan blue staining and colony formation assay showed that compound 3n inhibited the growth of MDA-MB-231 cells and prevented colony formation. Hoechst staining, flow cytometry and western blot analysis revealed that compound 3n induced caspase-dependent apoptosis in MDA-MB-231 cells. Conclusively, compound 3n was demonstrated to be a potential anti-cancer lead compound for further investigation.  相似文献   

10.
Pathology is fundamental in grading, staging, and treatment planning of malignancies. One relatively novel biomarker that may become more important in therapy and diagnostics is the chemokine receptor 4 (CXCR4). Ac-TZ14011 peptide derivatives, functionalized with a radiolabel, can be used for molecular imaging of tumors. Direct fluorescent labeling of the small peptide Ac-TZ14011 with the fluorescent dye fluorescein isothiocyanate (FITC), however, provides an alternative for the detection of CXCR4 expression levels in cells and tumor tissue. In this study, Ac-TZ14011-FITC was validated for CXCR4 staining in human breast cancer cell lines MDAMB231 and MDAMB231(CXCR4+) during flow cytometric analysis. Its efficacy was compared to commercially available antibodies. Competition experiments validated the staining specificity. Confocal imaging revealed that CXCR4 staining was predominantly found on the cell membrane and/or in vesicles formed after endocytosis. Next to being able to differentiate "high" and "low" CXCR4-expressing tumor cells, the fluorescent peptide demonstrates potential in fluorescent immunohistochemistry of tumor tissue. Ac-TZ14011-FITC was able to differentiate MDAMB231 from MDAMB231(CXCR4+) tumor cells and tissue, proving its applicability in the detection of differences in CXCR4 expression levels.  相似文献   

11.
Methionine and homocysteine are metabolites in the transmethylation pathway leading to synthesis of the methyl-donor S-adenosylmethionine (SAM). Most cancer cells stop proliferating during methionine stress conditions, when methionine is replaced in the growth media by its immediate metabolic precursor homocysteine (Met-Hcy+). Non-transformed cells proliferate in Met-Hcy+ media, making the methionine metabolic requirement of cancer cells an attractive target for therapy, yet there is relatively little known about the molecular mechanisms governing the methionine stress response in cancer cells. To study this phenomenon in breast cancer cells, we selected methionine-independent-resistant cell lines derived from MDAMB468 breast cancer cells. Resistant cells grew normally in Met-Hcy+ media, whereas their parental MDAMB468 cells rapidly arrest in the G1 phase. Remarkably, supplementing Met-Hcy+ growth media with S-adenosylmethionine suppressed the cell proliferation defects, indicating that methionine stress is a consequence of SAM limitation rather than low amino acid concentrations. Accordingly, mTORC1 activity, the primary effector responding to amino acid limitation, remained high. However, we found that levels of the replication factor Cdc6 decreased and pre-replication complexes were destabilized in methionine-stressed MDAMB468 but not resistant cells. Our study characterizes metabolite requirements and cell cycle responses that occur during methionine stress in breast cancer cells and helps explain the metabolic uniqueness of cancer cells.  相似文献   

12.
13.

Drug resistance is a major challenge of breast and colon cancer therapies leading to treatment failure. The main objective of the current study is to investigate whether selenium nanoparticles (nano-Se) can induce the chemo-sensitivity of 5-fluorouracil (FU)-encapsulated poly (D, L-lactide-co-glycolide) nanoparticles (nano-FU) in breast and colon cancer cell lines. Nano-Se and nano-FU were synthesized and characterized, then applied individually or in combination upon MCF7, MDA-MB-231, HCT 116, and Caco-2 cancerous cell lines. Cytotoxicity, cellular glucose uptake, and apoptosis, as well as malondialdehyde (MDA), nitric oxide (NO), and zinc (Zn) levels, were investigated upon the different treatments. We have resulted that nano-FU induced cell death in MCF7 and Caco-2 more effectively than MDA-MB-231 and HCT 116 cell lines. Moreover, nano-FU plus nano-Se potentiate MCF7 and Caco-2 chemo-sensitivity were higher than MDA-MB-231 and HCT 116 cancerous cell lines. It is relevant to note that Se and FU nano-formulations inhibited cancer cell bioenergetics via glucose uptake slight blockage. Furthermore, nano-FU increased the levels of NO and MDA in media over cancer cells, while their combinations with nano-Se rebalance the redox status with Zn increment. We noticed that MCF7 cell line is sensitive, while MDA-MB-231 cell line is resistant to Se and nano-Se. This novel approach could be of great potential to enhance the chemo-sensitivity in breast and colon cancer cells.

  相似文献   

14.
Methionine and homocysteine are metabolites in the transmethylation pathway leading to synthesis of the methyl-donor S-adenosylmethionine (SAM). Most cancer cells stop proliferating during methionine stress conditions, when methionine is replaced in the growth media by its immediate metabolic precursor homocysteine (Met-Hcy+). Non-transformed cells proliferate in Met-Hcy+ media, making the methionine metabolic requirement of cancer cells an attractive target for therapy, yet there is relatively little known about the molecular mechanisms governing the methionine stress response in cancer cells. To study this phenomenon in breast cancer cells, we selected methionine-independent-resistant cell lines derived from MDAMB468 breast cancer cells. Resistant cells grew normally in Met-Hcy+ media, whereas their parental MDAMB468 cells rapidly arrest in the G1 phase. Remarkably, supplementing Met-Hcy+ growth media with S-adenosylmethionine suppressed the cell proliferation defects, indicating that methionine stress is a consequence of SAM limitation rather than low amino acid concentrations. Accordingly, mTORC1 activity, the primary effector responding to amino acid limitation, remained high. However, we found that levels of the replication factor Cdc6 decreased and pre-replication complexes were destabilized in methionine-stressed MDAMB468 but not resistant cells. Our study characterizes metabolite requirements and cell cycle responses that occur during methionine stress in breast cancer cells and helps explain the metabolic uniqueness of cancer cells.  相似文献   

15.
In order to measure the formation and degradation rates of estradiol by human breast cancer cells, after assessing the biochemical basis of hormone responsiveness and growth response to estrogens, we considered both responsive, estrogen receptor (ER) positive, and non-responsive, ER-negative, breast cancer cell lines, i.e. MCF7, ZR75-1 and MDA-MB231. To this end, we employed a novel “intact cell” approach which allows us, after 24 h incubation, to analyze several enzyme activities in sequence, concurrently with the monitoring of labeled precursor degradation. Our investigations led to the following evidence: (a) the reductive activity of the 17β-hydroxysteroid oxoreductase (17β-HSOR) appears to be higher than the oxidative only in responsive, ER-rich MCF7 and ZR75-1 cells, as also previously observed by others; (b) this activity is, on the contrary, much lower in MDA-MB231 cells and other unresponsive, ER-poor breast cancer cell lines; (c) conversely, the oxidative activity shows an opposite pattern, being limited in MCF7 and ZR75-1 cells and much higher in MDA-MB231 cells. Overall, a 17β-HSOR reductive pathway prevails in both MCF7 and ZR75-1 cells, whilst the oxidative pathway is prevalent in MDA-MB231 cells, leading to a large formation of estrone that is no further metabolized, at least in the experimental conditions used. Our results may provide a likely explanation of previous data on the different estrogen content of breast tumor tissues.  相似文献   

16.
To investigate the effects of PA‐MSHA (Pseudomonas aeruginosa‐mannose sensitive hemagglutinin) on inhibiting proliferation of breast cancer cell lines and to explore its mechanisms of action in human breast cancer cells. MCF‐10A, MCF‐7, MDA‐MB‐468, and MDA‐MB‐231HM cells were treated with PA‐MSHA or PA (Heat‐killed P. aeruginosa) at different concentrations and different times. Changes of cell super‐microstructure were observed by transmission electron microscopy. Cell cycle distribution and apoptosis induced by PA‐MSHA were measured by flow cytometry (FCM) with PI staining, ANNEXIN V‐FITC staining and Hoechst33258 staining under fluorescence microscopy. Western blot was used to evaluate the expression level of apoptosis‐related molecules. A time‐dependent and concentration‐dependent cytotoxic effect of PA‐MSHA was observed in MDA‐MB‐468 and MDA‐MB‐231HM cells but not in MCF‐10A or MCF‐7 cells. The advent of PA‐MSHA changed cell morphology, that is to say, increases in autophagosomes, and vacuoles in the cytoplasm could also be observed. FCM with PI staining, ANNEXIN V‐FITC and Hoechst33258 staining showed that the different concentrations of PA‐MSHA could all induce the apoptosis and G0–G1 cell cycle arrest of breast cancer cells. Cleaved caspase 3, 8, 9, and Fas protein expression levels were strongly associated with an increase in apoptosis of the breast cancer cells. There was a direct relationship with increased concentrations of PA‐MSHA but not of PA. Completely different from PA, PA‐MSHA may impart antiproliferative effects against breast cancer cells by inducing apoptosis mediated by at least a death receptor‐related cell apoptosis signal pathway, and affecting the cell cycle regulation machinery. J. Cell. Biochem. 108: 195–206, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
In our study, we aimed to investigate the role of CDR1as during competitive inhibition of miR‐7 in the regulation of cisplatin chemosensitivity in breast cancer via regulating REGγ. RT‐qPCR was applied to detect the expression of CDR1as and miR‐7 in breast cancer tissues, breast cancer cell lines and corresponding drug‐resistant cell lines. The correlation between CDR1as and miR‐7 and between miR‐7 and REGγ was evaluated. MCF‐7‐R and MDA‐MB‐231‐R cells were selected followed by transfection of a series of mimics, inhibitors or siRNA. The effect of CDR1as on the half maximal inhibitor concentration (IC50), cisplatin sensitivity and cell apoptosis was also analysed. Furthermore, a subcutaneous xenograft nude mouse model was established to further confirm the effect of CDR1as on the chemosensitivity of breast cancer to cisplatin in vivo. Immunohistochemical staining was conducted to test the Ki‐67 expression in nude mice. A positive correlation was found between the drug resistance and CDR1as expression in breast cancer. CDR1as could increase the resistance of breast cancer cells to cisplatin. miR‐7 expression was low, while REGγ was highly expressed in MCF‐7‐R and MDA‐MB‐231‐R cells. CDR1as competitively inhibited miR‐7 and up‐regulated REGγ. Overexpression of miR‐7 could reverse the enhanced sensitivity of silenced CDR1as to drug‐resistant breast cancer cells. Additionally, in vivo experiments demonstrated that CDR1as mediated breast cancer occurrence and its sensitivity to cisplatin. Silencing CDR1as decreased Ki‐67 expression. Silencing CDR1as may inhibit the expression of REGγ by removing the competitive inhibitory effect on miR‐7 and thus enhancing the sensitivity of drug‐resistant breast cancer cells.  相似文献   

18.
探讨miR-5047在乳腺癌细胞中的表达及其在乳腺癌细胞增殖和迁移中的作用,并明确地西他滨在miR-5047表达调控中的作用。通过实时荧光定量PCR(qRT-PCR)检测人乳腺癌细胞系和正常乳腺上皮细胞MCF10A中miR-5047的表达水平;将miR-5047模拟物(mimic),阴性对照(NC)分别转染至MDA-MB-231和MCF7细胞,经平板克隆实验、MTT实验、划痕愈合实验检测乳腺癌细胞的增殖和迁移能力,通过qRT-PCR和Western blot检测相关基因表达及蛋白水平。使用浓度5 μmol/L和10 μmol/L的地西他滨分别处理MDA-MB-231和MCF-7细胞,经qRT-PCR检测不同浓度和处理时间条件下地西他滨对miR-5047表达的影响。同时,通过形态观察和Western blot检测地西他滨对乳腺癌细胞上皮间质转化的影响。与正常乳腺上皮细胞MCF-10A相比,miR-5047在乳腺癌细胞中表达均显著下调。miR-5047过表达可显著抑制乳腺癌细胞的增殖和迁移,促进上皮细胞标志物E-cadherin的表达,抑制间质细胞标志物Vimentin的表达。不同浓度地西他滨处理MDA-MB-231和MCF7细胞后,miR-5047表达均增强,且10 μmol/L作用48 h效果最显著。地西他滨可诱导MDA-MB-231细胞向上皮样转变。miR-5047在乳腺癌细胞系中表达显著下调,过表达miR-5047可抑制乳腺癌细胞的增殖和迁移,地西他滨可促进乳腺癌细胞中miR-5047的表达,并诱导细胞向上皮样转变。  相似文献   

19.
Aberrant constitutive expression of the NF‐κB c‐Rel and RelA subunits in breast cancer cells was shown to promote their survival. Recently, we demonstrated that aggressive breast cancers constitutively express high levels of the RelB subunit, which promotes their more invasive phenotype via induction of the BCL2 gene. As these cancers are frequently resistant to therapy, here we tested the hypothesis that RelB promotes their survival. High RelB expressing Hs578T and MDA‐MB‐231 breast cancer cells were more resistant to γ‐radiation than MCF7 and ZR‐75 cells, which express lower RelB levels. Knockdown of RelB in Hs578T led to decreased survival in response to γ‐irradiation, while conversely ectopic expression of RelB in MCF7 cells protected these cells from radiation. Similar data were obtained upon treatment of Hs578T or MCF7 cells with the chemotherapeutic agent doxorubicin. High serum levels of 25‐hydroxyvitamin D are associated with decreased breast cancer risk and mortality, although, the mechanisms of its protective actions have not been fully elucidated. Treatment of Hs578T and Her‐2/neu‐driven NF639 cells with 1,25‐dihydroxyvitamin D3 decreased RelB/RELB gene expression and levels of pro‐survival targets Survivin, MnSOD and Bcl‐2, while increasing their sensitivity to γ‐irradiation. Thus, RelB, which promotes survival and a more highly invasive phenotype of breast cancer cells, is a target of 1,25‐dihydroxyvitamin D3, providing one mechanism for the observed protective role of 25‐hydroxyvitamin D in patients with breast cancer. J. Cell. Physiol. 220: 593–599, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Breast cancer has a diverse aetiology characterized by the heterogeneous expression of hormone receptors and signalling molecules, resulting in varied sensitivity to chemotherapy. The adverse side effects of chemotherapy coupled with the development of drug resistance have prompted the exploration of natural products to combat cancer. Lactoferricin B (LfcinB) is a natural peptide derived from bovine lactoferrin that exhibits anticancer properties. LfcinB was evaluated in vitro for its inhibitory effects on cell lines representing different categories of breast cancer and in vivo for its suppressive effects on tumour xenografts in NOD-SCID mice. The different breast cancer cell lines exhibited varied levels of sensitivity to apoptosis induced by LfcinB in the order of SKBR3>MDA-MB-231>MDA-MB-468>MCF7, while the normal breast epithelial cells MCF-10A were not sensitive to LfcinB. The peptide also inhibited the invasion of the MDA-MB-231 and MDA-MB-468 cell lines. In the mouse xenograft model, intratumoural injections of LfcinB significantly reduced tumour growth rate and tumour size, as depicted by live imaging of the mice using in vivo imaging systems (IVIS). Harvested tumour volume and weight were significantly reduced by LfcinB treatment. LfcinB, therefore, is a promising and safe candidate that can be considered for the treatment of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号