首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of mouse major histocompatibility complex (MHC) class I molecules in different cell lines derived from Syrian hamsters has revealed antigen presentation deficiencies of some H2 allelic products in two cell lines (BHK and NIL-2) which were overcome by transient expression of the rat transporter associated with antigen processing (TAP; Lobigs et al. 1995). Here we show that in both cell lines the endogenous MHC class I cell surface expression was completely down-regulated. Lymphokine treatment induced endogenous and recombinant mouse MHC class I cell surface expression to levels similar to that in other Syrian hamster cell lines competent for antigen presentation through transduced H2 molecules. Accordingly, constitutive downregulation of expression of accessory molecules of the MHC class I pathway can reveal differences between H2 class I alleles in antigen presentation not encountered when the expression levels are augmented. In addition to the differential expression of MHC class I pathway genes, two cell lines representing competent (FF) and defective (BHK) antigen presentation phenotypes for mouse class I MHC restriction elements demonstrated substantial sequence polymorphism in Tap1 but not Tap2. Cytokine-treated FF or BHK cells and human TAP-deficient T2 cells transfected with FF or BHK TAP1 in combination with FF TAP2 differed in their preference for C-terminal peptide residues, as shown by an in vitro peptide transport assay. Thus, polymorphic residues in TAP1 can influence the substrate selectivity of the Syrian hamster peptide transporter.  相似文献   

2.
3.
4.
Due to their unique capacity to self-renew and for multiple differentiation, stem cells are considered promising candidates for cell replacement therapy in many devastating diseases. However, studies on immune rejection, which is a major problem facing successful stem cell therapy, are rare. In this study, we examined MHC expression in the M13SV1 cell line, which has previously been shown to have stem cell properties and to be non-tumorigenic, in order to determine whether human adult stem cells might be rejected after transplantation. Our results show low expression levels of MHC class I molecules on the surface of these cells. An induction of MHC class I expression was observed when the cells were treated with IFN-gamma. Maximal induction of MHC class protein expression was observed at 48 h after treatment with concentrations above 5 ng/ml of IFN-gamma. Elevated MHC class I levels were sustained for 72 h after withdrawing IFN-gamma. Therefore, we introduced human cytomegalovirus (hCMV) US genes, which are known to be able to reduce MHC class I expression on the cell surface after infection, into M13SV1 cells. Cells transfected with the hCMV US2, US3, US6 or US11 genes exhibited a reduction (40-60%) of MHC class I expression compared with mock-transfected cells. These results suggest that human adult stem cells are capable of expressing high levels of MHC class I proteins, and thus may be rejected on transplantation unless they are modified. In addition, viral stealth mechanisms can be exploited for stem cell transplantation.  相似文献   

5.
Tumor cells treated with IL-10 were shown to have decreased, but peptide-inducible expression of MHC class I, decreased sensitivity to MHC class I-restricted CTL, and increased NK sensitivity. These findings could be explained, at least partially, by a down-regulation of TAP1/TAP2 expression. In this study, IT9302, a nanomeric peptide (AYMTMKIRN), homologous to the C-terminal of the human IL-10 sequence, was demonstrated to mimic these previously described IL-10 effects on MHC class I-related molecules and functions. We observed a dose-dependent down-regulation of MHC class I at the cell surface of melanoma cells after 24-h treatment with IT9302. The IL-10 homologue peptide also caused a dose-dependent inhibition of the IFN-gamma-mediated surface induction of MHC class I in a melanoma cell line. We demonstrated, using Western blot and flow cytometry, that IT9302 inhibits the expression of TAP1 and TAP2 proteins, but not MHC class I H chain or low molecular protein molecules. Finally, peptide-treated melanoma cells were shown to be more sensitive to lysis by NK cells in a dose-dependent way. Taken together, these results demonstrate that a small synthetic peptide derived from IL-10 can mimic the Ag presentation-related effects mediated by this cytokine in human melanomas and increase tumor sensitivity to NK cells, which can be relevant in the designing of future strategies for cancer immune therapy.  相似文献   

6.
7.
Within the adaptive immune system the transporter associated with antigen processing (TAP) plays a pivotal role in loading of peptides onto major histocompatibility (MHC) class I molecules. As a central tool to investigate the structure and function of the TAP complex, we created cysteine-less human TAP subunits by de novo gene synthesis, replacing all 19 cysteines in TAP1 and TAP2. After expression in TAP-deficient human fibroblasts, cysteine-less TAP1 and TAP2 are functional with respect to adenosine triphosphate (ATP)-dependent peptide transport and inhibition by ICP47 from herpes simplex virus. Cysteine-less TAP1 and TAP2 restore maturation and intracellular trafficking of MHC class I molecules to the cell surface.  相似文献   

8.
CD1d molecules are structurally similar to MHC class I, but present lipid antigens as opposed to peptides. Here, we show that MHC class I molecules physically associate with (and regulate the functional expression of) mouse CD1d on the surface of cells. Low pH (3.0) acid stripping of MHC class I molecules resulted in increased surface expression of murine CD1d on antigen presenting cells as well as augmented CD1d-mediated antigen presentation to NKT cells. Consistent with the above results, TAP1-/- mice were found to have a higher percentage of type I NKT cells as compared to wild type mice. Moreover, bone marrow-derived dendritic cells from TAP1-/- mice showed increased antigen presentation by CD1d compared to wild type mice. Together, these results suggest that MHC class I molecules can regulate NKT cell function, in part, by masking CD1d.  相似文献   

9.
The transporter associated with antigen processing (TAP) binds peptides in its cytosolic part and subsequently translocates the peptides into the lumen of the endoplasmic reticulum (ER), where assembly of major histocompatibility complex (MHC) class I and peptide takes place. Tapasin is a subunit of the TAP complex and binds both to TAP1 and MHC class I. In the absence of tapasin, the assembly of MHC class I in the ER is impaired, and the surface expression is reduced. To clarify the function of tapasin in the processing of antigenic peptides, we studied the interaction of peptide and TAP, peptide transport across the membrane of the ER, and association of peptides with MHC class I molecules in the microsomes derived from tapasin mutant cell line 721.220, its sister cell line 721.221 expressing tapasin, and their HLA-A2 transfectants. The binding of peptides to TAP in tapasin mutant 721.220 cells was significantly diminished in comparison with 721.221 cells. Impaired peptide-TAP interaction resulted in a defective peptide transport in tapasin mutant 721.220 cells. Interestingly, despite the diminished peptide binding to TAP, the transport rate of TAP-associated peptides was not significantly altered in 721.220 cells. After transfection of tapasin cDNA into 721.220 cells, efficient peptide-TAP interaction was restored. Thus, we conclude that tapasin is required for efficient peptide-TAP interaction.  相似文献   

10.
BACKGROUND: The transporter associated with antigen processing (TAP), a member of the family of ABC transporters, plays a crucial role in the processing and presentation of the major histocompatibility complex (MHC) class I restricted antigens. TAP transports peptides from the cytosol into the endoplasmic reticulum, thereby selecting peptides matching in length and sequence to respective MHC class I molecules. Upon loading on MHC class I molecules, the trimeric MHC class I/beta2-microglobulin/ peptide complex is then transported to the cell surface and presented to CD8+ cytotoxic T cells. Abnormalities in MHC class I surface expression have been found in a number of different malignancies, including tumors of distinct histology, viral infections, and autoimmune diseases, and therefore represent an important mechanism of malignant or virus-infected cells to escape proper immune response. In many cases, this downregulation has been attributed to impaired TAP expression, which could be due to structural alterations or dysregulation. This review summarizes the physiology and pathophysiology of TAP, thereby focusing on its function in immune responses and its role in human diseases.  相似文献   

11.
12.
13.
Kim Y  Park B  Cho S  Shin J  Cho K  Jun Y  Ahn K 《PLoS pathogens》2008,4(8):e1000123
Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses.  相似文献   

14.
The human cytomegalovirus gene product US6 inhibits ATP binding by TAP   总被引:7,自引:0,他引:7  
Human cytomegalovirus (HCMV) encodes several genes that disrupt the major histocompatibility complex (MHC) class I antigen presentation pathway. We recently described the HCMV-encoded US6 gene product, a 23 kDa endoplasmic reticulum (ER)-resident type I integral membrane protein that binds to the transporter associated with antigen processing (TAP), inhibits peptide translocation and prevents MHC class I assembly. The functional consequence of this inhibition is to prevent the cell surface expression of class I bound viral peptides and their recognition by HCMV-specific cytotoxic T cells. Here we describe a novel mechanism of action for US6. We demonstrate that US6 inhibits the binding of ATP by TAP1. This is a conformational effect, as the ER lumenal domain of US6 is sufficient to inhibit ATP binding by the cytosolic nucleotide binding domain of TAP1. US6 also stabilizes TAP at 37 degrees C and prevents conformational rearrangements induced by peptide binding. Our findings suggest that the association of US6 with TAP stabilizes a conformation in TAP1 that prevents ATP binding and subsequent peptide translocation.  相似文献   

15.
16.
A major class of tumors lack expression of the transporters associated with antigen processing (TAP). These proteins are essential for delivery of antigenic peptides into the lumen of the endoplasmic reticulum (ER) and subsequent assembly with nascent major histocompatibility complex (MHC) class I, which results in cell surface presentation of the trimeric complex to cytolytic T lymphocytes. Cytolytic T lymphocytes are major effector cells in immunosurveillance against tumors. Here we have tested the hypothesis that TAP downregulation in tumors allows immunosubversion of this effector mechanism, by establishing a model system to examine the role of TAP in vivo in restoring antigen presentation, immune recognition, and effects on malignancy of the TAP-deficient small-cell lung carcinoma, CMT.64. To test the potential of providing exogenous TAP in cancer therapies, we constructed a vaccinia virus (VV) containing the TAP1 gene and examined whether VV-TAP1 could reduce tumors in mice. The results demonstrate that TAP should be considered for inclusion in cancer therapies, as it is likely to provide a general method for increasing immune responses against tumors regardless of the antigenic complement of the tumor or the MHC haplotypes of the host.  相似文献   

17.
Intrabodies (IB) are suitable tools to down-regulate the expression of cell surface molecules in general. In this work, the appearance of major histocompatibility (MHC) class I molecules on the cell surface could be prevented by the expression of intracellularly localized anti-MHC class I antibodies. The expression of MHC antigens presenting intracellularly synthetised peptides on the cell surface is the predominant reason for immunologic detection and rejection of allogeneic cell and tissue transplants. Allogeneic keratinocyte sheets might be a suitable tool for skin grafting. Within this study primary rat keratinocytes have been transfected with anti-MHC I-IB. Strong IB-expressing cells showed a MHC I "knockout" phenotype. The cells did not exhibit any significant alterations compared to non-transfected cells: the cell growth and the expression of other surface molecules were unaltered. Merely an enhanced intracellular accumulation of MHC I molecules could be detected. Notably, IB-expressing keratinocytes displayed a reduced susceptibility to allogeneic cytotoxic T cells in vitro compared to unmodified cells with a normal level of MHC I surface expression. These MHC I-deficient keratinocytes might be utilized in tissue-engineered allogeneic non-immunogeneic skin transplants. The principle of MHC class I manipulation in general can be used for other allogeneic cell and tissue-engineered transplants as well.  相似文献   

18.
For their efficient assembly in the endoplasmic reticulum (ER), major histocompatibility complex (MHC) class I molecules require the specific assembly factors transporter associated with antigen processing (TAP) and tapasin, as well as generic ER folding factors, including the oxidoreductases ERp57 and protein disulfide isomerase (PDI), and the chaperone calreticulin. TAP transports peptides from the cytosol into the ER. Tapasin promotes the assembly of MHC class I molecules with peptides. The formation of disulfide‐linked conjugates of tapasin with ERp57 is suggested to be crucial for tapasin function. Important functional roles are also suggested for the tapasin transmembrane and cytoplasmic domains, sites of tapasin interaction with TAP. We show that interactions of tapasin with both TAP and ERp57 are correlated with strong MHC class I recruitment and assembly enhancement. The presence of the transmembrane/cytosolic regions of tapasin is critical for efficient tapasin–MHC class I binding in interferon‐γ‐treated cells, and contributes to an ERp57‐independent mode of MHC class I assembly enhancement. A second ERp57‐dependent mode of tapasin function correlates with enhanced MHC class I binding to tapasin and calreticulin. We also show that PDI binds to TAP in a tapasin‐independent manner, but forms disulfide‐linked conjugates with soluble tapasin. Thus, full‐length tapasin is important for enhancing recruitment of MHC class I molecules and increasing specificity of tapasin–ERp57 conjugation. Furthermore, tapasin or the TAP/tapasin complex has an intrinsic ability to recruit MHC class I molecules and promote assembly, but also uses generic folding factors to enhance MHC class I recruitment and assembly.  相似文献   

19.
20.
The mechanisms of major histocompatibility complex (MHC) class I downregulation during Epstein-Barr virus (EBV) replication are not well characterized. Here we show that in several cell lines infected with a recombinant EBV strain encoding green fluorescent protein (GFP), the virus lytic cycle coincides with GFP expression, which thus can be used as a marker of virus replication. EBV replication resulted in downregulation of MHC class II and all classical MHC class I alleles independently of viral DNA synthesis or late gene expression. Although assembled MHC class I complexes, the total pool of heavy chains, and beta2-microglobulin (beta2m) were significantly downregulated, free class I heavy chains were stabilized at the surface of cells replicating EBV. Calnexin expression was increased in GFP+ cells, and calnexin and calreticulin accumulated at the cell surface that could contribute to the stabilization of class I heavy chains. Decreased expression levels of another chaperone, ERp57, and TAP2, a transporter associated with antigen processing and presentation, correlated with delayed kinetics of MHC class I maturation. Levels of both class I heavy chain and beta2m mRNA were reduced, and metabolic labeling experiments demonstrated a very low rate of class I heavy chain synthesis in lytically infected cells. MHC class I and MHC class II downregulation was mimicked by pharmacological inhibition of protein synthesis in latently infected cells. Our data suggest that although several mechanisms may contribute to MHC class I downregulation in the course of EBV replication, inhibition of MHC class I synthesis plays the primary role in the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号