首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
雌激素受体关联受体α 调节脂肪细胞甘油三酯分解   总被引:2,自引:0,他引:2  
雌激素受体关联受体a (Estrogen-related receptor a,ERRα) 是调控机体能量代谢的关键转录调控因子,也是脂肪生成的关键调控者。为研究ERRα对脂肪细胞甘油三酯分解的影响及其分子机制,分化的猪脂肪细胞在PKA (Protein kinase A) 或/和ERK (Extracellular signal-related kinase) 抑制剂预处理和不处理的情况下,再用Ad-ERRα侵染或XCT790处理48 h。通过测定脂肪细胞中甘油三酯浓度和培养液中的甘油释放量分析脂肪细胞的脂解变化;Western blotting方法检测PPARγ (Peroxisome proliferator-activated receptor γ,PPARγ)、perilipin A、p-perilipin A、HSL (Hormone sensitive lipase,HSL) 和ATGL (Adipose triglyceride lipase,ATGL) 蛋白表达。结果显示,ERRα显著促进猪脂肪细胞分化及甘油三酯积累,同时促进了甘油三酯水解;分别及同时阻断PKA和ERK通路并不影响ERRα对脂肪细胞甘油释放的促进作用;ERRα显著上调HSL、ATGL、PPARγ及perilipin A蛋白表达,但p-perilipin A水平并未发生变化。推测过量表达ERRα可能导致HSL和ATGL蛋白表达上调并促进甘油三酯水解,从而为脂肪细胞分化提供更多的游离脂肪酸 (Free fat acid,FFA) 作为甘油三酯合成周转的底物。  相似文献   

2.
脂滴包被蛋白(perilipin)调控脂肪分解   总被引:8,自引:0,他引:8  
Xu C  He JH  Xu GH 《生理科学进展》2006,37(3):221-224
脂滴包被蛋白(perilipin)包被在脂肪细胞和甾体生成细胞脂滴表面。基础状态下perilipin可减少甘油三酯水解,使其贮备增加;脂肪分解时磷酸化的perilipin能促进甘油三酯水解,而且该蛋白对激素敏感脂酶从胞浆向脂滴转位是必需的。据推测,perilipin可能在脂肪分解调控中起到“分子开关”的作用。蛋白激酶A(PKA)、细胞外信号调节激酶(ERK)等信号转导通路参与了脂肪分解。肿瘤坏死因子仅(TNFα)、过氧化物酶体增殖物激活受体γ(PPAγ)激动剂、瘦素(leptin)均可以影响perilipin的表达。新近研究表明,perilipin可通过蛋白酶体途径来调节其蛋白量的表达。脂肪分解调控中的关键蛋白perilipin可以和2型糖尿病、肥胖、动脉粥样硬化等多种代谢性疾病及心血管疾病联系起来。  相似文献   

3.
脂肪组织是人体的主要能量储库,甘油三酯贮存在细胞内脂滴(lipid droplets, LDs)中,越来越多的研究表明脂滴是细胞内代谢活跃的细胞器。本研究旨在探讨forskolin长时间刺激脂肪分解过程中脂滴形态和脂滴表面perilipin家族蛋白的改变。以Sprague-Dawley (SD)大鼠附睾脂肪垫来源的分化脂肪细胞为研究对象,给予1μmol/L forskolin慢性刺激24 h,采用比色方法测定培养基中甘油的浓度;采用尼罗红染色观察细胞内脂滴形态的变化;采用荧光定量PCR检测perilipin家族蛋白mRNA水平的改变;采用免疫印迹和免疫荧光染色观察蛋白水平以及蛋白的亚细胞定位。结果表明,1μmol/L forskolin孵育24 h可以持续刺激脂肪分解。伴随着脂肪分解的进行,细胞内脂滴形态逐渐发生改变,细胞内聚集存在的大脂滴逐渐减少,位于细胞周边的小脂滴逐渐增加,最终细胞内大脂滴全部消失,取而代之的是在细胞质中弥散存在的微小脂滴。在脂肪分解过程中,perilipin家族蛋白水平也发生明显变化。分化成熟的脂肪细胞几乎没有Plin2蛋白表达,而forskolin慢性刺激可以显著增加Plin2蛋白以及mRNA的水平,增加的Plin2蛋白特异性结合在脂滴表面。Forskolin慢性刺激对Plin3的mRNA水平无显著影响,但可以显著降低Plin1、Plin4和Plin5的mRNA水平。以上结果提示,在forskolin慢性持续刺激脂肪分解过程中,脂滴形态和perilipin家族蛋白均发生显著改变。  相似文献   

4.
猪是研究糖尿病最理想的模型动物, 研究胰岛素和胰岛素抵抗是研究糖尿病的重要环节。为明确SOCS-3在胰岛素抵抗中的作用, 分别用100 nmol/L的胰岛素, 300 nmol/L的地塞米松处理原代培养的猪脂肪细胞诱导胰岛素抵抗; 利用半定量RT-PCR技术分别检测SOCS-3、OB、GLUT4和PPARg 基因表达变化。结果发现, 胰岛素增加了GLUT4、SOCS-3和PPARg 基因的表达, 对OB基因表达变化没有显著性影响; 地塞米松诱导的胰岛素抵抗状态下OB和SOCS-3基因表达水平升高, 而GLUT4和PPARγ基因表达水平显著下调。研究结果表明, GLUT4基因表达量水平的升高可能是由于PPARg的高表达引起, SOCS-3基因的不同表达水平对胰岛素信号的抑制效果不同。地塞米松诱导的胰岛素抵抗不仅表现在对葡萄糖转运的抑制, 也反映在抑制了胰岛素信号; 而SOCS-3基因可能是消除胰岛素抵抗的一个有效靶基因。  相似文献   

5.
一种调控脂解的重要蛋白——围脂滴蛋白(Perilipin)   总被引:3,自引:0,他引:3  
围脂滴蛋白(perilipin)是脂滴相关蛋白家族的核心成员之一,是定位于脂滴表面的高磷酸化的蛋白,对脂肪组织中甘油三酯的代谢有双重调节作用,既可通过阻止脂肪酶接近脂滴降低基础状态下的脂解,又可促进激素刺激的脂肪分解.Perilipin在脂代谢中发挥重要作用,其表达调控可能与肥胖及其相关代谢疾病如糖尿病、胰岛素抵抗等有重要关系.本文主要介绍了perilipin的发现、命名、结构特征以及激素和转录因子对perilipin的调控,并阐述了其与相关脂肪酶间的相互作用.目前的研究主要集中于围脂滴蛋白(perilipin)和激素敏感脂肪酶(HSL)之间,与新近发现的脂肪酶脂肪三酰甘油脂酶(ATGL)的相互作用则有待于进一步研究.  相似文献   

6.
本研究旨在明确成纤维细胞生长因子21 (fibroblast growth factor 21, FGF21)调控脂肪细胞瘦素基因表达的分子机制。以3T3-F442A脂肪细胞为研究对象,用荧光定量RT-PCR检测瘦素mRNA表达,并用Western blot检测信号转导通路蛋白的磷酸化水平。结果显示,FGF21显著下调脂肪细胞瘦素mRNA表达水平,FGF21受体抑制剂BGJ-398完全阻断此作用。FGF21上调脂肪细胞ERK1/2和AMPK的磷酸化水平,ERK1/2抑制剂SCH772984和AMPK抑制剂Compound C分别可部分阻断FGF21抑制瘦素基因表达的作用,二者联合应用可完全阻断FGF21的抑制作用。PI3K抑制剂LY294002和Akt抑制剂AZD5363对FGF21抑制瘦素基因表达的作用无明显影响。以上结果提示,FGF21可能通过FGF受体激活脂肪细胞ERK1/2和AMPK两条信号途径,抑制瘦素基因表达。  相似文献   

7.
Leptin对猪原代脂肪细胞脂解及其关键脂酶mRNA表达的影响   总被引:3,自引:0,他引:3  
Leptin是由脂肪组织分泌的内源因子,在调节机体能量平衡过程中起重要作用.Leptin促进脂解的研究由来已久,但其作用机理尚不完善.本研究旨在通过系统检测关键脂酶mRNA的表达变化来探讨Leptin促进脂解的分子机理.运用形态学观察,油红O染色和RT-PCR鉴定培养的猪原代脂肪细胞;甘油测定试剂盒和游离脂肪酸(FFA)测定试剂盒分别检测甘油和FFA的释放;半定量RT-PCR检测关键脂酶mRNA的表达.结果显示:100 nmol/L的Leptin可显著上调ATGL、TGH-2、HSL、MGL和LPL mRNA的表达(P<0.01),但同时下调Perilipin mRNA的表达(P<0.01);Leptin呈浓度依赖性促进甘油的释放(P<0.01),但对FFA的释放影响不显著(P>0.05).以上结果提示,Leptin可能主要通过上调ATGL、MGL、LPL和下调Perilipin的表达促进猪原代脂肪细胞的脂解;同时推测,FFA释放的相对稳定可能是由Leptin通过上调UCPs的表达而增加FFA的消耗引起的.  相似文献   

8.
为研究白细胞介素-6(IL-6)对猪脂肪细胞分化的影响及其分子机制,构建猪IL 6Rα基因RNA干扰(RNA interference, RNAi)慢病毒载体;用IL-6Rα-RNAi重组慢病毒预处理原代培养的猪前体脂肪细胞或不处理, 然后用100 ng/mL IL-6处理分化第6 d的脂肪细胞48 h.通过测定甘油释放量检测脂肪细胞的脂解率;油红O染色提取法测定脂肪细胞的脂质含量;采用RT-PCR 和Western印迹检测脂肪细胞分化相关基因的mRNA 和蛋白表达.结果显示,IL-6显著抑制猪脂肪细胞分化,并下调PPARγ2、Perilipin A和IRS-1的mRNA及蛋白表达,同时增强ERK1/2磷酸化;IL-6Rα-RNAi预处理前体脂肪细胞则显著逆转IL 6的上述作用.总之,IL-6通过多重机制抑制猪脂肪细胞分化;而且本研究构建的IL-6Rα-RNAi重组慢病毒载体可有效阻断IL-6信号,为进一步研究IL-6的功能奠定了基础.  相似文献   

9.
脂肪组织甘油三酯水解酶参与脂肪分解调控   总被引:2,自引:0,他引:2  
Xu C  Xu GH 《生理科学进展》2008,39(1):10-14
循环中游离脂肪酸增高与肥胖、胰岛素抵抗和2型糖尿病密切相关,其主要来源于脂肪细胞内甘油三酯水解.调控脂肪分解的脂肪酶主要包括激素敏感脂肪酶(hormone-sensitive lipase,HSL)和最近发现的脂肪组织甘油三酯水解酶(adipose triglyceride lipase,ATGL),后者主要分布在脂肪组织,特异水解甘油三酯为甘油二酯,其转录水平受多种因素调控.CGI-58(属于α/β水解酶家族蛋白),可以活化ATGL,基础条件下该蛋白和脂滴包被蛋白(perilipin)紧密结合于脂滴表面,蛋白激酶A激活刺激脂肪分解时,CGI-58与perilipin分离,进而活化ATGL.  相似文献   

10.
研究Leptin过表达对猪前脂肪细胞脂滴形成的影响,旨为进一步研究Leptin与脂质代谢相关的分子机制奠定理论基础。选取Leptin过表达与野生型猪皮下脂肪组织,在无菌条件下分离前脂肪细胞进行传代培养并诱导分化形成脂滴,通过油红O和Bodipy染色后观察脂滴面积并分析脂质的含量,利用Q-PCR检测脂滴形成相关基因mRNA的表达水平。诱导4 d后可分化形成脂滴,油红O和Bodipy染色的结果显示,Leptin过表达猪前脂肪细胞脂滴数量和甘油三酯含量显著低于野生型(P0.05);且脂质合成相关基因PPARγ、SCAP、SREPB1和PLIN2的表达水平显著低于野生型(P0.01)。结果表明,过表达Leptin可促使猪前脂肪细胞中PPARγ、SREPB1、SCAP、PLIN2基因的表达下调,进而抑制脂滴形成。  相似文献   

11.
Rosiglitazone regulates IL-6-stimulated lipolysis in porcine adipocytes   总被引:1,自引:0,他引:1  
Interleukin (IL)-6, a proinflammatory cytokine, stimulates adipocyte lipolysis and induces insulin resistance in obese and diabetic subjects. However, the effects of the anti-diabetic drug rosiglitazone on IL-6-stimulated lipolysis and the underlying molecular mechanism are largely unknown. In this study, we demonstrated that rosiglitazone suppressed IL-6-stimulated lipolysis in differentiated porcine adipocytes by inactivation of extracellular signal-related kinase (ERK). Meanwhile, rosiglitazone enhanced the lipolysis response of adipocytes to isoprenaline. In addition, rosiglitazone significantly reversed IL-6-induced down-regulation of several genes such as perilipin A, peroxisome proliferators activated receptor gamma (PPARγ), and fatty acid synthetase, as well as the up-regulation of IL-6 mRNA. However, mRNA expression of PPARγ coactivator-1 alpha (PCG-1α) was enhanced by rosiglitazone in IL-6-stimulated adipocytes. These results indicate that rosiglitazone suppresses IL-6-stimulated lipolysis in porcine adipocytes through multiple molecular mechanisms.  相似文献   

12.
Recently, we have shown that protein kinase C (PKC) activated by phorbol 12-myristate 13-acetate (PMA) attenuates the beta1-adrenergic receptor (beta1-AR)-mediated lipolysis in rat adipocytes. Stimulation of cells by insulin, angiotensin II, and alpha1-AR agonist is known to cause activation of PKC. In this study, we found that lipolysis induced by the beta1-AR agonist dobutamine is decreased and is no longer inhibited by PMA in adipocytes that have been treated with 20 nM insulin for 30 min followed by washing out insulin. Such effects on lipolysis were not found after pretreatment with angiotensin II and alpha1-AR agonists. The rate of lipolysis in the insulin-treated cells was normalized by the PKCalpha- and beta-specific inhibitor G? 6976 and PKCbeta-specific inhibitor LY 333531. In the insulin-treated cells, wortmannin increased lipolysis and recovered the lipolysis-attenuating effect of PMA. Western blot analysis revealed that insulin slightly increases membrane-bound PKCalpha, betaI, and delta, and wortmannin decreases PKCbetaI, betaII, and delta in the membrane fraction. These results indicate that stimulation of insulin receptor induces a sustained activation of PKC-dependent antilipolysis in rat adipocytes.  相似文献   

13.
We have shown previously that insulin attenuates beta1-adrenergic receptor (beta1-AR)-mediated lipolysis via activation of protein kinase C (PKC) in rat adipocytes. This antilipolysis persists after removal of insulin and is independent of the phosphodiesterase 3B activity, and phorbol 12-myristate 13-acetate (PMA) could substitute for insulin to produce the same effect. Here, we attempted to identify the PKC isoform responsible for antilipolysis. Isolated adipocytes were treated with high and low concentrations of PMA for up to 6 h to degrade specific PKC isoforms. In the PMA-treated cells, the downregulation profiles of PKC isoforms alpha and betaI, but not betaII, delta, epsilon, or zeta, correlated well with a decrease of lipolysis-attenuating effect of PMA. After rats fasted for 24 h, adipocyte expression of PKC isoform alpha increased, while expression of PKCdelta decreased. Fasting did not change the potency of PMA to attenuate lipolysis, however. The lipolysis-attenuating effect of PMA was blocked by the PKCbetaI/betaII inhibitor LY 333531, but not by the PKCbetaII inhibitor CGP 53353 or the PKCdelta inhibitor rottlerin. These data suggest that PKCbetaI interacts with beta1-AR signaling and attenuates lipolysis in rat adipocytes.  相似文献   

14.
Serum amyloid A (SAA) is not only an apolipoprotein, but also a member of the adipokine family with potential to enhance lipolysis. The purpose of this study was to explore how SAA facilitates lipolysis in porcine adipocytes. We found that SAA increased the phosphorylation of perilipin and hormone-sensitive lipase (HSL) after 12-h treatment and decreased perilipin expression after 24-h treatment, and these effects were prevented by extracellular signal-regulated kinase (ERK) or protein kinase A (PKA) inhibitors in primary adipocyte cell culture. SAA treatment decreased HSL and adipose triglyceride lipase (ATGL) expression. SAA treatment also activated ERK and PKA by increasing the phosphorylation of these kinases. Moreover, SAA significantly increased porcine adipocyte glycerol release and lipase activity, which was inhibited by either ERK (PD98059) or PKA (H89) inhibitors, suggesting that ERK and PKA were involved in mediating SAA enhanced lipolysis. SAA downregulated the expression of peroxisome proliferator-activated receptor γ (PPARγ) mRNA, which was reversed by the ERK inhibitor. We performed a porcine perilipin promoter assay in differentiated 3T3-L1 adipocytes and found that SAA reduced the porcine perilipin promoter specifically through the function of its PPAR response element (PPRE), and this effect was reversed by the ERK inhibitor. These findings demonstrate that SAA-induced lipolysis is a result of downregulation of perilipin and activation of HSL via ERK/PPARγ and PKA signaling pathways. The finding could lead to developing new strategies for reducing human obesity.  相似文献   

15.
Glucose as a lipolytic agent: studies on isolated rat adipocytes   总被引:1,自引:0,他引:1  
In order to elucidate the direct effect of glucose on lipolysis in isolated rat adipocytes, cells were incubated in a buffer with different concentrations of this sugar: 2, 8 or 16 mmol/l. The increase in glucose concentration from 2 mmol/l to 8 or 16 mmol/l enhanced basal lipolysis by 30% and 47%, respectively. Epinephrine-induced lipolysis (1 micromol/l) was also increased by 31% and 32%, when glucose concentration was increased from 2 mmol/l to 8 or 16 mmol/l, respectively. The rise in lipolysis caused by glucose was restricted by H-89 (an inhibitor of protein kinase A, 30 micromol/l), but insulin (1 nmol/l) had no inhibitory action. The augmentation of lipolysis by glucose did not require its metabolism (as demonstrated using 2-deoxyglucose) and was due to the action of this sugar on the final steps of the lipolytic cascade, particularly on protein kinase A. However, short-term exposure of adipocytes to higher glucose concentrations did not restrict the inhibitory action of insulin on lipolysis induced by epinephrine.  相似文献   

16.
AMP-activated protein kinase (AMPK) is an important regulator of cellular energy status. In adipocytes, stimuli that increase intracellular cyclic AMP (cAMP) have also been shown to increase the activity of AMPK. The precise molecular mechanisms responsible for cAMP-induced AMPK activation are not clear. Phosphodiesterase 3B (PDE3B) is a critical regulator of cAMP signaling in adipocytes. Here we investigated the roles of PDE3B, PDE4, protein kinase B (PKB) and the exchange protein activated by cAMP 1 (Epac1), as well as lipolysis, in the regulation of AMPK in primary rat adipocytes. We demonstrate that the increase in phosphorylation of AMPK at T172 induced by the adrenergic agonist isoproterenol can be diminished by co-incubation with insulin. The diminishing effect of insulin on AMPK activation was reversed upon treatment with the PDE3B specific inhibitor OPC3911 but not with the PDE4 inhibitor Rolipram. Adenovirus-mediated overexpression of PDE3B and constitutively active PKB both resulted in greatly reduced isoproterenol-induced phosphorylation of AMPK at T172. Co-incubation of adipocytes with isoproterenol and the PKA inhibitor H89 resulted in a total ablation of lipolysis and a reduction in AMPK phosphorylation/activation. Stimulation of adipocytes with the Epac1 agonist 8-pCPT-2′O-Me-cAMP led to increased phosphorylation of AMPK at T172. The general lipase inhibitor Orlistat decreased isoproterenol-induced phosphorylation of AMPK at T172. This decrease corresponded to a reduction of lipolysis from adipocytes. Taken together, these data suggest that PDE3B and PDE4 regulate cAMP pools that affect the activation/phosphorylation state of AMPK and that the effects of cyclic AMP on AMPK involve Epac1, PKA and lipolysis.  相似文献   

17.
Adipocyte lipolysis can increase the production of inflammatory cytokines such as interleukin-6 (IL-6) that promote insulin resistance. However, the mechanisms that link lipolysis with inflammation remain elusive. Acute activation of β3-adrenergic receptors (ADRB3) triggers lipolysis and up-regulates production of IL-6 in adipocytes, and both of these effects are blocked by pharmacological inhibition of hormone-sensitive lipase. We report that stimulation of ADRB3 induces expression of sphingosine kinase 1 (SphK1) and increases sphingosine 1-phosphate production in adipocytes in a manner that also depends on hormone-sensitive lipase activity. Mechanistically, we found that adipose lipolysis-induced SphK1 up-regulation is mediated by the c-Jun N-terminal kinase (JNK)/activating protein-1 signaling pathway. Inhibition of SphK1 by sphingosine kinase inhibitor 2 diminished the ADRB3-induced IL-6 production both in vitro and in vivo. Induction of IL-6 by ADRB3 activation was suppressed by siRNA knockdown of Sphk1 in cultured adipocytes and was severely attenuated in Sphk1 null mice. Conversely, ectopic expression of SphK1 increased IL-6 expression in adipocytes. Collectively, these data demonstrate that SphK1 is a critical mediator in lipolysis-triggered inflammation in adipocytes.  相似文献   

18.
The aim of this experiment was to study the influence of 18-hour food deprivation on basal and stimulated lipolysis in adipocytes obtained from young male Wistar rats. Fat cells from fed and fasted rats were isolated from the epididymal adipose tissue by collagenase digestion. Adipocytes were incubated in Krebs-Ringer buffer (pH 7.4, 37 degrees C) without agents affecting lipolysis and with different lipolytic stimulators (epinephrine, forskolin, dibutyryl-cAMP, theophylline, DPCPX, amrinone) or inhibitors (PIA, H-89, insulin). After 60 min of incubation, glycerol and, in some cases, also fatty acids released from adipocytes to the incubation medium were determined. Basal lipolysis was substantially potentiated in cells of fasted rats in comparison to adipocytes isolated from fed animals. The inhibition of protein kinase A activity by H-89 partially suppressed lipolysis in both groups of adipocytes, but did not eliminate this difference. The agonist of adenosine A (1) receptor also did not suppress fasting-enhanced basal lipolysis. The epinephrine-induced triglyceride breakdown was also enhanced by fasting. Similarly, the direct activation of adenylyl cyclase by forskolin or protein kinase A by dibutyryl-cAMP resulted in a higher lipolytic response in cells derived from fasted animals. These results indicate that the fasting-induced rise in lipolysis results predominantly from changes in the lipolytic cascade downstream from protein kinase A. The antagonism of the adenosine A (1) receptor and the inhibition of cAMP phosphodiesterase also induced lipolysis, which was potentiated by food deprivation. Moreover, the rise in basal and epinephrine-stimulated lipolysis in adipocytes of fasted rats was shown to be associated with a diminished non-esterified fatty acids/glycerol molar ratio. This effect was presumably due to increased re-esterification of triglyceride-derived fatty acids in cells of fasted rats. Comparing fed and fasted rats for the antilipolytic effect of insulin in adipocytes revealed that short-term food deprivation resulted in a substantial deterioration of the ability of insulin to suppress epinephrine-induced lipolysis.  相似文献   

19.
Endothelin-1 (ET-1) affects glucose uptake in adipocytes and may play an important role in adipose physiology. One of the principal functions of adipose tissue is the provision of energy substrate through lipolysis. In the present study, we investigated the effects of ET-1 on lipolysis in 3T3-L1 adipocytes. When glycerol release in the culture medium was measured as an index of lipolysis, the results showed that ET-1 caused a significant increase that was time and dose dependent. With a concentration of 10 nM ET-1, stimulation of glycerol release plateaued after 4 h of exposure. This effect was inhibited by the ETA receptor antagonist BQ-610 (10 microM) but not by the ETB receptor antagonist BQ-788 (10 microM). To further explore the underlying mechanisms of ET-1 action, we examined the involvement of the cAMP-dependent protein kinase A-mediated, phospholipase A2 (PLA2)-mediated, protein kinase C (PKC)-mediated, phosphatidylinositol 3 (PI 3)-kinase-mediated, and the mitogen-activated protein kinase (MAPK)-mediated pathways. Inhibition of adenylyl cyclase activation by SQ-22536 (100 microM) did not block ET-1-induced lipolysis. Pretreatment of adipocytes with the PLA2 inhibitor dexamethasone (100 nM), the PKC inhibitor H-7 (6 microM), or the PI 3-kinase inhibitor wortmannin (100 nM) also had no effect. ET-1-induced lipolysis was blocked by inhibition of extracellular signal-regulated kinase (ERK) activation using PD-98059 (75 microM), whereas a p38 MAPK inhibitor (SB-203580; 20 microM) had no effect. Results of Western blot further demonstrated that ET-1 induced ERK phosphorylation. These data show that ET-1 induces lipolysis in 3T3-L1 adipocytes via a pathway that is different from the conventional cAMP-dependent pathway used by isoproterenol and that involves ERK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号