首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   8篇
  国内免费   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   10篇
  2011年   8篇
  2010年   9篇
  2009年   8篇
  2008年   3篇
  2007年   5篇
  2006年   7篇
  2005年   3篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   9篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1991年   2篇
  1989年   4篇
  1988年   3篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   5篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
1.
2.

Introduction  

Improvement of rheumatoid arthritis (RA) during pregnancy has been causatively associated with increased galactosylation of immunoglobulin G (IgG) N-glycans. Since previous studies were small, did not include the postpartum flare and did not study sialylation, these issues were addressed in the present study.  相似文献   
3.

Background

Long-term benefits in animal breeding programs require that increases in genetic merit be balanced with the need to maintain diversity (lost due to inbreeding). This can be achieved by using optimal contribution selection. The availability of high-density DNA marker information enables the incorporation of genomic data into optimal contribution selection but this raises the question about how this information affects the balance between genetic merit and diversity.

Methods

The effect of using genomic information in optimal contribution selection was examined based on simulated and real data on dairy bulls. We compared the genetic merit of selected animals at various levels of co-ancestry restrictions when using estimated breeding values based on parent average, genomic or progeny test information. Furthermore, we estimated the proportion of variation in estimated breeding values that is due to within-family differences.

Results

Optimal selection on genomic estimated breeding values increased genetic gain. Genetic merit was further increased using genomic rather than pedigree-based measures of co-ancestry under an inbreeding restriction policy. Using genomic instead of pedigree relationships to restrict inbreeding had a significant effect only when the population consisted of many large full-sib families; with a half-sib family structure, no difference was observed. In real data from dairy bulls, optimal contribution selection based on genomic estimated breeding values allowed for additional improvements in genetic merit at low to moderate inbreeding levels. Genomic estimated breeding values were more accurate and showed more within-family variation than parent average breeding values; for genomic estimated breeding values, 30 to 40% of the variation was due to within-family differences. Finally, there was no difference between constraining inbreeding via pedigree or genomic relationships in the real data.

Conclusions

The use of genomic estimated breeding values increased genetic gain in optimal contribution selection. Genomic estimated breeding values were more accurate and showed more within-family variation, which led to higher genetic gains for the same restriction on inbreeding. Using genomic relationships to restrict inbreeding provided no additional gain, except in the case of very large full-sib families.  相似文献   
4.

Background

The accuracy of genomic prediction depends largely on the number of animals with phenotypes and genotypes. In some industries, such as sheep and beef cattle, data are often available from a mixture of breeds, multiple strains within a breed or from crossbred animals. The objective of this study was to compare the accuracy of genomic prediction for several economically important traits in sheep when using data from purebreds, crossbreds or a combination of those in a reference population.

Methods

The reference populations were purebred Merinos, crossbreds of Border Leicester (BL), Poll Dorset (PD) or White Suffolk (WS) with Merinos and combinations of purebred and crossbred animals. Genomic breeding values (GBV) were calculated based on genomic best linear unbiased prediction (GBLUP), using a genomic relationship matrix calculated based on 48 599 Ovine SNP (single nucleotide polymorphisms) genotypes. The accuracy of GBV was assessed in a group of purebred industry sires based on the correlation coefficient between GBV and accurate estimated breeding values based on progeny records.

Results

The accuracy of GBV for Merino sires increased with a larger purebred Merino reference population, but decreased when a large purebred Merino reference population was augmented with records from crossbred animals. The GBV accuracy for BL, PD and WS breeds based on crossbred data was the same or tended to decrease when more purebred Merinos were added to the crossbred reference population. The prediction accuracy for a particular breed was close to zero when the reference population did not contain any haplotypes of the target breed, except for some low accuracies that were obtained when predicting PD from WS and vice versa.

Conclusions

This study demonstrates that crossbred animals can be used for genomic prediction of purebred animals using 50 k SNP marker density and GBLUP, but crossbred data provided lower accuracy than purebred data. Including data from distant breeds in a reference population had a neutral to slightly negative effect on the accuracy of genomic prediction. Accounting for differences in marker allele frequencies between breeds had only a small effect on the accuracy of genomic prediction from crossbred or combined crossbred and purebred reference populations.  相似文献   
5.
The present study investigated the validity of a simplified muscle volume assessment that uses only the maximum anatomical cross-sectional area (ACSAmax), the muscle length (LM) and a muscle-specific shape factor for muscle volume calculation ( Albracht et al., 2008, J Biomech 41, 2211–2218). The validation on the example of the triceps surae (TS) muscles was conducted in two steps. First LM, ACSAmax, muscle volume and shape factor were calculated from magnet resonance image muscle reconstructions of the soleus (SO), gastrocnemius medialis (GM) and lateralis (GL) of a group of untrained individuals (n=13), endurance (n=9) and strength trained (n=10) athletes. Though there were significant differences in the muscle dimensions, the shape factors were similar across groups and were in average 0.497±0.026, 0.596±0.030, and 0.556±0.041 for the SO, GM and GL respectively. In a second step, the shape factors were applied to an independent recreationally active group (n=21) to compare the muscle volume assessed by the simplified method to the results from whole muscle reconstructions. There were no significant differences between the volumes assessed by the two methods. In conclusion, assessing TS muscle volume on the basis of the reported shape factors is valid across populations and the root mean square differences to whole muscle reconstruction of 7.9%, 4.8% and 8.3% for SO, GM and GL show that the simplified method is sensitive enough to detect changes in muscle volume in the context of degeneration, atrophy or hypertrophy.  相似文献   
6.
This review focuses on the mechanisms of stress response in the synovial tissue of rheumatoid arthritis. The major stress factors, such as heat stress, shear stress, proinflammatory cytokines and oxidative stress, are discussed and reviewed, focusing on their potential to induce a stress response in the synovial tissue. Several pathways of stress signalling molecules are found to be activated in the synovial membrane of rheumatoid arthritis; of these the most important examples are heat shock proteins, mitogen-activated protein kinases, stress-activated protein kinases and molecules involved in the oxidative stress pathways. The expression of these pathways in vitro and in vivo as well as the consequences of stress signalling in the rheumatoid synovium are discussed. Stress signalling is part of a cellular response to potentially harmful stimuli and thus is essentially involved in the process of synovitis. Stress signalling pathways are therefore new and promising targets of future anti-rheumatic therapies.  相似文献   
7.
Summary The use of reticulated polyurethane foam as a support material for the immobilization of methanogenic associations and its application to the anaerobic treatment of fine particulate solid wastes was investigated. The colonization of polyurethane support particles in a continuous upflow reactor fed on a mixture of acetate, propionate and butyrate, was both rapid and dense. The combination of rumen microorganisms and colonized support particles in a two-phase digester resulted in an efficient anaerobic decomposition of papermill sludge.  相似文献   
8.
Mitochondrial preparations isolated from neonatal swine hepatocytes show a marked increase in oxidative and concomitant phosphorylative capacity between birth and 2 days postpartum. There are no changes in the coupling parameters (respiratory control ratio and adenosine diphosphate/O ratio) with age. Changes in sedimentation properties in a sucrose gradient suggest qualitative changes in the mitochondria. Some of the lipid measurements (increased phospholipid) might be interpreted as supportive of this suggestion, although most could also be regarded as indicative of quantitative changes (increased number of mitochondria). Electron microscopy of isolated mitochondria and of the hepatocyte demonstrated an increased number of mitochondria but no change in shape, size, or structure as the pig developed. An increase in a number of cytoplasmic components (Golgi apparatus and endoplasmic reticulum) and a decrease in glycogen were also observed. The functional changes in mitochondria seem to occur within a short period of time (6–12 hr postpartum).  相似文献   
9.

Background

In the analysis of complex traits, genetic effects can be confounded with non-genetic effects, especially when using full-sib families. Dominance and epistatic effects are typically confounded with additive genetic and non-genetic effects. This confounding may cause the estimated genetic variance components to be inaccurate and biased.

Methods

In this study, we constructed genetic covariance structures from whole-genome marker data, and thus used realized relationship matrices to estimate variance components in a heterogenous population of ~ 2200 mice for which four complex traits were investigated. These mice were genotyped for more than 10,000 single nucleotide polymorphisms (SNP) and the variances due to family, cage and genetic effects were estimated by models based on pedigree information only, aggregate SNP information, and model selection for specific SNP effects.

Results and conclusions

We show that the use of genome-wide SNP information can disentangle confounding factors to estimate genetic variances by separating genetic and non-genetic effects. The estimated variance components using realized relationship were more accurate and less biased, compared to those based on pedigree information only. Models that allow the selection of individual SNP in addition to fitting a relationship matrix are more efficient for traits with a significant dominance variance.  相似文献   
10.

Background  

Gene loss, inversions, translocations, and other chromosomal rearrangements vary among species, resulting in different rates of structural genome evolution. Major chromosomal rearrangements are rare in most eukaryotes, giving large regions with the same genes in the same order and orientation across species. These regions of macrosynteny have been very useful for locating homologous genes in different species and to guide the assembly of genome sequences. Previous analyses in the fungi have indicated that macrosynteny is rare; instead, comparisons across species show no synteny or only microsyntenic regions encompassing usually five or fewer genes. To test the hypothesis that chromosomal evolution is different in the fungi compared to other eukaryotes, synteny was compared between species of the major fungal taxa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号