首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 164 毫秒
1.
人肿瘤坏死因子受体Ⅱ-Fc融合蛋白在治疗风湿性、类风湿性关节炎方面拥有广阔的市场前景和巨大的经济价值。本实验以表达TNFR-Fc融合蛋白的GS-CHO细胞为研究对象,结合细胞生长代谢特性和动力学参数分析,以葡萄糖为关键控制参数,通过测定培养上清的葡萄糖浓度对培养过程中的葡萄糖消耗进行及时的预测,调整流加速率,形成了以满足细胞生长代谢需要为基本原则的动态流加培养过程设计模型。在此控制模型指导下,建立了高效的流加培养过程。使最大活细胞密度和最大融合蛋白浓度分别达9.4×106cells/mL和207mg/L,较批次培养分别提高了3.4倍和3倍。本研究所采用的研究方法和控制策略为优化GS-CHO细胞培养过程和TNFR-Fc融合蛋白成功迈向产业化奠定了基础。  相似文献   

2.
主要考察流加培养基中不同营养成分、流加起始时间及初始接种密度对11G-S细胞无血清流加培养的影响。在研究中以悬浮适应的表达尿激酶原 (Pro-urokinase,Pro-UK) CHO工程细胞系11G-S为研究对象,在100 mL的摇瓶中无血清悬浮流加培养11G-S细胞,同时以活细胞密度、细胞活力及Pro-UK活性为评价依据。结果表明在培养基中氨基酸、无血清添加成分及无机盐对促进细胞生长、细胞活力维持及蛋白表达起着较为重要的作用;且流加起始时间为72 h及初始接种密度为3×105~4×105 cells/  相似文献   

3.
目的:筛选高表达单克隆细胞株,并通过优化培养基及流加物,最终达到提高目的蛋白产量及质量的目的。方法:通过有限稀释法对转染目的蛋白的CHO-S细胞进行单克隆化,应用双抗夹心ELISA方法对单克隆细胞株抗体表达量进行初步评估,最后根据筛选细胞株的活率、密度、产量及代谢情况,选择2~3株单克隆细胞进行培养条件优化,并对获得的发酵液进行纯化捕获,根据抗体蛋白表达量、糖型、等电点、纯度、酸碱峰分布等进行相应的评估分析,筛选出最优细胞株及最优培养方案。结果:经过单克隆化处理以及培养条件优化,蛋白的表达量由初始的不到500mg/L提升到2 290mg/L,且抗体蛋白纯度高达97.48%。抗体蛋白质量分析结果显示B1方案为该实验最优培养方案。结论:通过细胞株筛选、培养基优化能显著提高抗体蛋白的产量及质量,同时对抗体蛋白糖型、等电点、纯度等均有一定程度的优化。因此工业生产中可以通过高表达克隆的筛选、培养工艺优化等对目的蛋白产量及质量进行一定程度的改善与提高,对后期实验研究及工业化方案开发都具有很好的指导意义。  相似文献   

4.
Sp2/0是一种生产单克隆抗体的常用细胞株。本研究首先在批次培养模式中对适合Sp2/0细胞生长的5种基础培养基、摇床转速、培养温度、二氧化碳浓度、微量元素和GlutaMAX TM替换谷氨酰胺等影响因素进行了筛选研究。结果显示Sp2/0细胞在批次培养中细胞密度最高值达到13.12×10 6 cells/ml,培养时间为7天。除培养温度会导致不同的细胞生长密度和活率、进而影响培养时间外,其它因素不能导致明显的细胞生长差异。随后在流加培养模式下就14种补料组合进行了筛选,Sp2/0在流加培养模式下细胞的峰值密度可达20~30×10 6 cells/ml,培养时间9天,单克隆抗体Mab-A日产量最高达到27.20mg/L。最后应用批次-反复流加培养模式培养Sp2/0细胞,该条件下峰值细胞数为50.42×10 6 cells/ml,培养时间14天,每天单抗产量(141.10mg/L)是流加培养的5.19倍。这些研究结果为Sp2/0细胞规模化生产单克隆抗体奠定了一定基础。  相似文献   

5.
[目的]优化细胞接种密度、培养基、细胞培养温度等参数,提高生产细胞株PCSK9蛋白表达滴度。[方法]试验分四步进行,(1)探讨几款市售培养基优化组合后对CHO细胞株蛋白表达滴度的影响;(2)探讨10.0×106、15.0×106、50.0×106 cells/mL高密度接种流加过程培养基、降温时间等对CHO细胞蛋白滴度的影响;(3)在(2)实验数据基础上继续优化,通过更换培养基继续探讨高密度流加工艺的可行性;(4)在反应器对实验数据进行工艺验证。[结果](1)CHO细胞PCSK9蛋白滴度提升至2.6 g/L,蛋白滴度成倍增长;(2)15.0×106 cells/mL接种,30.0×106 cells/mL降温至34℃,继续优化培养基1#、2#配比,蛋白滴度提升至4.5 g/L,反应器工艺验证,细胞生长状态稳定,蛋白滴度突破3.8 g/L;(3)继续筛选市售培养基,成功实现80.0×106 cells/mL高密度流...  相似文献   

6.
中国仓鼠卵巢细胞(CHO)流加培养生产单克隆抗体是目前主流培养方式,其中环境参数(pH和温度)和营养成分均影响细胞生长、碳氮源代谢和外源蛋白表达,是培养过程中关键的控制参数。采用实验设计(design of experiment,DOE)方法研究培养参数(温度、pH)对CHO细胞生长和抗CD20抗体表达的影响,建立营养限制型氨基酸流加策略,实现抗CD20抗体的高表达。结果表明,温度是影响蛋白质表达的显著因素,35℃有助于提高细胞密度和目标抗CD20抗体表达,而pH对抗CD20表达影响不显著,且温度和pH无交互作用,经DOE预测分析最佳培养条件是温度35℃和pH7.0。在该最佳培养条件下,在培养后期酪氨酸和半胱氨酸的浓度都低于0.1mmol/L。在培养的第2天通过补加1.5mmol/L酪氨酸和1mmol/L半胱氨酸避免营养限制,抗CD20抗体表达水平提高了24.1%,且对蛋白糖型无影响。  相似文献   

7.
中国仓鼠卵巢细胞(CHO)流加培养生产单克隆抗体是目前主流培养方式,其中环境参数(pH和温度)和营养成分均影响细胞生长、碳氮源代谢和外源蛋白表达,是培养过程中关键的控制参数。采用实验设计(design of experiment,DOE)方法研究培养参数(温度、pH)对CHO细胞生长和抗CD20抗体表达的影响,建立营养限制型氨基酸流加策略,实现抗CD20抗体的高表达。结果表明,温度是影响蛋白质表达的显著因素,35℃有助于提高细胞密度和目标抗CD20抗体表达,而pH对抗CD20表达影响不显著,且温度和pH无交互作用,经DOE预测分析最佳培养条件是温度35℃和pH7.0。在该最佳培养条件下,在培养后期酪氨酸和半胱氨酸的浓度都低于0.1mmol/L。在培养的第2天通过补加1.5mmol/L酪氨酸和1mmol/L半胱氨酸避免营养限制,抗CD20抗体表达水平提高了24.1%,且对蛋白糖型无影响。  相似文献   

8.
突变型肌肉生长抑制素前肽(MMP)在治疗肌肉萎缩症和培育多肌肉牲畜上有着广泛的应用前景。以重组表达MMP的毕赤酵母工程菌为模式,对该工程菌在30L发酵灌中培养与诱导备件进行优化,建立该表达系统大规模发酵的最佳生产条件,以期荻得最短的发酵时间和最低的生产损耗。毕赤酵母发酵过程通常分为3个阶段:分批培养(基础培养)阶段、分批补料培养阶段、诱导阶段。对发酵过程的第2与第3阶段进行了优化。通过分步提高甘油流加速度:以20mL/L·h^-1的速度流加5h、以30mL/L·h^-1的速度流加5h、以50mL/L·h^-1速度流加14h,并通入纯氧气,维持60%的溶氧度,使甘油流加阶段的时间从常规的48h缩短至24h,即只需24h即可达到常规方法48h才能达到的菌体密度。在诱导表达阶段,通过甘油与甲醇的交替流加,同时对发酵液中甲醇含量的实时监测,保持甲醇的浓度不超过0.5%的高限,使诱导的时间从常规的72h缩短至36h,而且表达量提高了约1倍。优化后,整个发酵周期从120~148h缩短至72~80h,显著提高了MMP蛋白的生产效率。  相似文献   

9.
法夫酵母高密度培养及虾青素的高产研究*   总被引:1,自引:1,他引:0  
本文对法夫酵母Phaffia rhodozyma的不同流加培养模式进行了研究。实验结果表明,采用指数流加,虾青素产率和细胞干重具有较大值,分别达到14.52mg/l和32.56g/l;其次是恒pO2流加和恒速流加培养,虾青素产率分别达到8.89mg/l和6.70mg/l; 恒pH流加方式更有利于法夫酵母细胞的生长(14.62g/l DCW)。但是,不同流加培养模式所得的μmax和qasta具有较大的差距。恒pH、恒pO2流加培养及间歇培养有较大值,分别为0.0613 h-1、0.056 h-1、0.053 h-1;指数流加的μmax较小。间歇培养中虾青素生成比率最大,qasta=0.048×10-3h-1。  相似文献   

10.
CHO细胞表达系统是目前重组糖蛋白生产的首选系统。随着无血清悬浮培养技术、基因工程技术和大规模培养技术的应用和不断发展,CHO细胞表达系统已经成为生物技术药物最重要的表达或生产系统,并被广泛应用于抗体、重组蛋白药物和疫苗等产品的研发和生产中。近年来,针对CHO细胞表达系统在某些重组蛋白的表达和大规模生产中存在的不足,研究者们通过利用基因工程技术手段,结合重组蛋白表达机制的研究成果,为优化和应用CHO细胞表达系统做出了不懈努力。从培养基的优化、高产重组CHO细胞株的构建、大规模培养三个方面综述了CHO细胞表达系统的最近研究进展,以期为CHO细胞表达系统的研究与应用提供参考。  相似文献   

11.
Growth of Bacillus subtilis TN106[pAT5] and synthesis of plasmid-encoded protein (alpha-amylase) are investigated in batch, continuous, and fed-batch cultures using a defined medium containing glucose and/or starch as the carbohydrate source. The batch culture studies reveal that reduced availability of arginine hampers growth of recombinant cells (which lack an arginine synthesis gene) but promotes production of alpha-amylase and substitution of glucose by starch as the carbohydrate source leads to slower growth of recombinant cells and increased production of alpha-amylase per unit cell mass. Retention of recombinant cells over prolonged periods in continuous cultures is not possible without continuous application of antibiotic selection pressure owing to segregational plasmid instability. Fed-batch experiments with constant volumetric feed rate demonstrate that alpha-amylase production is enhanced at lower feed concentration of starch (sole carbohydrate source) and lower volumetric feed rate. Such slow addition of starch is however not conducive for growth of recombinant cells. The expression of the thermostable alpha-amylase gene carried on the recombinant plasmid pAT5 (derived from a plasmid isolated from a thermophilic bacterium) is promoted at higher temperatures, while growth of recombinant cells is depressed. In all batch and fed-batch experiments, production of alpha-amylase is observed to be inversely related to growth of recombinant cells. The efficacy of two-stage bioreactor operations, with growth of recombinant cells being promoted in the first stage and alpha-amylase production in the second stage, in attaining increased bulk alpha-amylase activity is demonstrated. (c) 1993 John Wiley & Sons, Inc.  相似文献   

12.
The single-chain fragment variable (scFv) was used to produce a completely functional antigen-binding fragment in bacterial systems. The advancements in antibody engineering have simplified the method of producing Fv fragments and made it more efficient and generally relevant. In a previous study, the scFv anti HIV-1 P17 protein was produced by a batch production system, optimized by the sequential simplex optimization method. This study continued that work in order to enhance secreted scFv production by fed-batch cultivation, which supported high volumetric productivity and provided a large amount of scFvs for diagnostic and therapeutic research. The developments in cell culture media and process parameter settings were required to realize the maximum production of cells. This study investigated the combined optimization methods, Plackett–Burman design (PBD) and sequential simplex optimization, with the aim of optimize feed medium. Fed-batch cultivation with an optimal feeding rate was determined. The result demonstrated that a 20-mL/hr feeding rate of the optimized medium can increase cell growth, total protein production, and scFv anti-p17 activity by 4.43, 1.48, and 6.5 times more than batch cultivation, respectively. The combined optimization method demonstrated novel power tools for the optimization strategy of multiparameter experiments.  相似文献   

13.
The application of a stoichiometric medium design approach was studied in fed-batch cultivation of Chinese hamster ovary (CHO) cells. A serum-free medium containing a very low protein concentration (2 mg/L insulin) was developed. A supplemental medium was formulated according to the stoichiometric equation governing cell growth using cell composition obtained from hybridoma cells. Fed-batch culture was conducted in spinner flasks using the supplemental medium for feeding. Significant improvement in cell growth, by-product reduction, and Gamma-Interferon (IFN-gamma) production was achieved as compared to a typical batch culture. Results indicate that the stoichiometric approach, originally developed for hybridoma cultures, is a fast and effective method for cell culture process design and improvement. The glycosylation of IFN-gamma was monitored off-line during the culture process. The accumulative IFN-gamma glycosylation efficiency was slightly improved as compared to that of the batch culture, due to the nutritional control through the stoichiometric feeding. Periodic glucose starvation was observed during the fed-batch culture as a result of the manual feeding. Pulse-chase radiolabeling assay shows that glucose starvation leads to a deteriorated IFN-gamma glycosylation efficiency. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 577-582, 1997.  相似文献   

14.
Pneumococcal surface protein A (PspA) is essential for Streptococcus pneumoniae virulence and its use either as a novel pneumococcal vaccine or as carrier in a conjugate vaccine would improve the protection and the coverage of the vaccine. Within this context, the development of scalable production and purification processes of His-tagged recombinant fragment of PspA from clade 3 (rfPspA3) in Escherichia coli BL21(DE3) was proposed. Fed-batch production was performed using chemically defined medium with glucose or glycerol as carbon source. Although the use of glycerol led to lower acetate production, the concentration of cells were similar at the end of both fed-batches, reaching high cell density of E. coli (62 g dry cell weight/L), and the rfPspA3 production was higher with glucose (3.48 g/L) than with glycerol (2.97 g/L). A study of downstream process was also carried out, including cell disruption and clarification steps. Normally, the first chromatography step for purification of His-tagged proteins is metal affinity. However, the purification design using anion exchange followed by metal affinity gave better results for rfPspA3 than the opposite sequence. Performing this new design of chromatography steps, rfPspA3 was obtained with 95.5% and 75.9% purity, respectively, from glucose and glycerol culture. Finally, after cation exchange chromatography, rfPspA3 purity reached 96.5% and 90.6%, respectively, from glucose and glycerol culture, and the protein was shown to have the expected alpha-helix secondary structure.  相似文献   

15.
A fed-batch culture strategy for the production of recombinant Escherichia coli cells anchoring surface-displayed transglucosidase for use as a whole-cell biocatalyst for α-arbutin synthesis was developed. Lactose was used as an inducer of the recombinant protein. In fed-batch cultures, dissolved oxygen was used as the feed indicator for glucose, thus accumulation of glucose and acetate that affected the cell growth and recombinant protein production was avoided. Fed-batch fermentation with lactose induction yielded a biomass of 18 g/L, and the cells possessed very high transglucosylation activity. In the synthesis of α-arbutin by hydroquinone glucosylation, the whole-cell biocatalysts showed a specific activity of 501 nkat/g cell and produced 21 g/L of arbutin, which corresponded to 76% molar conversion. A sixfold increased productivity of whole cell biocatalysts was obtained in the fed-batch culture with lactose induction, as compared to batch culture induced by IPTG.  相似文献   

16.
Presented is a novel antibody production platform based on the fed-batch culture of recombinant, NS0-derived cell lines. A standardized fed-batch cell culture process was developed for five non-GS NS0 cell lines using enriched and optimized protein-free, cholesterol-free, and chemically defined basal and feed media. The process performed reproducibly and scaled faithfully from the 2-L to the 100-L bioreactor scale achieving a volumetric productivity of > 120 mg/L per day. Fed-batch cultures for all five cell lines exhibited significant lactate consumption when the cells entered the stationary or death phase. Peak and final lactate concentrations were low relative to a previously developed fed-batch process (FBP). Such low lactate production and high lactate consumption rates were unanticipated considering the fed-batch culture basal medium has an unconventionally high initial glucose concentration of 15 g/L, and an overall glucose consumption in excess of 17 g/L. The potential of this process platform was further demonstrated through additional media optimization, which has resulted in a final antibody concentration of 2.64 +/- 0.19 g/L and volumetric productivity of > 200 mg/L per day in a 13-day FBP for one of the five production cell lines. Use of this standardized protein-free, cholesterol-free NS0 FBP platform enables consistency in development time and cost effectiveness for manufacturing of therapeutic antibodies.  相似文献   

17.
Upon nutrient depletion during recombinant Chinese hamster ovary (rCHO) cell batch culture, cells are subjected to apoptosis, type I programmed cell death (PCD), and autophagy which can be type II PCD or a cell survival mechanism. To investigate the effect of nutrient supplementation on the two PCDs and protein production in rCHO cells, an antibody-producing rCHO cell line was cultivated in batch and fed-batch modes. The feed medium containing glucose, amino acids, and vitamins was determined through flask culture tests and used in bioreactor cultures. In the bioreactor cultures, the nutrient feedings extended the culture longevity and enhanced antibody production. In addition, cells in the fed-batch culture showed delayed onset of both apoptosis and autophagy, compared with those in the batch culture. The inhibition of apoptosis was demonstrated by a decreased amount of cleaved caspase-7 protein and less fragmentation of chromosomal DNA. Concurrently, reduced LC3 conversion, from LC3-I to LC3-II, was observed in cells that received the feeds. Cultivation with pharmacological autophagy inducer (rapamycin) or inhibitor (bafilomycin A1) indicated that autophagy is necessary for the cells to survive under nutrient depletion. Taken together, the delayed and relieved cell death by nutrient supplementation could improve antibody production.  相似文献   

18.
Fed-batch culture can offer significant improvement in recombinant protein production compared to batch culture in the baculovirus expression vector system (BEVS), as shown by Nguyen et al. (1993) and Bedard et al. (1994) among others. However, a thorough analysis of fed-batch culture to determine its limits in improving recombinant protein production over batch culture has yet to be performed. In this work, this issue is addressed by the optimisation of single-addition fed-batch culture. This type of fed-batch culture involves the manual addition of a multi-component nutrient feed to batch culture before infection with the baculovirus. The nutrient feed consists of yeastolate ultrafiltrate, lipids, amino acids, vitamins, trace elements, and glucose, which were added to batch cultures of Spodoptera frugiperda (Sf9) cells before infection with a recombinant Autographa californica nuclear polyhedrosis virus (AcNPV) expressing beta-galactosidase (beta-Gal). The fed-batch production of beta-Gal was optimised using response surface methods (RSM). The optimisation was performed in two stages, starting with a screening procedure to determine the most important variables and ending with a central-composite experiment to obtain a response surface model of volumetric beta-Gal production. The predicted optimum volumetric yield of beta-Gal in fed-batch culture was 2.4-fold that of the best yields in batch culture. This result was confirmed by a statistical analysis of the best fed-batch and batch data (with average beta-Gal yields of 1.2 and 0.5 g/L, respectively) obtained from this laboratory. The response surface model generated can be used to design a more economical fed-batch operation, in which nutrient feed volumes are minimised while maintaining acceptable improvements in beta-Gal yield.  相似文献   

19.
In Cephalotaxus harringtonia plant cell cultures, periods of batch growth that are limited by hexose uptake are too short to make an accurate estimate of the Monod saturation constant. Continuous cultures are infeasible on a laboratory scale, and semicontinuous cultures require too frequent sampling. Fed-batch operation, consisting of intermittent removal from a culture that is fed continuously, was investigated as a possible solution to these problems. For a constant feed rate, computer simulations showed that a steady state can be achieved which is useful for studying growth at different specific growth rates. In terms of the dilution rate it was confirmed that the operation is essentially equivalent to continuous culture when the samples represent a small fraction of the total culture volume. Experiments with glucose or fructose as the carbon source were carried out in shake flasks fed by a multichannel syringe pump. Results indicate that Monod kinetics based on medium glucose levels cannot adequately describe growth under these conditions. Monod's expression for specific growth rate using internal glucose concentration gives an improved correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号