首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 190 毫秒
1.
蛋白质组学是目前生命科学的研究热点之一.体液中的蛋白质是来源于与其密切接触组织或者细胞的分泌或渗漏,体液蛋白质组的变化能反映这些组织的生理或者病理改变,因此以寻找疾病相关生物标记为主要目标的比较蛋白质组学是蛋白质组学研究的核心内容之一.对近年来各种体液蛋白质组学的研究状况和应用及存在挑战作一综述.  相似文献   

2.
差异蛋白质组是蛋白质组学的一个重要分支,通过对蛋白质组表达谱的比较,揭示细胞生理或病理状态的进程与本质,发现具有关键作用的蛋白。近年来,家蚕差异蛋白质组学发展迅速且涉及面广,已然成为家蚕蛋白质组学研究的热点。对差异蛋白质组学的主要研究方法,及在家蚕中的研究进展做一简要评述。  相似文献   

3.
微生物蛋白质组学的定量分析   总被引:2,自引:0,他引:2  
越来越多的微生物基因组序列数据为系统地研究基因的调节和功能创造了有利条件.由于蛋白质是具有生物功能的分子,蛋白质组学在微生物基因组的功能研究中异军突起、蓬勃发展.微生物蛋白质组学的基本原则是,用比较研究来阐明和理解不同微生物之间或不同生长条件下基因的表达水平.显而易见,定量分析技术是比较蛋白质组学中急需发展的核心技术.对蛋白质组学定量分析技术在微生物蛋白质组研究中的进展进行了综述.  相似文献   

4.
免疫蛋白质组学是蛋白质组学一个相对新颖的概念,该方法在鉴定特异性抗原或抗体方面具有敏感、快速,且节省试剂的优点。近年来,对不同幽门螺杆菌菌株及幽门螺杆菌感染所致的不同胃部病变之间的研究成为胃癌免疫蛋白质组学的主要研究策略,该方法将为胃癌的临床诊治提供重要的肿瘤标志物。本文就有关免疫蛋白质组学在胃癌方面的研究作一综述。  相似文献   

5.
蛋白质组学的应用研究进展   总被引:2,自引:0,他引:2  
蛋白质组学(Proteomics)是一门大规模、高通量、系统化的研究某一类型细胞、组织或体液中的所有蛋白质组成及其功能的新兴学科。虽然基因决定蛋白质的水平,但是基因表达的水平并不能代表细胞内活性蛋白的水平,蛋白质组学分析是对蛋白质翻译和修饰水平等研究的一种补充,是全面了解基因组表达的一种必不可少的手段。蛋白质组学相关技术的发展极大地推动了蛋白质组学的研究进展,使其在各研究领域得到了广泛的应用。对蛋白质组学相关技术及其在各领域的应用进行了综述,最后对蛋白质组学的发展趋势和应用前景作出展望。  相似文献   

6.
非模式植物蛋白质组学研究进展   总被引:1,自引:0,他引:1  
蛋白质组学研究是对基因组学研究的重要补充,它是在蛋白质水平定量、动态、整体性研究生物体。该文简要介绍了蛋白质组学的含义,蛋白质组学及植物蛋白质组学产生的科学背景,蛋白质组学的研究内容。概述了非模式植物蛋白质组学的研究进展,主要包括非模式植物个体及群体蛋白质组学,组织和器官蛋白质组学,亚细胞蛋白质组学,响应环境变化的蛋白质组学以及非模式植物生物环境因子的蛋白质组学的研究情况,同时对植物蛋白质组学的发展前景进行了展望。  相似文献   

7.
蛋白质组学及其技术发展   总被引:8,自引:0,他引:8  
蛋白质组学产生于20世纪90年代,发展至今已日趋成熟。蛋白质组学是以生物体的全部或部分蛋白为研究对象,研究它们在生命活动过程中的作用、功能。蛋白质组学较之前的基因组学对于生命现象的解释更直接、更准确,近年得到了快速发展,并受到世界各国学者的高度关注。我们简要综述了蛋白质组学及其技术,并简单概述了这项技术在生命科学领域的应用。  相似文献   

8.
蛋白质组学是对细胞或生物体全部蛋白质的系统鉴定、定量并阐释其生物学功能的学科.自21世纪初期开始,随着高精度、高灵敏度和快速扫描质谱仪的出现和快速发展以及微量蛋白质组样品高效分离技术的进步,蛋白质组学获得了快速发展,并在生理过程与病理机制研究等几乎所有生命科学研究领域得到了广泛的应用.过去10年,中国蛋白质组学研究在政府的支持和广大蛋白质组学研究人员的努力下呈现出腾飞式的发展态势.本文综述了人类肝脏蛋白质组计划和2010~2013年中国蛋白质组学技术的发展.  相似文献   

9.
蛋白质组学新技术及其在肿瘤标志物探索性研究中的应用   总被引:1,自引:0,他引:1  
作为基因组研究的延伸,蛋白质组学已成为世界生命科学领域的一个极其活跃的部分,是功能基因组时代或后基因组时代的核心。近年来发展起来的几种蛋白质组学新技术克服了传统蛋白质组学技术的不足,有力推进了肿瘤标志物的探索性研究。尽管如此,我们仍应该强调对实验结果的验证,这一点在探索性研究中尤其重要,力求使结果更精确、可靠和有效。  相似文献   

10.
差异蛋白质组学是蛋白质组学的主要研究内容之一,着重于研究特定因素引起的不同样品间蛋白质组的差异,揭示并验证蛋白质组在生理或病理过程中的变化,并从理论上推断造成这种变化的原因。近年来,差异蛋白质组学已逐步应用到水生动物的应激反应研究中。在周围环境发生变化,如非生物环境因子改变以及病原微生物感染时,水生动物会通过特异的应激反应削弱或者抵抗其危害,其与环境的相互作用机理可通过蛋白质的差异表达体现出来。本文就差异蛋白质组学技术在水生动物应激反应研究中的应用及进展进行了回顾和综述。  相似文献   

11.
Moonlighting proteins comprise a subset of multifunctional proteins that perform two or more biochemical functions that are not due to gene fusions, multiple splice variants, proteolytic fragments, or promiscuous enzyme activities. The project described herein focuses on a sub-set of moonlighting proteins that have a canonical biochemical function inside the cell and perform a second biochemical function on the cell surface in at least one species. The goal of this project is to consider the biophysical features of these moonlighting proteins to determine whether they have shared characteristics or defining features that might suggest why these particular proteins were adopted for a second function on the cell surface, or if these proteins resemble typical intracellular proteins. The latter might suggest that many other normally intracellular proteins found on the cell surface might also be moonlighting in this fashion. We have identified 30 types of proteins that have different functions inside the cell and on the cell surface. Some of these proteins are found to moonlight on the surface of multiple species, sometimes with different extracellular functions in different species, so there are a total of 98 proteins in the study set. Although a variety of intracellular proteins (enzymes, chaperones, etc.) are observed to be re-used on the cell surface, for the most part, these proteins were found to have physical characteristics typical of intracellular proteins. Many other intracellular proteins have also been found on the surface of bacterial pathogens and other organisms in proteomics experiments. It is quite possible that many of those proteins also have a moonlighting function on the cell surface. The increasing number and variety of known moonlighting proteins suggest that there may be more moonlighting proteins than previously thought, and moonlighting might be a common feature of many more proteins.  相似文献   

12.
The cell wall and extracellular matrix in higher plants include secreted proteins that play critical roles in a wide range of cellular processes, such as structural integrity and biogenesis. Compared with the intensive cell wall proteomic studies in Arabidopsis , the list of cell wall proteins identified in monocot species is lacking. Therefore, we conducted a large-scale proteomic analysis of secreted proteins from rice. Highly purified secreted rice proteins were obtained from the medium of a suspension of callus culture and were analyzed with multidimensional protein identification technology (MudPIT). As a result, we could detect a total of 555 rice proteins by MudPIT analysis. Based on bioinformatic analyses, 27.7% (154 proteins) of the identified proteins are considered to be secreted proteins because they possess a signal peptide for the secretory pathway. Among the 154 identified proteins, 27% were functionally categorized as stress response proteins, followed by metabolic proteins (26%) and factors involved in protein modification (24%). Comparative analysis of cell wall proteins from Arabidopsis and rice revealed that one third of the secreted rice proteins overlapped with those of Arabidopsis . Furthermore, 25 novel rice-specific secreted proteins were found. This work presents the large scale of the rice secretory proteome from culture medium, which contributes to a deeper understanding of the rice secretome.  相似文献   

13.
14.
Mammalian seminal plasma contains among others, two major families of proteins, namely spermadhesins and those proteins that contain fibronectin type II domains. Spermadhesins are the major proteins of boar and stallion seminal plasma and homologous proteins have been identified in the bull. These proteins appear to be involved in capacitation and sperm-egg interaction. In bovine seminal plasma, proteins containing fibronectin type II domains are the major proteins and are designated BSP proteins. These proteins play a role in sperm capacitation. In this study, we present the isolation and characterization of the major proteins of ram seminal plasma. Precipitated proteins from Suffolk ram seminal plasma were loaded onto a gelatin-Agarose column. The unadsorbed (fraction A) and retarded proteins (fraction B) were removed by washing the column with phosphate buffered-saline and the adsorbed proteins (fraction C) were eluted with 5 M urea. SDS-PAGE of fraction B indicated the presence of a 15.5 kDa protein, which is the major protein of ram seminal plasma (approximately 45% of total protein by weight) and was identified as a spermadhesin by N-terminal sequencing. SDS-PAGE analysis of fraction C revealed the presence of four proteins, which represented approximately 20% of total ram seminal plasma proteins by weight, and were identified as proteins of the BSP family and named RSP proteins. These RSP proteins were designated RSP-15 kDa, RSP-16 kDa, RSP-22 kDa, and RSP-24 kDa. Only RSP-15 kDa and -16 kDa proteins cross-reacted with antibodies against BSP proteins. Ram spermadhesin and RSP proteins interact with heparin but only RSP proteins bind to hen's egg yolk low-density lipoprotein. In conclusion, spermadhesin is the major protein of ram seminal plasma and other major proteins belong to the BSP protein family.  相似文献   

15.
A new method is described for isolating and identifying proteins participating in protein-protein interactions in a complex mixture. The method uses a cyanogen bromide-activated Sepharose matrix to isolate proteins that are non-covalently bound to other proteins. Because the proteins are accessible to chemical manipulation, mass spectrometric identification of the proteins can yield information on specific classes of interacting proteins, such as calcium-dependent or substrate-dependent protein interactions. This permits selection of a subpopulation of proteins from a complex mixture on the basis of specified interaction criteria. The new method has the advantage of screening the entire proteome simultaneously, unlike the two-hybrid system or phage display, which can only detect proteins binding to a single bait protein at a time. The method was tested by selecting rat brain extract for proteins exhibiting calcium-dependent protein interactions. Of 12 proteins identified by mass spectrometry, eight were either known calcium-binding proteins or proteins with known calcium-dependent protein interactions, indicating that the method is capable of enriching a subpopulation of proteins from a complex mixture on the basis of a specific class of protein interactions. Because only naturally occurring interactions of proteins in their native state are observed, this method will have wide applicability to studies of protein interactions in tissue samples and autopsy specimens, for screening for perturbations of protein-protein interactions by signaling molecules, pharmacological agents or toxins, and screening for differences between cancerous and untransformed cells.  相似文献   

16.
The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.  相似文献   

17.
在高等植物叶绿体中,RNA结合蛋白在转录后RNA处理、运输以及mRNA的稳定等方面发挥重要作用.本项研究使用多聚腺苷酸(polyA)吸附柱或单链DNA(ssDNA)吸附柱富集白桦叶绿体的polyA结合蛋白或RNA结合蛋白,并通过MALDI-TOF-MS以及ESI MS/MS进行鉴定,13个叶绿体蛋白质得到了鉴定.按照Swiss Prot数据库的注释,这些蛋白质的功能主要包括4个相关种类,分别为NAD结合蛋白、RNA结合蛋白、DNA结合蛋白和ATP结合蛋白.使用这些方法还鉴定出包括转录因子的4个高丰度蛋白.这些结果加深了对树木中叶绿体RNA结合蛋白的全面了解,可以将其应用于其他树木叶绿体中RNA 蛋白质的相互作用的研究.  相似文献   

18.
19.
White spot syndrome virus (WSSV) is a major pathogen that causes severe mortality and economic losses to shrimp cultivation worldwide. The genome of WSSV contains a 305-kb double-stranded circular DNA, which encodes 181 predicted ORFs. Previous gel-based proteomics studies on WSSV have identified 38 structural proteins. In this study, we applied shotgun proteomics using off-line coupling of an LC system with MALDI-TOF/TOF MS/MS as a complementary and comprehensive approach to investigate the WSSV proteome. This approach led to the identification of 45 viral proteins; 13 of them are reported for the first time. Seven viral proteins were found to have acetylated N termini. RT-PCR confirmed the mRNA expression of these 13 newly identified viral proteins. Furthermore iTRAQ (isobaric tags for relative and absolute quantification), a quantitative proteomics strategy, was used to distinguish envelope proteins and nucleocapsid proteins of WSSV. Based on iTRAQ ratios, we successfully identified 23 envelope proteins and six nucleocapsid proteins. Our results validated 15 structural proteins with previously known localization in the virion. Furthermore the localization of an additional 12 envelope proteins and two nucleocapsid proteins was determined. We demonstrated that iTRAQ is an effective approach for high throughput viral protein localization determination. Altogether WSSV is assembled by at least 58 structural proteins, including 13 proteins newly identified by shotgun proteomics and one identified by iTRAQ. The localization of 42 structural proteins was determined; 33 are envelope proteins, and nine are nucleocapsid proteins. A comprehensive identification of WSSV structural proteins and their localization should facilitate the studies of its assembly and mechanism of infection.  相似文献   

20.
J Suh  H Hutter 《BMC genomics》2012,13(1):333
ABSTRACT: BACKGROUND: Almost half of the Caenorhabditis elegans genome encodes proteins with either a signal peptide or a transmembrane domain. Therefore a substantial fraction of the proteins are localized to membranes, reside in the secretory pathway or are secreted. While these proteins are of interest to a variety of different researchers ranging from developmental biologists to immunologists, most of secreted proteins have not been functionally characterized so far. RESULTS: We grouped proteins containing a signal peptide or a transmembrane domain using various criteria including evolutionary origin, common domain organization and functional categories. We found that putative secreted proteins are enriched for small proteins and nematode-specific proteins. Many secreted proteins are predominantly expressed in specific life stages or in one of the two sexes suggesting stage- or sex-specific functions. More than a third of the putative secreted proteins are upregulated upon exposure to pathogens, indicating that a substantial fraction may have a role in immune response. Slightly more than half of the transmembrane proteins can be grouped into broad functional categories based on sequence similarity to proteins with known function. By far the largest groups are channels and transporters, various classes of enzymes and putative receptors with signaling function. CONCLUSION: Our analysis provides an overview of all putative secreted and transmembrane proteins in C. elegans. This can serve as a basis for selecting groups of proteins for large-scale functional analysis using reverse genetic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号