首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitory effect of 5-bromodeoxyuridine (BrdU) on the programmed cell death in interdigital mesenchyme of a chick leg bud was studied using vital staining and histological methods. A single administration of BrdU at day 6 1/3 specifically inhibited the programmed cell death in the mesenchyme of interdigital areas of a leg bud, resulting in the formation of a web-like structure. No inhibitory effect was observed on general development of limb buds. Hoechst 33258 staining revealed that many cells of interdigits incorporated BrdU into their nuclei. The simultaneous administration of thymidine blocked the BrdU effect.  相似文献   

2.
A study was made of 1st cell cycle of small micromeres, segregated at the 5th cleavage cycle, in the sea urchin embryos of Hemicentrotus pulcherrimus . For identification of small micromeres, the embryos were pulse labeled with 5-bromodeoxyuridine (BrdU) at the 1st cleavage. Using multiparametric microfluorometry equipped with a scanning stage (Tanaka, 1990), DNA content, extent of BrdU incorporation, protein content and the extent of 3H-thymidine labeling were measured on identical individual cells dissociated from an embryo. The findings of the present study are as follows. There is a short period of time between the telophase and onset of DNA replication. The period of DNA replication is 5 hr and after which, asynchronous mitosis takes place to produce 8 cells before hatching. The long S period is 83% the total 6 hr of the cell cycle. The rate of DNA accumulation is quite small during the initial one third of S but increases later in this phase. The degree of chromatin condensation remains high even during the S phase but it is low in large micromeres. The cell cycle may possibly be related causally to the development of small micromeres. The developmental significance of cell cycle duration, particularly that of DNA replication is discussed.  相似文献   

3.
The measurement of cell proliferation and cell viability using 5'bromo-2'deoxy-uridine (BrdU) labelling has been described in several cell types and species. The aim of this study was to adapt this technique to equine embryos and to compare the index of DNA replication (S-phase) between equine and caprine embryos. Seventeen equine embryos were recovered at day 6.5 post-ovulation and 20 caprine embryos were recovered at day 7 after the onset of estrus. Equine embryos were incubated during 1h at 39 degrees C in PBS containing 1mM of BrdU. Embryos were then treated in 0.05% trypsin during 15 min at 39 degrees C to permeabilise the capsule, and then embryos were rinsed in PBS containing 10% of foetal calf serum. After washing, embryos were immediately fixed in 2.5% paraformaldehyde with 0.3M NaOH during 15 min at ambient temperature. The S-phase was detected by immunocytochemistry technique. In caprine embryos, BrdU was visualised by the same technique but without the trypsin treatment. The percentage of cells (+/-S.E.M.) with BrdU incorporated into newly synthesised DNA strands was significantly higher in equine embryos (74+/-1) than in caprine (38+/-2). Our results demonstrated that BrdU incorporation assay can be used in equine embryos. This assay allows the determination of the proliferation index of live cells and could be used as an additional tool for evaluating the viability of embryos. The high percentage of cells incorporating BrdU during 1h of incubation with BrdU suggests that in comparison with the caprine embryos the cellular activity of proliferation is more intense in equine embryos and suggests that the cellular cycle is shorter in equine embryos.  相似文献   

4.
Hypoxia is a global phenomenon affecting recruitment as well as the embryonic development of aquatic fauna. The present study depicts hypoxia induced disruption of the intrinsic pathway of programmed cell death (PCD), leading to embryonic malformation in the goldfish, Carrasius auratus. Constant hypoxia induced the early expression of pro-apoptotic/tumor suppressor p53 and concomitant expression of the cell death molecule, caspase-3, leading to high level of DNA damage and cell death in hypoxic embryos, as compared to normoxic ones. As a result, the former showed delayed 4 and 64 celled stages and a delay in appearance of epiboly stage. Expression of p53 efficiently switched off expression of the anti-apoptotic Bcl-2 during the initial 12 hours post fertilization (hpf) and caused embryonic cell death. However, after 12 hours, simultaneous downregulation of p53 and Caspase-3 and exponential increase of Bcl-2, caused uncontrolled cell proliferation and prevented essential programmed cell death (PCD), ultimately resulting in significant (p<0.05) embryonic malformation up to 144 hpf. Evidences suggest that uncontrolled cell proliferation after 12 hpf may have been due to downregulation of p53 abundance, which in turn has an influence on upregulation of anti-apoptotic Bcl-2. Therefore, we have been able to show for the first time and propose that hypoxia induced downregulation of p53 beyond 12 hpf, disrupts PCD and leads to failure in normal differentiation, causing malformation in gold fish embryos.  相似文献   

5.
Follicles are important in oocyte maturation. Successful estrous cycle requires remodeling of follicular cells, and proper execution of programmed cell death is crucial for normal follicular development. The objectives of the present study were to understand programmed cell death during follicle development, to analyze the differential follicle development patterns, and to assess the patterns of apoptosis and autophagy expression during follicle development in normal and miniature pigs. Through the analysis of differential patterns of programmed cell death during follicular development in porcine, MAP1LC3A, B and other autophagy-associated genes (ATG5, mTOR, Beclin-1) were found to increase in normal pigs, while it decreased in miniature pigs. However, for the apoptosis-associated genes, progression of genes during follicular development increased in miniature pigs, while it decreased in normal pigs. Thus, results show that normal and miniature pigs showed distinct patterns of follicular remodeling manifesting that programmed cell death largely depends on the types of pathway during follicular development (Type II or autophagy for normal pigs and Type I or apoptosis for miniature pigs).  相似文献   

6.
Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-independent apoptosis are confounded by the existence of at least seven caspase homologs that can function redundantly to promote cell death. Caspase-independent programmed cell death is also thought to occur in the invertebrate nematode Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3), of which only ced-3 has been demonstrated to promote apoptosis. Here, we show that CSP-1 is a pro-apoptotic caspase that promotes programmed cell death in a subset of cells fated to die during C. elegans embryogenesis. csp-1 is expressed robustly in late pachytene nuclei of the germline and is required maternally for its role in embryonic programmed cell deaths. Unlike CED-3, CSP-1 is not regulated by the APAF-1 homolog CED-4 or the BCL-2 homolog CED-9, revealing that csp-1 functions independently of the canonical genetic pathway for apoptosis. Previously we demonstrated that embryos lacking all four caspases can eliminate cells through an extrusion mechanism and that these cells are apoptotic. Extruded cells differ from cells that normally undergo programmed cell death not only by being extruded but also by not being engulfed by neighboring cells. In this study, we identify in csp-3; csp-1; csp-2 ced-3 quadruple mutants apoptotic cell corpses that fully resemble wild-type cell corpses: these caspase-deficient cell corpses are morphologically apoptotic, are not extruded, and are internalized by engulfing cells. We conclude that both caspase-dependent and caspase-independent pathways promote apoptotic programmed cell death and the phagocytosis of cell corpses in parallel to the canonical apoptosis pathway involving CED-3 activation.  相似文献   

7.
The aims of this study were to determine if the protein source of the medium influences zebu embryo development and if developmental kinetics, developmental block and programmed cell death are related. The culture medium was supplemented with either fetal calf serum or bovine serum albumin. The embryos were classified as Fast (n = 1,235) or Slow (n = 485) based on the time required to reach the fourth cell cycle (48 h and 90 h post insemination - hpi -, respectively). The Slow group was further separated into two groups: those presenting exactly 4 cells at 48 hpi (Slow/4 cells) and those that reached the fourth cell cycle at 90 hpi (Slow). Blastocyst quality, DNA fragmentation, mitochondrial membrane potential and signs of apoptosis or necrosis were evaluated. The Slow group had higher incidence of developmental block than the Fast group. The embryos supplemented with fetal calf serum had lower quality. DNA fragmentation and mitochondrial membrane potential were absent in embryos at 48 hpi but present at 90 hpi. Early signs of apoptosis were more frequent in the Slow and Slow/4 cell groups than in the Fast group. We concluded that fetal calf serum reduces blastocyst development and quality, but the mechanism appears to be independent of DNA fragmentation. The apoptotic cells detected at 48 hpi reveal a possible mechanism of programmed cell death activation prior to genome activation. The apoptotic cells observed in the slow-developing embryos suggested a relationship between programmed cell death and embryonic developmental kinetics in zebu in vitro-produced embryos.  相似文献   

8.
A J Alles  K K Sulik 《Teratology》1989,40(2):163-171
Pregnant C57Bl/6J mice were treated with 100 mg/kg body weight of all-trans retinoic acid in sesame oil on day 11.0 of gestation. Among the live fetuses harvested on day 18 of gestation, 100% had mesomelic defects of the limbs as determined by gross examination and skeletal staining. Control fetuses treated with sesame oil had no observable limb malformations. Some treated and control embryos were harvested 12 hr after treatment and examined for patterns of cell death by using the supravital stain Nile blue sulphate and methylene-blue- and acid-fuchsin-stained histological sections. Retinoic-acid-induced cell death in the core of the limb was always associated with the zones of programmed cell death as seen in control embryos of comparable stages. This, in concert with previous studies demonstrating excessive cell death in regions of programmed cell death that correlated with subsequent malformations, leads us to conclude that the pathogenesis of mesomelic malformations has a primary association with the phenomenon of programmed cell death.  相似文献   

9.
Cell cycle and apoptosis   总被引:2,自引:0,他引:2  
Apoptosis and proliferation are intimately coupled. Some cell cycle regulators can influence both cell division and programmed cell death. The linkage of cell cycle and apoptosis has been recognized for c-Myc, p53, pRb, Ras, PKA, PKC, Bcl-2, NF-kappa B, CDK, cyclins and CKI. This review summarizes the different functions of the proteins presently known to control both apoptosis and cell cycle progression. These proteins can influence apoptosis or proliferation but different variables, including cell type, cellular environment and genetic background, make it difficult to predict the outcome of cell proliferation, cell cycle arrest or cell death. These important decisions of cell proliferation or cell death are likely to be controlled by more than one signal and are necessary to ensure a proper cellular response.  相似文献   

10.
Programmed cell death has been proposed to play a role in the death of neurons in acute and chronic degenerative neurologic disease. There is now evidence that the caspases, a family of cysteine proteases, mediate programmed cell death in various cells. In neurons, caspase-3 (CPP32/Yama/apopain), in particular, has been proposed to play a role. We examined the expression of caspase-3 in three models of programmed cell death affecting neurons of the substantia nigra in the rat: natural developmental neuron death and induced developmental death following either striatal target injury with quinolinic acid or dopamine terminal lesion with intrastriatal injection of 6-hydroxydopamine. Using an antibody to the large (p17) subunit of activated caspase-3, we have found that activated enzyme is expressed in apoptotic profiles in all models. Increased p17 immunostaining correlated with increased enzyme activity. The subcellular distribution of activated caspase-3 differed among the models: In natural cell death and the target injury model, it was strictly nuclear, whereas in the toxin model, it was also cytoplasmic. We conclude that p17 immunostaining is a useful marker for programmed cell death in neurons of the substantia nigra.  相似文献   

11.
Deprivation of growth factors has been shown to induce programmed cell death in many cell types, including mouse 3T3 fibroblasts. Programmed cell death (apoptosis) is an active process of self-destruction which is thought to require the expression of unique genes. Recently, the expression of cell cycle genes such as c-fos and c-myc, and re-entrance to cell cycle traverse, are thought to be necessary to induce programmed cell death. Previous work in this laboratory has shown that statin is a nonproliferation-specific nuclear protein present in the nuclei of young quiescent or senescent human fibroblasts, as well as in growth-arrested mouse 3T3 fibroblasts; we have reported that statin disappears rapidly after the blockage of growth arrest is removed and cells are allowed to resume cell cycle traverse. In this report we address the question of whether cells induced to enter the programmed cell death process also lose the expression of statin. We studied density-arrested quiescent mouse 3T3 cells, which undergo rapid cell death by apoptosis upon serum deprivation. Our results suggest that c-myc expression is induced, as previously reported in other systems of apoptotic death. Interestingly, we also find that statin indeed disappears after the induction of programmed cell death is initiated. These results further support the notion that when apoptosis is induced, cells behave as though released from replication arrest, and experience some part of the G1 phase of the cell cycle. The difference between this event and normal cell cycle traverse is that this experience of the G1 phase in the apoptotic process is an abortive one, with the end result of cell demise. © 1995 Wiley-Liss, Inc.  相似文献   

12.
王琳  梁旭方  廖婉琴  周天鸿 《遗传》2006,28(8):1009-1014
细胞凋亡是细胞在基因调控下发生的主动消亡过程,在脊椎动物胚胎发育过程中非常重要。斑马鱼作为一种十分理想的发育分子生物学研究模型,在有关细胞凋亡在诸如形态发生、性别分化等方面功能之活体在位研究中日益受到重视。目前,斑马鱼胚胎发育中主要凋亡通路研究已进行了不少工作,特别是caspase及其它凋亡调控基因在斑马鱼中已被成功克隆,通过转基因斑马鱼胚胎中胁迫诱导细胞凋亡并研究其信号通路以及斑马鱼胚胎形态发生的异常改变,为阐明这些凋亡调控基因与发育之间的关系提供了一个强有力的手段。  相似文献   

13.
Cell death in the oligodendrocyte lineage.   总被引:4,自引:0,他引:4  
We have recently found that about 50% of newly formed oligodendrocytes normally die in the developing rat optic nerve. When purified oligodendrocytes or their precursors are cultured in the absence of serum or added signalling molecules, they die rapidly with the characteristics of programmed cell death. This death is prevented either by the addition of medium conditioned by cultures of their normal neighboring cells in the developing optic nerve, or by the addition of platelet-derived growth factor (PDGF) or insulin-like growth factors (IGFs). Increasing PDGF in the developing optic nerve decreases normal oligodendrocyte death by up to 90% and doubles the number of oligodendrocytes, suggesting that this normally occurring glial cell death might result from a competition for limiting amounts of survival signals. These results suggest that competition for limiting amounts of survival factors is not confined to developing neurons, and raise the possibility that a similar mechanism may be responsible for some naturally occurring cell deaths in nonneural tissues.  相似文献   

14.
Cell death in the rat thymus: a minireview   总被引:6,自引:0,他引:6  
During the last decades, the literature has clearly established the fundamental role of the thymus in the development of an effective immune system. During thymocyte development and maturation, potentially autoreactive thymocytes are eliminated by a process known as apoptosis or programmed cell death responsible for the negative selection occurring within the thymus. This process is in sharp contrast to other types of cell death referred to as necrosis. Actually, three different types of cell death have been recently observed morphologically in the rat thymus, i.e. necrosis, apoptosis and clustered cell death. Moreover, among the numerous factors influencing thymocyte cell death, particular attention has been paid to hormones, chemicals, biological compounds and physical agents that may influence the type and/or the extent of cell death. Finally, a brief overview has been devoted to the contribution of mitochondria, nitric oxide, glutathione and intracellular levels of cations in addition to the activity of genes as cdk2, p53, Fas and members' of the Bcl2 family in modulating rat thymus cell death.  相似文献   

15.
We have recently found that about 50% of newly formed oligodendrocytes normally die in the developing rat optic nerve. When purified oligodendrocytes or their precursors are cultured in the absence of serum or added signalling molecules, they die rapidly with the characteristics of programmed cell death. This death is prevented either by the addition of medium conditioned by cultures of their normal neighboring cells in the developing optic nerve, or by the addition of platelet-derived growth factor (PDGF) or insulin-like growth factors (IGFs). Increasing PDGF in the developing optic nerve decreases normal oligodendrocyte death by up to 90% and doubles the number of oligodendrocytes, suggesting that this normally occurring glial cell death might result from a competition for limiting amounts of survival signals. These results suggest that competition for limiting amounts of survival factors is not confined to developing neurons, and raise the possibility that a similar mechanism may be responsible for some naturally occurring cell deaths in nonneural tissues. © 1992 John Wiley & Sons, Inc.  相似文献   

16.
17.
The timetable of cell generation, neuronal death and neuron numbers in the fused proximal glossopharyngeal (IX) and vagal (X) ganglion and distal IX and X ganglia were studied in normal and nerve growth factor (NGF) treated chick embryos. 3H-thymidine was injected between the 3rd and 7th days of incubation and embryos sacrificed on the 11th day. Neurons in the distal IX and X ganglia were generated between the 2nd and 5th days of incubation, the peak mitotic activity occurring on the 4th and 3rd days, respectively. Neurons of the proximal IX and X ganglion were generated between the 4th and 7th days, with maximum neuron generation on the 5th day of incubation. Counts of neurons in the 3 ganglia between the 5th and 18th days of incubation showed a maximum of 22,000 on the 8th day in the proximal IX and X ganglion and this decreased to 12,000 by the 13th day. In the distal IX ganglion, the neuron number decreased by 44% from 4,500 on the 6th day to 2,500 by the 11th day. A similar decrease of 43% was found in the distal X ganglion, the neuron number falling from 11,500 on the 7th day to 6,500 by the 11th day of incubation. Neuronal cell death in these ganglia extended from the 5th to the 12th day of incubation, maximum cell death occurring at or after the cessation of mitotic activity. NGF administration from the 5th to the 11th day of incubation did not have a measurable effect on the neurons of proximal IX and X and distal IX ganglia, but increased neuronal survival by 30% in the distal X ganglion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Programmed cell death (apoptosis) is a normally occurring process used to eliminate unnecessary or potentially harmful cells in multicellular organisms. Recent studies demonstrate that the molecular control of this process is conserved phylogenetically in animals. The dad-1 gene, which encodes a novel 113 amino acid protein, was originally identified in a mutant hamster cell line (tsBN7) that undergoes apoptosis at restrictive temperature. We have identified a dad-1 homologue in Caenorhabditis elegans (Ce-dad-1) whose predicted product is > 60% identical to vertebrate DAD-1. A search of the sequence databases indicated that DAD-1-like proteins are also expressed in two plant species. Expression of either human dad-1 or Ce-dad-1 under control of a C.elegans heat-shock-inducible promoter resulted in a reduction in the number of programmed cell death corpses visible in C.elegans embryos. Extra surviving cells were present in these animals, indicating that both the human and C.elegans dad-1 genes can suppress developmentally programmed cell death. Ce-dad-1 was found to rescue mutant tsBN7 hamster cells from apoptotic death as efficiently as the vertebrate genes. These results suggest that dad-1, which is necessary for cell survival in a mammalian cell line, is sufficient to suppress some programmed cell death in C.elegans.  相似文献   

19.
惊厥后大鼠海马神经再生与凋亡的动态变化   总被引:1,自引:0,他引:1  
探讨惊厥持续状态(status convulsion,SC)后大鼠海马神经再生与凋亡的动态变化。建立成年Wistar鼠30minSC模型,在SC后1天至56天的6个时间点上处死动物,处死前1天均腹腔注射5-溴2-脱氧尿嘧啶核苷(5-bromo-2-deoxyuridine,BrdU);采用免疫组织化学方法动态检测BrdU、nestin的表达,确定神经干细胞增殖水平;双重荧光染色标记nestin/TUNEL,确定新生神经干细胞存活时间。与对照组相比,BrdU阳性细胞数目于SC后第7天在CA1区达增殖高峰,28天降至正常水平;于SC后第28天在齿状回达增殖高峰,56天降至正常水平;在SC后第7天,CA3区有大量的BrdU阳性细胞;BrdU和nestin阳性细胞数目无统计学差异。在SC后的前3天,CA1区新增殖的神经细胞呈TUNEL阳性;齿状回新增殖细胞始终表现TUNEL阴性。上述结果提示:SC后能激活自体神经干细胞原位增殖,并且部分新生细胞向损伤区域迁移。  相似文献   

20.
Cell death has been traditionally classified in apoptosis and necrosis. Apoptosis, known as programmed cell death, is an active form of cell death mechanism that is tightly regulated by multiple cellular signaling pathways and requires ATP for its appropriate process. Apoptotic death plays essential roles for successful development and maintenance of normal cellular homeostasis in mammalian. In contrast to apoptosis, necrosis is classically considered as a passive cell death process that occurs rather by accident in disastrous conditions, is not required for energy and eventually induces inflammation. Regardless of different characteristics between apoptosis and necrosis, it has been well defined that both are responsible for a wide range of human diseases. Glycogen storage disease type I (GSD-I) is a kind of human genetic disorders and is caused by the deficiency of a microsomal protein, glucose-6-phosphatase-α (G6Pase-α) or glucose-6-phosphate transporter (G6PT) responsible for glucose homeostasis, leading to GSD-Ia or GSD-Ib, respectively. This review summarizes cell deaths in GSD-I and mostly focuses on current knowledge of the neutrophil apoptosis in GSD-Ib based upon ER stress and redox signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号