首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 421 毫秒
1.
籼型三系杂交水稻地上部干物质重的发育遗传研究   总被引:1,自引:0,他引:1  
采用数量性状的加性--显性发育遗传模型分析了按NCⅡ交配设计的两套籼型三系杂交水稻地上部干物质重的发育遗传规律.结果表明,在不同发育阶段,地上部干物质重以显性效应为主,控制地上部干物质重的加性效应基因几乎不表达,而显性效应基因在两年中的表达呈连续性,且在生长中期活动强度最大,环境和基因型互作会影响地上部干物质重加性效应基因的表达,而对显性效应基因表达的影响不明显,随着发育进程的推进,地上部干物质重杂种优势趋于减弱。  相似文献   

2.
籼粳亚种间杂交稻米脂肪含量的遗传分析   总被引:4,自引:0,他引:4  
用包括基因型×环境互作效应的种子性状遗传模型,研究了籼粳亚种间杂交稻米脂肪含量的遗传特性,结果表明:在籼粳杂种中,脂肪含量的遗传表达主要受控于种子直接加性效应和母体加性效应,以前者为主.基因型X环境互作主要表现为显性(包括直接显性和母体显性)X环境以及细胞质X环境工作.直接近传率和母体遗传率都极显著.此外,根据遗传效应预测值对供试条本的利用价值作了评价.  相似文献   

3.
以2个粳型光温敏核不育系和4个籼稻品种为材料,配制籼粳交组合,用包括基因型×环境互作效应的胚乳性状遗传模型对3个蒸煮品质性状(直链淀粉含量、胶稠度、碱消值)进行了遗传研究,结果表明:直接加性和母体加性效应对三个性状的遗传变异起主要作用.基因型×环境互作主要表现为显性×环境以及细胞质×环境互作.直链淀粉含量的普通遗传率都不显著,只有较高的互作母体遗传率;胶稠度具有显著的普通直接遗传率和互作细胞质遗传率;碱消值的普通直接遗传率和普通母体遗传率都极显著.根据遗传效应预测值对供试亲本的利用价值作了评价。  相似文献   

4.
籼粳杂交稻穗部性状的遗传效应及其与环境互作   总被引:8,自引:1,他引:7  
采用包括基因型与环境互作效应的加性显性加性×加性上位性遗传模型,分析了不同环境下籼粳杂交稻穗部性状的遗传特点.结果表明,除了主穗粒数的加性与环境互作和二次枝梗数的显性与环境互作不显著外,其他性状均存在显著和极显著的加性、显性、加性×加性上位性遗传效应及其与环境的互作效应,其中均以显性效应为主,显性与环境互作效应对枝梗性状的影响较为明显.遗传率分析表明,各性状的普通广义遗传率最大,互作遗传率也有一定作用.杂种优势预测表明,除了一次、二次枝梗数外,其他性状均表现正向的杂种优势,基因型与环境互作只影响杂种优势表达的程度,而不改变其方向.遗传效应预测值结果表明,IR6615837、IR6560085、明恢63和R6694个亲本可以明显改良杂交后代多数穗部性状,且环境影响程度较小,可作为优良亲本列于育种计划中.  相似文献   

5.
不同环境下籼稻糙米重的发育遗传研究   总被引:17,自引:0,他引:17  
采用包括遗传主效应和基因型与环境互作效应的数量性状发育遗传模型和统计分析方法 ,分析了籼稻(OryzasativaL .)稻米 4个发育时期糙米重的两年资料。结果表明 ,除了三倍体胚乳和二倍体母体植株基因的加性和显性主效应以及细胞质主效应可以控制不同稻米发育时期的糙米重量外 ,基因型与环境互作效应也可明显影响不同发育时期糙米重量。基因加性主效应和加性×环境互作效应在整个稻米灌浆过程中起着主要作用 ,对糙米重的选择可以取得良好的改良效果。条件方差分量分析结果表明 ,胚乳和母体植株中控制糙米重表现的基因在多数稻米发育时期均有新的表达 ,且以稻米发育早期为主 ,开花后第 1~ 7天是控制糙米重的基因表达最为活跃的时期 ,其次为开花后第 8~ 14天。一些基因只在个别发育时期间断表达 ,这在净细胞质主效应和净细胞质×环境互作效应以及净显性主效应上表现得尤为明显。稻米不同发育时期的遗传效应预测值表明 ,V2 0和作 5等亲本可以明显提高后代的糙米重量。  相似文献   

6.
水稻对受体植物化感作用的遗传生态学研究   总被引:19,自引:8,他引:11  
选用化感作用潜力差异较大的 5个水稻品种 (系 ) ,按不完全双列杂交设计 (4× 5 )配制成一套包括亲本、F1两个世代的遗传材料 ,在不同环境条件下 ,测定其不同叶龄时期对受体植物莴苣幼苗茎长的抑制作用 .采用包括基因型与环境互作的数量性状加性 显性发育遗传模型 ,分析了水稻化感作用的动态遗传及与环境互作效应 .结果表明 ,水稻叶龄在 7叶期对莴苣茎长的化感作用受加性效应的影响 ,在 3叶期和 6叶期由显性效应控制 ,在 5叶期和 8叶期加性和显性效应均有作用 ,以显性效应为主 ,呈现间断表达的遗传特点 .普通狭义遗传率在 5叶期、7叶期和 8叶期达显著水平 ,随叶龄增大趋于下降 .水稻化感作用受基因型与环境互作效应的影响较大 ,应注意控制水稻生长发育的环境 ,以达到最佳利用水稻化感作用潜力的目的 .  相似文献   

7.
采用包括基因型×环境互作效应的种子遗传模型,对粳型杂交稻稻米碾磨品质性状进行了遗传研究.结果表明:各碾磨品质性状除了受制于种子直接效应、细胞质效应和母体效应等遗传主效应外,还明显受到各基因型×环境互作效应的影响.其中糙米率性状以遗传主效应为主,而精米率、整精米率性状以基因型×环境互作效应为主.在遗传主效应中,糙米率性状主要受种子直接加性效应、母体加性效应的控制;在基因型×环境互作效应中,精米率和整精米率性状都是以种子直接加性×环境互作效应和母体加性×环境互作效应为主,细胞质×环境互作效应也起着较为重要的作用.大部分稻米碾磨品质性状的狭义遗传率均较高,其中糙米率性状以普通狭义遗传率为主,而精米率和整精米率性状则以互作狭义遗传率为主.另外,根据性状的遗传效应预测值对各亲本的育种利用价值作了评价.  相似文献   

8.
本文根据作者在参考文献[3]所提出的利用各世代小区平均数估计遗传参数的加权最小二乘法对玉米穗粒重的遗传特性进行了分析。结果表明:(1)在本次试验中,可用加性-显性-二基因互作模型来描述玉米穗粒重的遗传特性;其加性效应[d]、加性效应与显性效应的互作[j]在α=0.01水平上显著,显性效应[h]、显性效应与显性效应的互作[l]在α=0.10水平上显著,加性效应与加性效应的互作[i]不显著;[d]与[h]的差异在α=0.10水平上不显著,但([d] [h])与([i] [j] [l])在α=0.05水平上显著;(2)与利用6个世代平均数相比,利用8个世代小区平均数的加权最小二乘法既节约、又灵敏。  相似文献   

9.
叶子弘  朱军 《遗传学报》2000,27(9):800-809
对4个陆地棉品种(系)双列杂交实验的2年观察资料按包括基因型×环境互作的加性-显性遗传模型进行不同发育阶段开花成铃规律的遗传分析。方差分析表明,开花成铃早期主要受显性效应控制,至中后期加性效应作用逐渐增强,基因型×环境互作效应相对较小。不同发育阶段平均开花成铃数与总铃数的相关分析表明,8月1日前加性相关系数为负数或零值,但存在显著或极显著的显性正相关,8月1日后则相反。不同发育阶段平均开花成铃数的条件遗传分析发现不同时期的基因活动强度不同,7月下旬及8月上中旬最大;检测间隔(t-k)对探讨花铃期基因活动规律有重要作用;选择调查周期时应兼顾实验目的、实验环境条件、入选性状及所处的发育阶段。  相似文献   

10.
采用包括基因型与环境互作效应的加性-显性-加性×加性上位性遗传模型,分析了不同环境下籼粳杂交稻穗部性状的遗传特点.结果表明,除了主穗粒数的加性与环境互作和二次枝梗数的显性与环境互作不显著外,其他性状均存在显著和极显著的加性、显性、加性×加性上位性遗传效应及其与环境的互作效应,其中均以显性效应为主,显性与环境互作效应对枝梗性状的影响较为明显.遗传率分析表明,各性状的普通广义遗传率最大,互作遗传率也有一定作用.杂种优势预测表明,除了一次、二次枝梗数外,其他性状均表现正向的杂种优势,基因型与环境互作只影响杂种优势表达的程度,而不改变其方向.遗传效应预测值结果表明,IR66158-37、IR65600-85、明恢63和R6694个亲本可以明显改良杂交后代多数穗部性状,且环境影响程度较小,可作为优良亲本列于育种计划中.  相似文献   

11.
The dynamic changes of genetic effects, including main effects, and genotype x environment (GE) interaction effects on brown rice thickness (BRT) across environments were investigated by using the developmental genetic models. Seven cytoplasmic male sterile lines of indica rice (Oryza sativa L.) as females and five restoring lines as males were used in a factorial design to produce grains of F(1)s and F(2)s in two environments (years) for developmental genetic analysis. The results indicate that genetic effects, especially GE interaction effects of triploid endosperm genes, cytoplasm genes, and diploid maternal plant genes were important to the performance of BRT at various filling stages of rice. The BRT was genetically controlled by the net genetic effects of genes expressed at the early and late filling stages (1-7 days and 15-21 days after flowering, respectively). The differences in net genetic effects under different environments for endosperm, cytoplasm, and maternal plant genes were found, and the net GE interaction effects were more important to BRT at the early filling and mature stages of rice. Some net genetic effects, especially for net cytoplasm effects spasmodically expressed, were detected among filling stages. Higher additive and cytoplasm main effects, along with their interaction effects, were found, which would be useful for selection for BRT in breeding programs. The predicated genetic effects at different filling stages show that the parents of V20 and Xieqingzao were better than others for improving BRT of progenies.  相似文献   

12.
Analysis of genetic main effects and genotype×environment (GE) interaction effects for brown rice weight (BRW) at four different filling stages in indica rice ( Oryza sativa L.) was conducted for two-year experimental data by using developmental genetic models and corresponding statistical approaches for quantitative traits of seeds in cereal crops. It was indicated that the genetic main effects and their GE interaction effects of triploid endosperm, cytoplasmic and diploid maternal plant genes were important for BRW at different filling stages of rice, especially for endosperm or maternal additive main effects and their additive interaction effects. Because of the higher additive effects and additive interaction effects for BRW at different filling stages, the better improving effects for this trait could be expected by selection in rice breeding. The results of conditional genetic variance components showed that the new expression of quantitative genes in endosperm and maternal plant for BRW was mostly found at all different filling stages of rice. The gene expression, however, was most active at the early filling stages especially for the first (1-7 d) and the second filling stages (8-14 d after flowering). The phenomena that some genes were spasmodically expressible among filling stages of rice were detected for some genetic effects especially for net cytoplasmic main effects or its interaction effects and net dominance main effects. Predicted genetic effects at different filling stages of rice showed that some parents such as V20 and Zuo 5 were better than others for improving the BRW.  相似文献   

13.
籼稻糙米厚度的发育遗传研究   总被引:14,自引:1,他引:13  
樊龙江  石春海  吴建国  朱军  吴平 《遗传学报》2000,27(10):870-877
应用包括3套遗传体系基因效应的数量性状发育遗传模型,分析了12个籼稻亲本在4个不同稻米发育时期的糙米厚性状。结果表明,三倍体胚乳、二倍体母体植株基因的加性和显性效应以及细胞质效应均可以明显影响各个稻米发育时期的糙米厚度,其中灌浆始期以二倍体母体植株效应为主,灌浆中后期以三倍体胚乳效应为主,成熟期则以细胞质效应为主。在4个不同发育时期中,控制糙米厚的基因加性效应和显性效应交替为主。胚乳显性方差和母体  相似文献   

14.
Shi CH  Ge GK  Wu JG  Ye J  Wu P 《Genetica》2006,128(1-3):297-306
The dynamic expression of genes for protein and lysine contents of rice grain under different environments was carried out with time-dependent measures by using the developmental genetic models for quantitative traits of triploid endosperm in cereal crops. The results showed that the genetic effects, especially genotype × environment (GE) interaction effects from the genes expression of different genetic systems including triploid endosperm, cytoplasm and diploid maternal plant were important for the performance of both nutrient quality traits at all developmental times/stages of rice grain. The conditional genetic variance analysis found that the activation of quantitative genes especially from endosperm and maternal plant genetic systems for protein and lysine contents was gradually carried through the developmental process of rice grain. The net genetic effects showed that the new expression of quantitative genes for protein and lysine contents was more active at late filling stage (15–21 days after flowering) and maturity stage (22–28 days) of rice grain. Also the sequential expression of cytoplasmic genes cannot be ignorable for the development of nutrient quality traits. The phenomena that some genes could continuously express for several developmental stages or the genes expression could be interrupted among developmental stages of rice grain was detected especially for net endosperm additive main effects or maternal additive main effects. The differences of genetic relationships from different genetic systems were found for protein and lysine contents among developmental times of rice grain.  相似文献   

15.
A mapping population of 104 F(3) lines of pearl millet, derived from a cross between two inbred lines H 77/833-2 x PRLT 2/89-33, was evaluated, as testcrosses on a common tester, for traits determining grain and stover yield in seven different field trials, distributed over 3 years and two seasons. The total genetic variation was partitioned into effects due to season (S), genotype (G), genotype x season interaction (G x S), and genotype x environment-within-season interaction [G x E(S)]. QTLs were determined for traits for their G, G x S, and G x E(S) effects, to assess the magnitude and the nature (cross over/non-crossover) of environmental interaction effects on individual QTLs. QTLs for some traits were associated with G effects only, while others were associated with the effects of both G and G x S and/or G, G x S and G x E(S) effects. The major G x S QTLs detected were for flowering time (on LG 4 and LG 6), and mapped to the same intervals as G x S QTLs for several other traits (including stover yield, harvest index, biomass yield and panicle number m(-2)). All three QTLs detected for grain yield were unaffected by G x S interaction however. All three QTLs for stover yield (mapping on LG 2, LG 4 and LG 6) and one of the three QTLs for grain yield (mapping on LG 4) were also free of QTL x E(S) interactions. The grain yield QTLs that were affected by QTL x E(S) interactions (mapping on LG 2 and LG 6), appeared to be linked to parallel QTL x E(S) interactions of the QTLs for panicle number m(-2) on (LG 2) and of QTLs for both panicle number m(-2) and harvest index (LG 6). In general, QTL x E(S) interactions were more frequently observed for component traits of grain and stover yield, than for grain or stover yield per se.  相似文献   

16.
Experiments were conducted on rapeseed (Brassica napus L.) using a diallel design with nine parents: Youcai 601, Double 20-4, Huashuang 3, Gaoyou 605, Zhongyou 821, Eyouchangjia, Zhong R-888, Tower and Zheshuang 72. The seed developmental process was divided into five stages, namely initial (days 1-15 after flowering), early (days 16-22 after flowering), middle (days 23-29), late (days 30-36), and maturing (days 37-43) developmental stages. The variation of dynamic genetic effects for leucine and isoleucine contents of rapeseed meal was analysed at five developmental stages, across different environments using the genetic models with time-dependent measures. The results from unconditional and conditional analyses indicated that the expression of diploid embryo, cytoplasmic and diploid maternal plant genes were important for leucine and isoleucine contents at different developmental stages of rapeseed, particularly at the initial and early developmental stages. Among different genetic systems, nutrition quality traits were mainly controlled by the accumulative or net maternal main effects and their GE interaction effects, except at maturity when the net diploid embryo effects were larger. The expression of genes was affected by the environmental conditions on 15, 22, 29 or 36 days after flowering, but was more stable at mature stage. For the isoleucine content the narrow-sense heritabilities on 15, 22, 29, 36, and 43 days after flowering were 43.0, 65.7, 60.1, 65.5 and 78.2%, respectively, while for the leucine content the corresponding narrow-sense heritabilities were relatively smaller. The interaction heritabilities were more important than the general heritabilities at the first three developmental times. The improvement for isoleucine content could be achieved by selection based on the higher narrow-sense heritabilities. Various genetic systems exhibited genetic correlations among the developmental times or leucine and isoleucine contents. A simultaneous improvement of leucine and isoleucine contents seems possible because of the significant positive genetic correlation components from different genetic systems at different developmental times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号