首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
α-氨-3-羟基-5-甲基-4-异恶唑丙酸受体(α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors,AMPA receptors)介导中枢神经系统(CNS)绝大多数快兴奋性突触传递,在学习、记忆和认知等方面具有重要功能. 突触AMPA受体的数量、分布和亚基组成是调节突触传递强度的一个主要机制,与AMPA受体转运密切相关. 最新研究显示,异常的AMPA受体转运与阿尔茨海默病(Alzheimer’s disease,AD)、脆性X综合征(fragile X syndrome, FXS)等神经疾病有关. 本文主要针对AMPA受体转运及其调控的分子机制做一综述,以期为AD、FXS等神经疾病提供新的治疗靶点和途径.  相似文献   

2.
Zhang YH  Hu GY 《生理科学进展》2001,32(2):165-167
由于缺乏选择性药物,中枢神经系统内海人藻酸受体的生理功能长期未被阐明。近年来发现,2,3-苯二氮Zuo类化合物GYKI52466和GYKI53655是AMPA受体的选择性拮抗剂。理组受体技术,筛选出海人藻酸受体GluR5亚基的高选择性激动剂ATPA及拮抗剂LY294486、LY293558和LY382884等。应用上述药物开展的生理学研究,证明海人藻酸受体在某些脑区具有介导兴奋性突触、参与突触可塑性机制以及调节神经质释放等重要功能。  相似文献   

3.
研究成瘾药物复吸的神经机制是此类研究的核心问题。最近,美国俄勒冈健康与科学大学学者John TWilliams等人发现:被动接受成瘾药物和主动复吸有不同的神经机制。此研究从兴奋性突触强度变化和AMPA/NMDA受体比例变化入手,观察到大鼠腹侧终纹床核(ventral lateral bed nucleus of  相似文献   

4.
在中枢神经系统内神经细胞的树突棘是突触信息传递的重要部位,树突棘的体积和密度影响神经环路的功能。2007年美国加利福尼亚大学的SilaK.Ultanir等人在皮层NRl亚基(是NMDA受体的必要组分)基因敲除的小鼠上发现NMDA受体对树突棘的发育有重要影响。急性分离出生后三周内小鼠的脑片,用电压钳全细胞记录的方法,发现在皮层2/3层的锥体细胞中,AMPA受体介导的微小兴奋性突触后电流(mEP-SC)的幅度和频率均明显增大。  相似文献   

5.
AMPA受体(α-amino-3-hydroxy-5-methyl-4-isoxa-zolep-propionate receptor,AMPAR)介导中枢神经系统快速兴奋性突触传递,其在突触后膜的动态表达与长时程增强、长时程抑制的诱发和维持有关,参与调节学习记忆活动。AMPAR在β-淀粉样蛋白作用下的过度胞吞和裂解致其在突触后膜缺失,可致突触损伤和功能障碍,与阿尔茨海默病早期认知障碍密切相关。AMPAR还参与谷氨酸介导的兴奋性损伤,Ca2+通透性AMPAR亚型的过度激活能导致阿尔茨海默病神经元的功能障碍甚至死亡。此外,AMPAR还参与tau蛋白的异常磷酸化,与神经原纤维缠结的形成有关。因而突触后膜AMPA受体数目和功能异常可能是导致阿尔兹海默病发生的重要环节。  相似文献   

6.
目的:探讨离子型谷氨酸受体中的AMPA受体(α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor, AMPA受体)和NMDA受体(N-methyl-D-aspartic acid receptor)对抑制性中间神经元以及兴奋性神经元的形态发育的影响。方法:采用原代培养皮层神经元,通过药物干预AMPA受体和/或NMDA受体的方法阻断神经元的离子型谷氨酸受体,并采用GAD67-GFP鼠的绿色荧光来显示混合细胞群中抑制性神经元、CaMKII免疫荧光染色显示兴奋性神经元。结果:当阻断AMPA和/或NMDA受体时,光镜下显示神经元网络的密度降低,且随着药物浓度的增加,神经元网络的变化更明显。对于GFP阳性的抑制性神经元,当阻断AMPA受体时,神经元突起分支数降低至对照组的约65%(低浓度)和55%(高浓度),突起长度缩短至对照组的大约43%(低浓度)和36%(高浓度);当阻断NMDA受体时,分支数降低至约70%(低浓度)和45%(高浓度),长度缩短至约43%(低浓度)和31%(高浓度);联合用药时,分支数和长度分别为对照的约42%和38%。对于CaMKII阳性的兴奋性神经元,尽管变化程度稍弱,但其形态也出现类似变化。当阻断AMPA受体时,神经元的分支数降低至对照组的64%(高浓度),突起长度变化不大;当阻断NMDA受体时,分支数降低至约50%(高浓度),长度缩短至约77%(低浓度)和71%(高浓度);联合用药时,分支数和长度分别为对照的约69%和62%。结论:在神经元发育的过程中,离子型谷氨酸受体介导的兴奋性突触传入可影响抑制性神经元和兴奋性神经元的形态发育,最终对神经环路的形成发挥重要的调控作用。  相似文献   

7.
活性氧在谷氨酸兴奋性神经毒性中的作用   总被引:4,自引:0,他引:4  
活性氧在谷氨酸兴奋性神经毒性中的作用易永杨祥良徐辉碧(华中理工大学化学系,武汉430074)关键词谷氨酸兴奋性毒性活性氧作为神经递质的谷氨酸贮存于神经末梢突触囊泡内,随神经冲动由钙内流介导释放到突触间隙,尔后作用于突触后膜的谷氨酸受体,在中枢神经系统...  相似文献   

8.
大脑中神经元突触间的信号传递是由许多神经递质受体介导的。在过去,Richard L.Huganir实验室一直致力于神经递质受体功能调节的分子机制。而最近,该实验室又聚焦到大脑中一种最主要的兴奋性受体的研究——谷氨酸受体。谷氨酸受体主要可以分为两大类:AMPA受体和NMDA受体。AMPA受体主要介导了快速的兴奋性突触传递;而NMDA受体则在神经可塑性和发育中起到重要作用。实验发现,AMPA受体和NMDA受体都可以被一系列的蛋白激酶磷酸化,而磷酸化的水平则直接影响了这些受体的功能特性,包括通道电导和受体膜定位等。AMPA受体磷酸化的水平同时还在学习和记忆的细胞模型中发生改变,如长时程增强(LTP)和长时程抑制(LTD)。此外,AMPA受体中GluR1亚单位的磷酸化对于各种形式的可塑性以及空间记忆的维持有重要的作用。实验室主要研究突触部位谷氨酸受体在亚细胞水平的定位和聚集的分子机制。最近,一系列可以直接或间接与AMPA和NMDA受体相互作用的蛋白质得以发现,其中包括一个新发现的蛋白家族GRIPs(glutamate receptor interacting proteins)。GRIPs可以直接和AMPA受体的GluR2/3亚单位的C端结合。GRIPs包含7个PDZ结构域,可以介导蛋白与蛋白直接的相互连接,从而把各个AMPA受体交互连接在一起并与其他蛋白相连。另外,GluR2亚单位的c端还可以和兴奋性突触中的蛋白激酶C结合蛋白(PICK1)的PDZ结构域相互作用。另外,GluR2亚单位的C端也可以与一种参与膜融合的蛋白NSF相互作用。这些与AMPA受体相互作用的蛋白质对于受体在膜上的运输以及定位有至关重要的作用。同时,受体与PICK1和GRIP的结合对于小脑运动学习中的LTD有重要作用。总体上说,该实验室发现了一系列可以调节神经递质受体功能的分子机制,这些工作提示受体功能的调节可能是?  相似文献   

9.
《生命科学研究》2015,(6):536-540
突触可塑性在学习记忆中发挥了重要作用,AMPA(α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid,AMPA)受体功能和运输的调节是突触可塑性机制研究的重要环节。在突触可塑性发生过程中,激酶和磷酸酶能够调节AMPA受体C末端的磷酸化水平,进而影响AMPA受体运输。对于AMPA受体磷酸化的研究能够加深我们对突触可塑性机制的理解。  相似文献   

10.
Lu T  Yang XL 《生理科学进展》1997,28(3):197-202
AMPA受体是离子型谷氨酸受体中重要的一类亚型,在中枢神经系统内主要介导快速的兴奋性突触传递。近年来,AMPA受体独特的失敏特性逐渐被阐明,已经确定了一些特异调节AMPA受体失敏的化合物。大量的生理学和药理学证据表明,AMPA受体失敏在快速兴奋性突触传递中起着重要的作用,对单个突触的传递效率、神经元的整合功能和突触的可塑性均有影响。  相似文献   

11.
成年小鼠前脑NMDA受体参与神经元的动作电位发放   总被引:2,自引:2,他引:0  
Wang GD  Zhuo M 《生理学报》2006,58(6):511-520
谷氨酸是中枢神经系统主要的快速兴奋性递质。AMPA受体和海人藻酸受体主要参与突触传递,而NMDA受体主要参与突触可塑性。基因操作的方法增强NMDA受体的功能,可以增强动物在正常生理状态下的学习能力,及在组织损伤情况下的反应敏感性。NMDA受体参与生理功能的主要机制是长时程增强(long—term potentiation,LTP)。我们的研究表明,NMDA受体不仅参与刺激前扣带皮层的第五层细胞或刺激白质诱导的突触反应,而且参与在胞体施加去极化跃阶电流诱导的动作电位的发放。钙一钙调蛋白敏感的腺苷酸环化酶1(adenylyl cyclase 1,AC1)和cAMP信号通路可能介导了这些反应。由于扣带皮层神经元在伤害性刺激和痛中发挥重要作用,我们的结果为前脑NMDA受体参与突触传递和动作电位发放,以及与前脑相关的行为,如感受伤害性刺激和痛,提供了一个新的机制。  相似文献   

12.
γ-氨基丁酸B型受体(GABAB receptor,GABABR)是由GABAB1(GB1)和GABAB2(GB2)亚基组成的异源二聚体,在中枢神经系统中介导持久而缓慢的神经抑制活动。GABAB受体活性受多种因素的调控,如受体的胞内运输、受体的内吞和再循环、受体与胞内蛋白相互作用等,在神经元维持突触可塑性、产生快速神经抑制信号等方面起着非常重要的作用,其活性失调则导致自发性癫痫、痉挛药物成瘾、精神分裂症等多种严重疾病。  相似文献   

13.
钙/钙调蛋白依赖的蛋白激酶Ⅱ(Ca2+/calmodulin-dependent protein kinase Ⅱ,CaMKⅡ)在脑内兴奋性突触部位丰富表达。通过催化谷氨酸受体和众多突触蛋白磷酸化,CaMKⅡ调节磷酸化蛋白在基础或细胞兴奋时的转运、分布和功能。谷氨酸NMDA受体是CaMKⅡ的直接底物,有证据表明CaMKⅡ直接与NMDA受体胞内C末端相互结合,催化一特定丝氨酸(S1303)的磷酸化。CaMKⅡ也加强谷氨酸AMPA受体的磷酸化,通过磷酸化AMPA受体C末端特定的丝氨酸(S831),CaMKⅡ增强AMPA受体的功能。此外,CaMKⅡ可与代谢型谷氨酸受体mGluR1亚型的胞内C末端结合,促进一特定苏氨酸(T871)的磷酸化,从而促进受体兴奋后脱敏。CaMKⅡ在正常状态下与mGluR5受体结合以储存于突触内,刺激mGluR5受体时,CaMKⅡ与mGluR5受体分离,转运至NMDA受体,以介导mGluR5信号对NMDA受体的增强作用。总之,CaMKⅡ与谷氨酸受体相互作用,改变受体磷酸化水平,参与受体的数量和功能以及突触传导活动的调节。  相似文献   

14.
NMDA受体信号复合体中蛋白质的相互作用   总被引:7,自引:0,他引:7  
侯筱宇  张光毅 《生命科学》2003,15(5):274-278
谷氨酸能兴奋性突触的突触后密集区(postsynaptic density,PSD)包含多种受体蛋白、骨架蛋白和信号蛋白,它们通过分子中特定的结构域相互识别并动态地结合,形成多个信号复合体,参与突触后受体功能的调节及其下游特异性信号转导通路的激活。其中,NMDA受体信号复合体中蛋白质-蛋白质的相互作用及其调控机制的阐明,对于深入了解神经发育、突触可塑性、兴奋性毒性等生理病理的分子机制有重要意义。  相似文献   

15.
本研究旨在探讨α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体参与的出生后大鼠海马发育早期的电生理学特点。选择出生后0.5月龄、1月龄、2月龄和3月龄Wistar大鼠共计48只(每组各12只)。应用全细胞膜片钳技术及MED64平面微电极阵列技术检测海马CA1区锥体神经元的被动膜特性及AMPA受体参与的自发兴奋性突触后电流(spontaneous exctitatory postsynaptic current,sEPSC)和场兴奋性突触后电位(field excitatory postsynaptic potential,fEPSP)。结果显示,海马CA1区锥体神经元在出生后0.5~3月龄期间,在被动膜特性方面表现为:膜电容与静息膜电位无显著性变化;膜输入电阻与时间常数均显著下降。在主动膜特性方面,呈现出阶段性变化:0.5~1月龄期间,s EPSC的反应表现为:振幅显著升高,频率明显增大,上升时间及下降时间显著增加;1~3月龄期间,sEPSC的反应特性与0.5~1月龄期间相反。此外,0.5~3月龄期间,海马CA1区诱发出的f EPSP范围明显扩大,而幅值显著减小;各月龄海马CA1区诱发出的fEPSP幅值均可被AMPA受体竞争性拮抗剂6-氰基-7-硝基喹喔啉-2,3-二酮(CNQX)明显降低。以上结果提示,在出生后大鼠海马发育早期过程中,AMPA受体作为调节突触传递和突触联系的主要兴奋性受体,可以促进海马的发育及功能成熟。  相似文献   

16.
郑煜 《生理科学进展》1989,20(3):273-275
N-甲基-D-门冬氨酸(NMDA)受体是一种兴奋性氨基酸受体,广泛分布于许多脑区。该受体被激活后,突触后膜产生一长时程的兴奋性突触后电位,进而引起多种神经生物学效应或神经毒性作用。Ca~(2 )对于NMDA受体效应的产生具有重要意义。  相似文献   

17.
中枢神经系统中,丝氨酸消旋酶是5'吡哆醛依赖性酶,通过合成调控D型丝氨酸,参与N-甲基-D-天冬氨酸受体介导的神经发生、突触可塑性及学习记忆的调节。丝氨酸消旋酶表达与活性可以通过转录、翻译、翻译后修饰,小分子配基与蛋白相互作用,亚细胞分布多种方式调节。丝氨酸消旋酶失调影响了精神分裂症、脑损伤及神经退行性疾病等多种中枢神经系统疾病。本文简要介绍丝氨酸消旋酶的结构、分布、调节因素和在中枢神经系统中的生理病理功能,为神经及精神疾病的治疗和药物开发提供了新的思路。  相似文献   

18.
Liauw J  Wang GD  Zhuo M 《生理学报》2003,55(4):373-380
谷氨酸性突触是哺乳动物神经系统的主要兴奋性突触。在正常条件下,大多数的突触反应是由谷氨酸的AMPA受体传递的。NMDA受体在静息电位下为镁离子抑制。在被激活时,NMDA受体主要参与突触的可塑性变化。但是,许多NMDA受体拮抗剂在全身或局部注射时能产生行为效应,提示NMDA受体可能参与静息状态的生理功能。此文中,我们在离体的前额扣带回脑片上进行电生理记录,发现NMDA受体参与前额扣带回的突触传递。在重复刺激或近于生理性温度时,NMDA受体传递的反应更为明显。本文直接显示了NMDA受体参与前额扣带回的突触传递,并提示NMDA受体在前额扣带回中起着调节神经元兴奋的重要作用。  相似文献   

19.
N-甲基-D-天冬氨酸(NMDA)受体是离子型兴奋性谷氨酸受体的一种亚型,生物体内已发现了3种NMDA受体亚基,且通过选择性剪接至少存在7种亚型,形成具有功能的多结合位点的大分子复合物。NMDA受体在中枢神经系统的突触传递、突触可塑性、学习记忆等生理过程中发挥着重要作用,且NMDA受体的异常会导致-些精神疾病及认知功能的障碍。  相似文献   

20.
目的 槲皮素是一种广泛分布于药用植物中的黄酮类化合物,传统被认为具有神经保护作用。本研究利用位于大鼠脑干花萼状突触的突触前神经末梢进行膜片钳记录,研究槲皮素调控突触传递和可塑性的突触前机制。方法 利用全细胞膜片钳结合膜电容记录,在突触后记录微小兴奋性突触后电流(m EPSC),在突触前神经末梢记录钙內流和神经囊泡的释放、回收以及可立即释放库(RRP)的恢复动力学。并且利用纤维刺激在轴突给予5~200 Hz的刺激,诱发突触后EPSC,记录突触后短时程抑制(STD)。结果 100μmol/L槲皮素不影响突触后m EPSC的振幅、频率以及AMPA受体的动力学特征。在突触前神经末梢,槲皮素不改变钙内流或囊泡的释放,但显著抑制胞吐后网格蛋白依赖的慢速胞吞。抑制胞吞会导致突触前囊泡动员的减慢,降低RRP的补充速率,并且增强高频刺激下的短时程可塑性STD。结论 本研究为槲皮素调控中枢神经突触传递提供全新的突触前神经机制,槲皮素有助于抑制中枢神经过度兴奋,进而发挥神经保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号