首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The development of the endocrine pancreas of the teleost sea bass (Dicentrarchus labrax, L.) was examined from hatching to 61 days, using the peroxidase-antiperoxidase technique for light microscopy. Mammalian and bonito insulin (mI and bI)-, salmo somatostatin-25 (SST-25)-, somatostatin-14 (SST-14a and b)-, glucagon-, bovine pancreatic polypeptide (PP)-, peptide tyrosine-tyrosine (PYY)- and salmo neuropeptide Y (NPY)-like immunoreactivity was demonstrated. Four ontogenetic stages were established according to the organization and immunostaining of the endocrine cells. One cell strand or primordial cord showing mI/bI- and SST-25/SST-14a-like immunoreactivity was first found at hatching in the dorsal epithelium of the anterior zone of the midgut (stage 1). One primitive islet, comprising outer SST-25/SST-14a- and inner mI/bI- and SST-14a/ SST-14b-immunoreactive cells, was found in 2- to 5-day-old larvae (stage 2). One single islet, in which glucagon-immunoreactive cells appear in the periphery, was found in larvae from 9 to 20 days after hatching (stage 3). One big islet containing, in addition, PP-immunoreactive cells in the outer region and slender cell processes which showed PYY-like immunoreactivity, was found from 25 to 61 days after hatching. During this period, primordial islets, composed of SST-25- and bI-immunoreactive cells, and clustered or isolated pancreatic endocrine cells, close to the pancreatic duct, as well as small and intermediate islets (secondary islets), in which glucagon, PP, PYY and NPY seem to be co-localized, were progressively found (stage 4). The origin of the endocrine pancreas of sea bass, and the ontogenetic and phylogenetic significance, are discussed.  相似文献   

2.
Activin A is expressed in endocrine precursor cells of the fetal pancreatic anlage. To determine the physiological significance of activins in the pancreas, a transgenic mouse line expressing the truncated type II activin receptor under the control of beta-actin promoter was developed. Histological analyses of the pancreas revealed that the pancreatic islets of the transgenic mouse were small in size and were located mainly along the pancreatic ducts. Immunoreactive insulin was detected in islets, some acinar cells, and in some epithelial cells in the duct. In addition, there were abnormal endocrine cells outside the islets. The shape and the size of the endocrine cells varied and some of them were larger than islets. These cells expressed immunoreactive insulin and glucagon. In the exocrine portion, there were morphologically abnormal exocrine cells, which did not form a typical acinar structure. The cells lacked spatial polarity characteristics of acinar cells but expressed immunoreactive amylase, which was distributed diffusely in the cytoplasm. Plasma glucose concentration was normal in the transgenic mouse before and after the administration of glucose. The insulin content of the pancreas in transgenic and normal mice was nearly identical. These results suggest that activins or related ligands regulate the differentiation of the pancreatic endocrine and exocrine cells.  相似文献   

3.
Ku SK  Lee JH  Lee HS 《Tissue & cell》2000,32(1):58-65
The distributions and relative frequencies of insulin-, glucagon- and somatostatin-immunoreactive cells were studied in dorsal, ventral, third and splenic lobes of developing chicken pancreas during embryonic periods (10 days of incubation to hatching) by immunohistochemical methods. The regions of pancreas were subdivided into three regions: exocrine, light and dark islet. Round, oval and spherical shaped immunoreactive cells were detected in all four lobes. According to developmental stages, the types of lobes and the regions of pancreas showed various distributions and relative frequencies. In the splenic lobes, insulin, glucagon and somatostatin-immunoreactive cells were detected in exocrine, dark islet and light islet from time differentiation of splenic lobes, 13 days of incubation. The insulin- and somatostatin-immunoreactive cells of the third lobes were detected in exocrine and light islets from 10 days of incubation, and in dark islets from 15 and 11 days of incubation respectively. Glucagon-immunoreactive cells were detected in exocrine, dark and light islets from 16, 11 and 19 days of incubation respectively. These immunoreactive cells of the ventral lobes were detected in exocrine and light islets. However, dark islets were not found in this lobe. Insulin-immunoreactive cells were demonstrated from 10 days of incubation in these two regions. Glucagon-immunoreactive cells were detected from 17 days of incubation in exocrine and 16 days of incubation in the light islets. Somatostatin-immunoreactive cells were demonstrated from 11 days of incubation in exocrine and 14 days of incubation in the light islets. In the dorsal lobes, insulin-immunoreactive cells were demonstrated in exocrine, dark and light islets from 12, 14, and 13 days of incubation, respectively. Glucagon- and somatostatin-immunoreactive cells were detected in dark and light islets from 13 and 14 days of incubation, respectively. Glucagon- and somatostatin-immunoreactive cells were demonstrated from 10 and 11 days of incubation in exocrine respectively. Generally, insulin-immunoreactive cells were increased in light islets but decreased in light islets with developmental stages. However, glucagon-immunoreactive cells were decreased in light islets but increased in dark islets. In addition, somatostatin-immunoreactive cells showed the same frequencies in light and dark islets with developmental stages except exocrine which increased with developmental stages.  相似文献   

4.
Glucagon, insulin, somatostatin, and pancreatic polypeptide have been localized in the anolian pancreas using peroxidase-antiperoxidase immunocytochemistry. The most abundant endocrine cell type contains glucagon. Insulin-containing cells are the next most numerous. Somatostatin-immunoreactive cells tend to be localized at the periphery of the islet cords. Pancreatic polypeptide-containing cells are a minor endocrine component scattered throughout the exocrine pancreas and occasionally within the islet areas. No staining was observed after application of antigastrin serum.  相似文献   

5.
Summary Morphological features of the endocrine cells in the duct system of the pancreas and the biliary tract have been recently characterized in the adult animal with respect to their physiological roles. In the present study, we have investigated their chronological appearance as well as their developmental progress at various stages of the rat fetal and postnatal life. On day 12 of gestation, glucagon and insulin, as well as CCK cells, were identified in the pancreatic primordium. On day 14, glucagon and CCK cells were first detected in the epithelial lining of the common hepatic and the hepatic ducts. These cells remained the dominant endocrine type in the duct system during the fetal period. Insulin and pancreatic polypeptide cells were first observed in the common hepatic duct only on days 16 and 18 of gestation respectively. In spite of their presence in the islets, somatostatin cells were not detected in the duct system during fetal life. They started to appear in the accessory pancreatic duct of the neonate, and subsequently in the common hepatic duct as well as in the small pancreatic ones on day 7 after birth. During postnatal development, the endocrine cells showed progressive or retrogressive changes in different portions of the duct system according to the cell type. In general, somatostatin, CCK and pancreatic polypeptide cells showed an increase, while glucagon and insulin cells gradually dwindled in number up to the adult stage. Somatostatin cells exhibited a significant increase in number, becoming the highest population among the duct endocrine cells in the adult. Throughout the developmental progress, the endocrine cells appear to be allocated in regions relevant to their possible influence modulating the exocrine secretion as well as the drainage of the pancreatic and bile fluid. To whom correspondence should be address.  相似文献   

6.
Differentiation of the pancreatic islets in grass snake Natrix natrix embryos, was analyzed using light, transmission electron microscopy, and immuno-gold labeling. The study focuses on the origin of islets, mode of islet formation, and cell arrangement within islets. Two waves of pancreatic islet formation in grass snake embryos were described. The first wave begins just after egg laying when precursors of endocrine cells located within large cell agglomerates in the dorsal pancreatic bud differentiate. The large cell agglomerates were divided by mesenchymal cells thus forming the first islets. This mode of islet formation is described as fission. During the second wave of pancreatic islet formation which is related to the formation of the duct mantle, we observed four phases of islet formation: (a) differentiation of individual endocrine cells from the progenitor layer of duct walls (budding) and their incomplete delamination; (b) formation of two types of small groups of endocrine cells (A/D and B) in the wall of pancreatic ducts; (c) joining groups of cells emerging from neighboring ducts (fusion) and rearrangement of cells within islets; (d) differentiated pancreatic islets with characteristic arrangement of endocrine cells. Mature pancreatic islets of the grass snake contained mainly A endocrine cells. Single B and D or PP–cells were present at the periphery of the islets. This arrangement of endocrine cells within pancreatic islets of the grass snake differs from that reported from most others vertebrate species. Endocrine cells in the pancreas of grass snake embryos were also present in the walls of intralobular and intercalated ducts. At hatching, some endocrine cells were in contact with the lumen of the pancreatic ducts.  相似文献   

7.
The primordial cord and the primitive, single and primordial islets present in the 3 earliest stages of the developing endocrine pancreas of sea bass were studied ultrastructurally. The primordial cord consisted of type I and II cells and was included in the gut. Besides these cell types, X cells were seen in the primitive islet. The single islet was made up of type I, II, III and IV cells. A correlation between these endocrine cell-types and cells previously identified immunocytochemically, was established. Type I, II, III and IV cells, correlated respectively with SST-25-, insulin-, SST-14- and glucagon-immunoreactive cells, and could be related to the D1, B, D2 and A cells, respectively, of older larvae and adult sea bass. Each cell type shows characteristic secretory granules from its first appearance. A progressive development of the organelles and an increase in the number and size of the secretory granules, whose ultrastructure also varied, was observed in the endocrine cells of the primordial cord and the succeeding islets. In 25-day-old larvae at the beginning of the fourth developmental stage, the primordial islet, the first ventral islet found, was close to a pancreatic duct and blood vessel, and consisted of type I and II cells whose ultrastructure was similar to that of the type I and II cells in the primordial cord. These data suggest a ductular origin for the pancreatic endocrine cells in the ventral pancreas. It is suggested that although endocrine cells undergo mitosis, their increase in number during the earliest development stages is principally due to the differentiation of surrounding cells.  相似文献   

8.
Nestin is expressed in vascular endothelial cells in the adult human pancreas.   总被引:22,自引:0,他引:22  
In this study we examined the expression of nestin in islets, the exocrine part, and the big ducts of the adult human pancreas by immunofluorescent double staining. Two different anti-nestin antisera in combination with various pancreatic and endothelial markers were employed. Nestin-immunoreactive cells were found in islets and in the exocrine portion. All nestin-positive cells co-expressed the vascular endothelial markers PECAM-1 (CD31), endoglin (CD105), and CD34 as well as vimentin. Endocrine, acinar, and duct cells did not stain for nestin. We also demonstrated that in the area of big pancreatic ducts, nestin-positive cells represent small capillaries scattered in the connective tissue surrounding the duct epithelium and do not reside between the duct cells. We detected nestin-expressing endothelial cells located adjacent to the duct epithelium where endocrine differentiation occurs. We have shown that nestin is expressed by vascular endothelial cells in human pancreas, and therefore it is unlikely that nestin specifically marks a subpopulation of cells representing endocrine progenitors in the adult pancreas.  相似文献   

9.
10.
Polyhormonal aspect of the endocrine cells of the human fetal pancreas   总被引:7,自引:0,他引:7  
Histological studies were performed on 30 pancreases obtained from normal human fetuses aged between the 9th and 38th week. For immunocytochemistry, the avidin-biotin-peroxidase method was used to identify and colocalise insulin, glucagon, somatostatin, pancreatic polypeptide and proliferating cell nuclear antigen. In the 9th week, cells containing all investigated peptides were present. During the fetal period, two populations of endocrine cells have been distinguished, Langerhans islets and freely dispersed cells. The free cells were polyhormonal, containing insulin, glucagon, somatostatin and pancreatic polypeptide, and were localised in the walls of pancreatic ducts throughout the whole gland. During the development of the islets we have observed four stages: (1) the scattered polyhormonal cell stage (9th–10th week), (2) the immature polyhormonal islet stage (11th–15th week), (3) the insulin monohormonal core islet stage (16th–29th week), in which zonular and mantle islets are observed, and (4) the polymorphic islet stage (from the 30th week onwards), which is characterised by the presence of monohormonal cells expressing glucagon or somatostatin. Bigeminal and polar islets also appeared during this last stage. The islets consisted of an insulin core surrounded by a thick (in the part developing from the dorsal primordium) or thin rim (part of the pancreas concerned with the ventral primordium) of intermingled mono- or dihormonal glucagon-positive or somatostatin-positive cells. The most externally located polyhormonal cells exhibited a reaction for glucagon, somatostatin and pancreatic polypeptide. Apart from the above-mentioned types of islets, all arrangements observed in earlier stages were present. Proliferating cell nuclear antigen-positive cells (single in the large islets and more numerous in the smaller ones) were predominantly observed in the outermost layer. Taken together our data indicate that, during the human prenatal development of the islet, endocrine cells are able to synthesise several different hormones. Maturation of these cells involved or depended on a change from a polyhormonal to a monohormonal state and is concerned with decreasing proliferative capacity. This supports the concept of a common precursor stem cell for the hormone-producing cells of the fetal human pancreas. Accepted: 1 June 1999  相似文献   

11.
Islets form in the pancreas after the first endocrine cells have arisen as either single cells or small cell clusters in the epithelial cords. These cords constitute the developing pancreas in one of its earliest recognizable stages. Islet formation begins at the time the cords transform into a branching ductal system, continues while the ductal system expands, and finally stops before the exocrine tissue of ducts and acini reaches its final expansion. Thus, islets continuously arise from founder cells located in the branching and ramifying ducts. Islets arising from proximal duct cells locate between the exocrine lobules, develop strong autonomic and sensory innervations, and pass their blood to efferent veins (insulo-venous efferent system). Islets arising from cells of more distal ducts locate within the exocrine lobules, respond to nerve impulses ending at neighbouring blood vessels, and pass their blood to the surrounding acini (insulo-acinar portal system). Consequently, the section of the ductal system from which an islet arises determines to a large extent its future neighbouring tissue, architecture, properties, and functions. We note that islets interlobular in position are frequently found in rodents (rats and mice), whereas intralobularly-located, peripheral duct islets prevail in humans and cattle. Also, we expound on bovine foetal Laguesse islets as a prominent foetal type of type 1 interlobular neuro-insular complexes, similar to neuro-insular associations frequently found in rodents. Finally, we consider the probable physiological and pathophysiological implications of the different islet positions within and between species.  相似文献   

12.
大鼠胰腺嗜铬颗粒素A分布的免疫组织化学研究   总被引:3,自引:0,他引:3  
本研究用ABC免疫组织化学方法,在Bouin液固定的常规石蜡切片上,观察了啥铬颗粒素A在大鼠胰腺内分泌细胞内的定位和分布,并用相邻切片双标记法,观察了它与胰高血糖素、胰岛素、生长抑素的共存关系。结果发现,大鼠胰腺嗜铬颗粒素A样免疫反应细胞主要分布于胰岛的周边部,胰腺外分泌部的导管和腺泡等处均未见CgA祥物质存在。用相邻薄切片免疫显色技术证明,大鼠胰腺中CgA样物质与胰高血糖素共存。结果提示,CgA可能是胰腺内分泌细胞的一个新的标志物,在胰腺功能调节上发挥着重要作用。  相似文献   

13.
胰岛淀粉样多肽在豚鼠胰腺分布的免疫组织化学研究   总被引:2,自引:0,他引:2  
本文用免疫组织化学ABC法,研究了胰岛淀粉样多肽(Isletamyloidpolypeptide,IAPP或称Amylin)在豚鼠胰脏的分布,并用邻片免疫组织化学双标记法,观察了IAPP与胰岛素(Insulin,INS)、生长抑素(SomatostatinSS)的共存关系。结果显示,豚鼠胰岛内绝大多数细胞都呈IAPP阳性免疫反应,在胰外分泌部的腺泡和导管内也散在分布有IAPP免疫反应阳性细胞。多数IAPP免疫反应阳性的细胞都显示INS免疫反应阳性,胰岛内少数IAPP阳性细胞也呈SS免疫反应阳性。说明IAPP主要分布在豚鼠的胰岛内.但也少量存在于外分泌部。IAPP主要和INS共存于B细胞内。但也和SS共存于D细胞内,提示IAPP可能通过自分泌途径调节INS和SS的分泌。  相似文献   

14.
15.
BACKGROUND INFORMATION: Prolonged copper deprivation in rats followed by refeeding with a normal diet has previously been used to induce the appearance of hepatocyte-like cells in the pancreas, but the effects on islet size and morphology have not been determined. RESULTS: In the present study we investigated the distribution of pancreatic alpha- and beta-cells and of hepatocytes in adult rats fed a copper-deficient diet followed by refeeding with a normal diet. Immunohistochemical staining for insulin and glucagon showed that the islets of the copper-deficient group were up to 2.4 times larger in mass compared with controls. The islets were disorganized, with alpha-cells found in multiple layers at the periphery of the islet and sometimes deep in the core. Isolated alpha- and beta-cells were also found in increased numbers in the ductular system. Copper deprivation caused almost complete ablation of the acinar cells, and refeeding induced adipogenesis, acinar regeneration and hepatocyte-like cells. Ductular proliferation and nerve hyperplasia were also present. The hepatocytes tended to be associated with islets or with ducts, rather than with residual pancreatic exocrine tissue. CONCLUSIONS: These data show that copper deficiency in rats, as well as inducing the appearance of hepatocytes, is capable of causing islet hyperplasia.  相似文献   

16.
17.
Summary Rats rendered diabetic by streptozotocin were subjected to pancreas transplantation. After twenty weeks, the duct-ligated pancreas transplant was studied morphometrically to determine the effect of duct occlusion on the various cell populations of the islets. Concomitantly, the streptozotocin-treated host pancreas was examined for a possible influence of the graft on the diabetic pattern of islet cell population. Twenty weeks after pancreas transplantation, the volume fractions of insulin, glucagon, somatostatin and pancreatic polypeptide cells in the graft islets did not differ from those of the normal control pancreas. In the pancreas of nontransplanted diabetic rats, insulin-positive B cells were reduced from 60–65% to less than 10% of the islet volume, whereas non-B cells were significantly increased in volume density. The changes in fractional volume of the various islet cells correlated fairly well with changes in plasma concentration of the corresponding pancreas hormones. In the recipient's own pancreas, the relative volumes of glucagon and somatostatin cells were unaffected by the pancreas transplant. However, the insulin cell mass was significantly increased, and comprised about 20% of the islet volume, while cells containing pancreatic polypeptide were found only sporadically.Supported by Nordic Insulin Fund, The Swedish Diabetes Association, and MFR, proj. no. 4499. The technical assistance by M. Maxe and M. Carlesson is gratefully acknowledged  相似文献   

18.
Summary Ablation, transplantation and culture experiments were used to determine the respective roles of the pancreatic dorsal and ventral anlagen in the formation of the endocrine cells. Three successive waves of endocrine formation occur in the pancreas of Bufo bufo at three developmental stages (III6, IV1 and IV2). Each wave is derived from a different source: the first originates from the dorsal anlage, the second from the exocrine tissue of the cortex of the pancreas and the third from the pancreatic duct. Each generation of islets has a specific composition of different cell types. The first wave is only composed of insulin islets; the second wave gives rise to single insulin, glucagon and somatostatin cells; while the third wave generates single cells synthesizing one of the three hormones, homogeneous islets of insulin cells, rare glucagon islets and heterogeneous islets containing insulin cells in the centre and a few glucagon or somatostatin cells at the periphery.  相似文献   

19.
To better understand the relationship between the endocrine and exocrine cell types in the Xenopus pancreas, we have cloned the Xenopus amylase cDNA and compared its expression profile with that of four other pancreatic markers: insulin, glucagon, elastase and trypsinogen. Our results demonstrate that the first pancreatic marker to be expressed is insulin, exclusively in the dorsal pancreas. These insulin-expressing cells form small groups which resemble islets, but no insulin is detected in the ventral pancreas until stage 47. In contrast, the exocrine markers, amylase, elastase and trypsinogen are first expressed only in the ventral pancreas beginning at stage 41; by stage 45 their expression extends into the dorsal pancreas. Glucagon, on the other hand, is not expressed in the pancreas until stage 45. In the endocrine cell clusters we do not find glucagon-expressing cells surrounding insulin-expressing cells, either in the tadpole or in the mature frog pancreas.  相似文献   

20.
The regional distribution and frequency of the pancreatic endocrine cells in the nude mouse, Balb/c-nu/nu were studied by immunohistochemical (peroxidase anti-peroxidase; PAP) methods using specific antisera against insulin, glucagon, somatostatin and human pancreatic polypeptide (hPP). The pancreas of the mouse was divided into two lobes, the splenic and duodenal lobes, and each lobe was subdivided into three regions, the pancreatic islets (central and peripheral regions), the exocrine region and the pancreatic duct region (consisting of duct epithelium and surrounding connective tissue--sub-epithelial connective tissue). In the pancreatic islets, most of insulin-immunoreactive (IR) cells were located in the central region, and glucagon-, somatostatin and hPP-IR cells were located in the peripheral region regardless of the lobe. In the splenic part, glucagon-IR cells were also located in the central regions, and more numerous somatostatin-IR cells were detected in the central regions compared to those of the duodenal part. hPP-IR cells were restricted to the peripheral regions in both lobes but more numerous cells were detected in the duodenal portion as compared to those of the splenic portion. In the exocrine parenchyma of the splenic lobe, only insulin-, glucagon- and somatostatin-IR cells were detected.. Here, the insulin- and glucagon-IR cells formed cell clusters, while somatostatin-IR cells were present as solitary cells. In the exocrine region of the duodenal portion, only insulin-, somatostatin- and hPP-IR cells were observed, with the same distributional pattern as that found in the splenic lobe. However, clusters of cells consisting only of hPP-IR cells were distributed in the pancreas parenchyma as small islets. In the pancreatic duct region, only solitary hPP-IR cells were demonstrated in the sub-epithelial connective tissue regions of the splenic portion. In conclusion, some strain-dependent characteristic distributional patterns of pancreatic endocrine cells, especially of the hPP-IR cells, were found in the nude mouse. In addition, somewhat different distributional patterns were found between the two pancreatic lobes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号