首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
The primordial cord and the primitive, single and primordial islets present in the 3 earliest stages of the developing endocrine pancreas of sea bass were studied ultrastructurally. The primordial cord consisted of type I and II cells and was included in the gut. Besides these cell types, X cells were seen in the primitive islet. The single islet was made up of type I, II, III and IV cells. A correlation between these endocrine cell-types and cells previously identified immunocytochemically, was established. Type I, II, III and IV cells, correlated respectively with SST-25-, insulin-, SST-14- and glucagon-immunoreactive cells, and could be related to the D1, B, D2 and A cells, respectively, of older larvae and adult sea bass. Each cell type shows characteristic secretory granules from its first appearance. A progressive development of the organelles and an increase in the number and size of the secretory granules, whose ultrastructure also varied, was observed in the endocrine cells of the primordial cord and the succeeding islets. In 25-day-old larvae at the beginning of the fourth developmental stage, the primordial islet, the first ventral islet found, was close to a pancreatic duct and blood vessel, and consisted of type I and II cells whose ultrastructure was similar to that of the type I and II cells in the primordial cord. These data suggest a ductular origin for the pancreatic endocrine cells in the ventral pancreas. It is suggested that although endocrine cells undergo mitosis, their increase in number during the earliest development stages is principally due to the differentiation of surrounding cells.  相似文献   

2.
Insulin (B)-, somatostatin 25 (SST-25) (D1)-, somatostatin 14 (SST-14) (D2)-, glucagon (A)-, and glucagon PP/PYY/NPY (PP-like)-immunoreactive cells in islets of sea bass (Dicentrarchus labrax) were characterized according to their ultrastructure and immunogold labeling. Cells labeled with antisera to bonito and salmon insulin had numerous secretory granules with a small halo and round core, and a few with wide halo and round or crystalloid core. Gold particles were found throughout the granule in tissue labeled with the former but only in the core in tissue labeled with the latter. D1 cells had large granules with a medium electron-dense content and some with a darker core. D2 had smaller medium or high electron-dense secretory granules than D1 cells, located mainly in cell periphery. Glucagon-immunoreactive cells contained some granules with a polygonal core that was heavily labeled and other granules with a round core with no or hardly any labeling. Glucagon and PP-like immunoreactivity were co-localized in secretory granules, in which the gold particles showed no different distribution with the various antisera used. PYY-immunoreactive granules were also found in nerve endings. All the pancreatic endocrine cell types showing involutive characteristics are found.  相似文献   

3.
Pancreatic development and the relationship of the islets with the pancreatic, hepatic, and bile ducts were studied in the Nile tilapia, Oreochromis niloticus, from hatching to the onset of maturity at 7 months. The number of islets formed during development was counted, using either serial sections or dithizone staining of isolated islets. There was a general increase in islet number with both age and size. Tilapia housed in individual tanks grew more quickly and had more islets than siblings of the same age left in crowded conditions. The pancreas is a compact organ in early development, and at 1 day posthatch (dph) a single principal islet, positive for all hormones tested (insulin, SST-14, SST-28, glucagon, and PYY), is partially surrounded by exocrine pancreas. However, the exocrine pancreas becomes more disseminated in older fish, following blood vessels along the mesenteries and entering the liver to form a hepatopancreas. The epithelium of the pancreatic duct system from the intercalated ducts to the main duct entering the duodenum was positive for glucagon and SST-14 in 8 and 16 dph tilapia. Individual insulin-immunopositive cells were found in one specimen. At this early stage in development, therefore, the pancreatic duct epithelial cells appear to be pluripotent and may give rise to the small islets found near the pancreatic ducts in 16-37 dph tilapia. Glucagon, SST-14, and some PPY-positive enteroendocrine cells were present in the intestine of the 8 dph larva and in the first part of the intestine of the 16 dph juvenile. Glucagon and SST-14-positive inclusions were found in the apical cytoplasm of the mid-gut epithelium of the 16 dph tilapia. These hormones may have been absorbed from the gut lumen, since they are produced in both the pancreatic ducts and the enteroendocrine cells. At least three hepatic ducts join the cystic duct to form the bile duct, which runs alongside the pancreatic duct to the duodenum.  相似文献   

4.
Endocrine cells exhibiting immunoreactivity to FMRFamide-like, LPLRFamide-like, neuropeptide Y(NPY)-like and peptide YY(PYY)-like peptides were found in the periphery of the Brockmann bodies of the cod, Gadus morhua, and rainbow trout, Oncorhynchus mykiss. No immunoreactivity or very weak labelling was found with antisera to pancreatic polypeptide (PP). Vasoactive intestinal polypeptide (VIP)-like immunoreactivity was found in nerve fibres, whereas labelling with VIP antiserum in endocrine cells disappeared after preincubation with nonimmune serum. There were always more immunoreactive cells in the rainbow trout than in the cod. No immunoreactivity could be seen with antisera to gastrin/cholecystokinin (CCK) or enkephalin. Double-labelling studies were performed to study the colocalization of the peptides in peripheral endocrine cells. Cells immunoreactive to NPY were also labelled with antisera to FMRFamide, LPLRFamide and PYY. The co-localization pattern of NPY varied; in some Brockmann bodies, a population of the immunoreactive cells showed co-localization and others contained NPY-like immunoreactivity only, whereas in other Brockmann bodies, all NPY-labelled cells also contained FMRFamide-like, LPLRFamide-like and PYY-like immunoreactivity. Cells immunoreactive to PYY similarly contained FMRFamide-like, LPLRFamide-like and NPY-like immunoreactivity, comparable to the patterns observed with NPY. Glucagon-like immunoreactivity was found at the periphery of the Brockmann bodies. A subpopulation of the glucagon-containing cells contained NPY-like immunoreactivity. PYY-like immunoreactivity was also found co-localized with glucagon-like immunoreactivity, as were FMRFamide-like and LPLRFamide-like immunoreactivity. Therefore, either NPY-like and PYY-like immunoreactivity together with FMRFamide-like and LPLRFamide-like immunoreactivity occur in the same endocrine cells of the Brockmann body of the cod and rainbow trout, or a hybrid NPY/PYY-like peptide recognized by both NPY and PYY antisera is present in the Brockmann body.  相似文献   

5.
Serotonin- and ten peptide-immunoreactive (IR) cell types were identified in the digestive tract of sea bass (Dicentrarchus labrax L.) larvae of four morphofunctional phases ranging in age from hatching to 61 days. The sequence of appearance and location of endocrine cells during ontogenetic development of the larvae was determined. The differentiation of endocrine cells followed a distal-proximal gradient in the gut which paralleled the morphofunctional differentiation. Serotonin-IR cells were identified in the last portion of the digestive tract from phase I onwards and in the gastric region from phase III, before these regions were morphofunctionally differentiated; met-enkephalin-IR cells were identified from phase II onwards in both the differentiated rectum and the undifferentiated intestine; cholecystokinin (CCK)- and synthetic human gastrin-34-IR cells were located only in the intestine and first found in the undifferentiated intestine of phase II; human gastrin-17-, peptide YY (PYY)- and neuropeptide Y (NPY)-IR cells appeared in the intestine from phase II and in stomach in phase IV, when it showed gastric glands; pancreatic polypeptide (PP)- and glucagon-IR cells were observed in both intestine and stomach, but insulin- and somatostatin-IR cells only in stomach, from phase III, during which the intestine but not the stomach was differentiated. PP- and PYY-, PP- and glucagon-, and PYY- and glucagon-like immunoreactivities coexisted from their first appearance in some cells of the gut.  相似文献   

6.
S Ito  Y Yamada  T Iwanaga  A Shibata 《Life sciences》1982,30(20):1707-1711
Specific antisera against somatostatin-28 were prepared by absorption of somatostatin-28 antisera with sepharose 4B-somatostatin-14. Indirect immunofluorescence techniques using somatostatin-14 antisera and specific antisera against somatostatin-28 were carried out to elucidate the time of occurrence of somatostatin-28 in the fetal pancreatic islets and to ascertain whether somatostatin-28 was present in the adult pancreatic islets or not, and further to examine whether cells reacting with specific antisera against somatostatin-28 are identical to those reacting with somatostatin-14 antisera or not. Somatostatin-28 like immunoreactivity occurred in the fetal pancreatic islets at 11th week's gestation and was found in all fetal pancreatic islets examined in the present study. It was also found in the adult pancreatic islets. Furthermore, cells reacting with specific antisera against somatostatin-28 in the fetal and adult pancreatic islets were identical to those reacting with somatostatin-14 antisera. Thus, the present study elucidated the presence of somatostatin-28 like immunoreactivity in the human pancreas. However, it could not be decided whether cells reacting with somatostatin-28 antisera contain either only somatostatin-28 or both somatostatin-28 and somatostatin-14; in other words, whether somatostatin-14 is produced from somatostatin-28 or not, since somatostatin-14 antisera had a cross-reactivity to both somatostatin-14 and somatostatin-28.  相似文献   

7.
Bovine pancreatic endocrine cells were investigated by light microscopic immunohistochemistry. Serotonin-immunoreactive cells as well as insulin-, glucagon-, somatostatin-, bovine pancreatic polypeptide (BPP)-immunoreactive cells were detected in the pancreatic islets. Generally, insulin-immunoreactive cells were distributed throughout the islet and the others took peripheral location. Since the distribution and shape of serotonin-immunoreactive cells were very similar to glucagon- and BPP-immunoreactive cells, serial sections were restained by using the elution method. All glucagon- and BPP-immunoreactive cells also showed serotonin immunoreactivity but glucagon and BPP immunoreactivities were never observed to be colocalized in the same cell. A small number of serotonin-immunoreactive cells were observed that showed serotonin immunoreactivity only.  相似文献   

8.
Studies on the developing mammalian pancreas have suggested that insulin and glucagon co-exist in a transient cell population and that peptide YY (PYY) marks the earliest developing endocrine cells. We have investigated this in the embryonic avian pancreas, which is characterised by anatomical separation of insulin and glucagon islets. Moreover, we have compared the development of the endocrine cells to that of processing enzymes involved in pancreatic hormone biosynthesis. PYY-like immunoreactivity occurred in islet cells from the youngest stages examined: it increased in amount from approximately 5 days of incubation and was co-localised with glucagon and to a lesser extent with insulin. Insulin and glucagon cells were numerous: co-existence of the two peptides in the same cells was but rarely observed. From the youngest stages examined, prohormone convertase (PC) 1/3-like immunoreactivity was detected in insulin cells and PC2-, 7B2- and carboxypeptidase E-like immunoreactivity in both glucagon and insulin cells. We conclude that: (1) PYY-like immunoreactivity occurs in avian islet cells but generally in lesser amounts than in mammals at the earlier stages, (2) the paucity of cells co-expressing insulin and glucagon indicate that all avian insulin cells do not pass through a stage where they co-express glucagon and (3) the early expression of the enzymes responsible for the processing of prohormones suggests that this process is initiated soon after islet cells first differentiate.  相似文献   

9.
Neuropeptide Y (NPY) is a 36-amino-acid peptide that is widely and abundantly expressed in the central nervous system of all vertebrates investigated. Related peptides have been found in various vertebrate groups: peptide YY (PYY) is present in gut endocrine cells of many species and pancreatic polypeptide (PP) is made in the pancreas of all tetrapods. In addition, a fish pancreatic peptide called PY has been reported in three species of fishes. The evolutionary relationships of fish PY have been unclear and it has been proposed to be the orthologue (species homologue) of each of the three tetrapod peptides. We demonstrate here with molecular cloning techniques that the sea bass (Dicentrarchus labrax), an acanthomorph fish, has orthologues of both NPY and PYY as well as a separate PY peptide. Sequence comparisons suggest that PY arose as a copy of the PYY gene, presumably in a duplication event separate from the one that generated PP from PYY in tetrapods. PY sequences from four species of fish indicate that, similar to PP, PY evolves much more rapidly than NPY and PYY. The physiological role of PY is unknown, but we demonstrate here that sea bass PY, like NPY and PYY but in contrast to the tetrapod PP, is expressed in brain.  相似文献   

10.
The presence and actions of NPY in the canine endocrine pancreas   总被引:1,自引:0,他引:1  
Immunofluorescent staining for neuropeptide Y (NPY) in canine pancreatic tissue was performed together with an evaluation of the effects of synthetic NPY on the release of insulin (IRI), glucagon (IRG) and somatostatin (SLI) from the duodenal lobe of the canine pancreas in situ. NPY-like immunoreactivity was localized in perivascular nerve fibers throughout the acinar tissue. NPY-immunoreactive fibers were also demonstrated in the islets, usually surrounding blood vessels but also occasionally in fibers associated with endocrine cells, primarily at the periphery of islets. In addition, the ganglia dispersed in the pancreatic parenchyma were densely innervated by NPY-immunoreactive fibers, and these ganglia regularly contained cell bodies staining for NPY. Direct infusion of NPY into the pancreatic artery (p.a.) produced a dose-dependent decrease of pancreatic SLI output and of pancreatic venous blood flow. Low-dose p.a. infusion of NPY (50 pmol/min) had no effect on basal IRI or IRG output or on the islet response to glucose (5-g bolus, i.v.). High-dose p.a. infusion of NPY (500 pmol/min) transiently stimulated IRI output and modestly increased IRG output. However, the comparatively sparse innervation of canine islets with NPY-like immunoreactive fibers and the relatively minor effects of large doses of synthetic NPY on pancreatic hormone release lead us to conclude that this peptide is not an important neuromodulator of islet function in the dog.  相似文献   

11.
Summary Immunohistochemistry was used to localize regulatory peptides in endocrine cells and nerve fibres in the pancreas of two species of elasmobranchs (starry ray,Raja radiata and spiny dogfish,Squalus acanthias), and in the Brockmann bodies of four teleost species (goldfish,Carassius auratus, brown troutSalmo trutta, rainbow trout,Oncorhynchus mykiss and cod,Gadus morhua). In the elasmobranchs, the classical pancreatic hormones somatostatin, glucagon and insulin were present in endocrine cells of the islets. In addition, endocrine cells were labelled with antisera to enkephalins, FMRF-amide, gastrin/cholecystokinin-(CCK)/caerulein, neurotensin, neuropeptide Y (NPY), and peptide YY (PYY). Nerve fibres were demonstrated with antisera against bombesin, galanin and vasoactive intestinal polypeptide (VIP). These nerve fibres innervated the walls of blood vessels, in the exocrine as well as the endocrine tissue. In the four teleost species immunoreactivity to somatostatin, insulin and glucagon was intense in the Brockmann bodies. Cells were labelled with antisera to enkephalin, neurotensin, FMRFamide, gastrin/CCK/ caerulein, NPY, PYY and VIP. Only a few nerve fibres were found with antisera against dopamine--hydroxylase (DBH, cod), enkephalin (met-enkephalin-Arg-Phe, cod), bombesin (cod), gastrin/CCK/caerulein (cod) and VIP. Galanin-like-immunoreactive fibres were numerous in the Brockmann bodies of all teleosts examined. Immunoreactivity to calcitonin gene-related peptide (CGRP), substance P, tyrosine hydroxylase (TH), and phenyl-N-methyl transferase (PNMT) could not be found in any of the species studied.  相似文献   

12.
Differentiation of the pancreatic islets in grass snake Natrix natrix embryos, was analyzed using light, transmission electron microscopy, and immuno-gold labeling. The study focuses on the origin of islets, mode of islet formation, and cell arrangement within islets. Two waves of pancreatic islet formation in grass snake embryos were described. The first wave begins just after egg laying when precursors of endocrine cells located within large cell agglomerates in the dorsal pancreatic bud differentiate. The large cell agglomerates were divided by mesenchymal cells thus forming the first islets. This mode of islet formation is described as fission. During the second wave of pancreatic islet formation which is related to the formation of the duct mantle, we observed four phases of islet formation: (a) differentiation of individual endocrine cells from the progenitor layer of duct walls (budding) and their incomplete delamination; (b) formation of two types of small groups of endocrine cells (A/D and B) in the wall of pancreatic ducts; (c) joining groups of cells emerging from neighboring ducts (fusion) and rearrangement of cells within islets; (d) differentiated pancreatic islets with characteristic arrangement of endocrine cells. Mature pancreatic islets of the grass snake contained mainly A endocrine cells. Single B and D or PP–cells were present at the periphery of the islets. This arrangement of endocrine cells within pancreatic islets of the grass snake differs from that reported from most others vertebrate species. Endocrine cells in the pancreas of grass snake embryos were also present in the walls of intralobular and intercalated ducts. At hatching, some endocrine cells were in contact with the lumen of the pancreatic ducts.  相似文献   

13.
Summary Numerous endocrine cells can be observed in the gut of the lizard Podarcis hispanica after application of the Grimelius silver nitrate technique. The argyrophilic endocrine cells are usually tall and thin in the small intestine but short, basal, and round in the large intestine. Eleven types of immunoreactive endocrine cells have been identified by immunocytochemical methods. Numerous serotonin-, caerulein/gastrin/cholecystokinin octapeptide-and peptide tyrosine-tyrosine-immunoreactive cells; a moderate number of pancreatic polypeptide-, neurotensin-, somatostatin-, glucagon-like peptide-1-and glucagon-immunoreactive cells, and few cholecystokinin N-terminal-and bombesin-immunoreactive cells were found in the epithelium of the small intestine. Coexistence of glucagon with GLP-1 or PP/PYY has been observed in some cells. In the large intestine a small number of serotonin-, peptide tyrosine-tyrosine-, pancreatic polypeptide-, neurotensin-, somatostatin-and glucagon-like peptide-1-immunoreactive cells were detected. Vasoactive intestinal peptide immunoreactivity was found in nerve fibers of the muscular layer. Substance P-immunoreactive nerve fibers were detected in lamina propria, submucosa and muscular layer. Chromogranin A-immunoreactive cells were observed throughout the intestine, although in lower numbers than argyrophilic cells.  相似文献   

14.
The regional distribution and frequency of the pancreatic endocrine cells in the SKH-1 hairless mouse were studied by an immunohistochemical (peroxidase anti-peroxidase; PAP) method using four types of specific antisera against insulin, glucagon, somatostatin and human pancreatic polypeptide (PP). The pancreas of mice were divided into three portions; pancreatic islets, exocrine and pancreatic ducts. The pancreatic islets were further subdivided into three regions (central, mantle and peripheral region) according to their located types of immunoreactive cells. In the pancreatic islet portions, insulin-immunoreactive cells were located in the central and mantle regions with 84.60 +/- 7.65 and 33.00 +/- 12.45/100 cells frequencies, respectively, but most of somatostatin-, glucagon- and PP-immunoreactive cells were detected in the mantle and peripheral regions. In the mantle region, somatostatin-, glucagon- and PP-immunoreactive cells were demonstrated with 28.70 +/- 9.91, 52.00 +/- 14.05 and 2.60 +/- 1.51/100 cells frequencies, respectively, and showed 6.20 +/- 2.86, 15.30 +/- 5.31 and 21.50 +/- 10.28/100 cells frequencies, respectively in peripheral regions. However, glucagon-immunoreactive cells were also demonstrated in the central regions with 4.00 +/- 2.83/100 cells frequency. In the exocrine portions, insulin-, glucagon-, somatostatin- and PP-immunoreactive cells were demonstrated in the SKH-1 mouse with 0.90 +/- 0.74, 0.80 +/- 0.79,4.90 +/- 3.54 and 2.70 +/- 1.34/100 cells frequencies, respectively. In the pancreatic duct portions, insulin-, glucagon- and somatostatin-immunoreactive cells were demonstrated in the subepithelial connective tissues and showed islet-like appearances with 30.30 +/- 14.67, 2.70 +/- 3.13 and 5.90 +/- 4.23/100 cells frequencies, respectively. However, no PP-immunoreactive cells were demonstrated in these regions. In conclusion, some peculiar distributional patterns of pancreatic endocrine cells were found in the SKH-1 hairless mouse.  相似文献   

15.
NADPH-diaphorase activity, which has been previously reported to be associated with the enzyme nitric oxide synthase (NOS), was localized cytochemically in the pancreatic islets of normal rats. All islet cells types, i.e. insulin-, glucagon-, somatostatin- and pancreatic polypeptide-immunoreactive cells, expressed NADPH-diaphorase histochemical activity, whereas the exocrine tissue was almost negative. In streptozotocin-treated rats, only the surviving non-beta cells in the islet periphery were stained. Isolated beta and non-beta cells also expressed intense NADPH-diaphorase activity. By electron microscopy, the enzyme was localized primarily on membranes of the endoplasmic reticulum and nuclear envelope, as previously reported for neurons. In addition the enzyme activity was found in the cis-region of the Golgi complex. These results suggest that the four types of endocrine cells of the islets of Langerhans may contain the NOS-enzyme and thus constitutively produce nitric oxide.  相似文献   

16.
It has recently been demonstrated that aPY, a peptide which has significant homology with neuropeptide Y (NPY) is present in extracts of anglerfish islets. The purpose of this study was to determine whether cells or nerves which contain NPY-like immunoreactivity could be identified in anglerfish islet tissue and whether aPY is synthesized by this tissue. Antisera against bovine pancreatic polypeptide (BPP), NPY and the 200 kd neurofilament polypeptide were used for immunohistochemical analysis of islets. Identical cells were stained by both the NPY and BPP antisera. The NPY and 200 kd neurofilament antisera also labeled nerve fibers in the tissue which were not stained with the BPP antiserum. The nature of the NPY-like peptide synthesized in islet cells was determined by subjecting differentially radioactively labeled Mr 2,500-8,000 peptides from islet extracts to reverse phase HPLC. Labeled aPY was unequivocally identified in the extracts and was labeled appropriately (as predicted from its sequence) with 13 different radioactive amino acids. These results demonstrate that one form of NPY-like peptide synthesized in anglerfish islets is aPY. The form of NPY-like peptide which was immunolocalized in nerves remains to be determined.  相似文献   

17.
M El-Salhy 《Histochemistry》1984,80(2):193-205
The pancreas and gastrointestinal tract (GIT) of adults and of an embryonic stage of 11 cm long (about half the length of newborn fish) of the spiny dogfish, Squalus acanthias, were investigated immunocytochemically for the occurrence of the gastro-entero-pancreatic (GEP) neurohormonal peptides. In the pancreas of adult forms 5 endocrine cell types were seen, namely insulin-, somatostatin-, glucagon-, pancreatic polypeptide (PP)- and gastric inhibitory peptide (GIP)-immunoreactive cells. These cell types form scattered islets and were seen sometimes to surround small ducts. GIP-immunoreactivity cells did not occur in glucagon-containing cells. In the mucosa of GIT of adults 18 endocrine cell types were observed, viz. insulin-, somatostatin-, glucagon-, glicentin, PP-, polypeptide YY (PYY)-, vasoactive intestinal polypeptide (VIP)-, GIP-, gastrin C-terminus, CCK-, neurotensin N-terminus-, bombesin/gastrin releasing peptide (GRP)-, substance P-, enkephalin-, alpha-endorphin, beta-endorphin-, serotonin- and calcitonin immunoreactive cells. These cells occurred mostly in the intestine. All these cell types were of the open type, except glucagon- and glicentin-immunoreactive cells in the stomach, which seemed to be of the closed type. In the muscle layers and the submucosa, VIP and substance P- immunoreactive nerves and neurons were observed. In the pancreas of the dogfish embryo only 3 endocrine cell types could be demonstrated, namely insulin-, somatostatin- and glucagon-immunoreactive cells. In the mucosa of the GIT of the embryos studied 12 endocrine cell types were detected, viz. insulin-, somatostatin-, glucagon-, PP-, PYY-, VIP, GIP, gastrin C-terminus-, CCK-, neurotensin N-terminus-, enkephalin- and serotonin immunoreactive cells. The number of these cells, except that of PYY-immunoreactive cells, was lower than that of adults and in some cases their distribution did not correspond with that of adults.  相似文献   

18.
The regional distribution and frequency of pancreatic endocrine cells in ddY mice were studied by an immunohistochemical (peroxidase anti-peroxidase; PAP) method using four types of specific antisera against insulin, glucagon, somatostatin and human pancreatic polypeptide (hPP). In the pancreatic islets, most of insulin-immunoreactive (IR) cells were located in the central portion. Most of glucagon- and somatostatin-IR cells were observed in peripheral regions although a somewhat smaller number of cells were also located in the central regions. HPP-IR cells were randomly distributed throughout the entire islets. In the exocrine pancreas, insulin-, glucagon-, somatostatin- and hPP-IR cells were detected; they occurred mainly among the exocrine parenchyma as solitary cells. Cell clusters consisted of only insulin- or only glucagon-IR cells and were distributed in the pancreas parenchyma as small islets. In addition, insulin- and glucagon-IR cells were also demonstrated in the pancreatic duct regions. Insulin-IR cells were located in the epithelium and sub-epithelial connective tissue regions as solitary cells and/or clusters (3-4 cells), and glucagon-IR cells were mainly located in the epithelium as solitary cells. Overall, there were 63.89+/-5.39% insulin-, 26.52+/-3.55% glucagon-, 7.25+/-2.83% somatostatin- and 1.90+/-0.58% hPP-IR cells. In conclusion, some strain-dependent characteristic distributional patterns of pancreatic endocrine cells were found in the ddY mouse.  相似文献   

19.
Summary It was previously demonstrated that the two chemically related peptides calcitonin gene-related peptide (CGRP) and islet amyloid polypeptide (IAPP) both occur in the pancreas. We have now examined the cellular localization of CGRP and IAPP in the rat and the mouse pancreas. We found, in both the rat and the mouse pancreas, CGRP-immunoreactive nerve fibers throughout the parenchyma, including the islets, with particular association with blood vessels. CGRP-immunoreactive nerve fibers were regularly seen within the islets. In contrast, no IAPP-immunoreactive nerve fibers were demonstrated in this location. Furthermore, in rat islets, CGRP immunoreactivity was demonstrated in peripherally located cells, constituting a major subpopulation of the somatostatin cells. Such cells were lacking in the mouse islets. IAPP-like immunoreactivity was demonstrated in rat and mouse islet insulin cells, and, in the rat, also in a few non-insulin cells in the islet periphery. These cells seemed to be identical with somatostatin/CGRP-immunoreactive elements. In summary, the study shows (1) that CGRP, but not IAPP, is a pancreati neuropeptide both in the mouse and the rat; (2) that a subpopulation of rat somatostatin cells contain CGRP; (3) that mouse islet endocrine cells do not contain CGRP; (4) that insulin cells in both the rat and the mouse contain IAPP; and (5) that in the rat, a non-insulin cell population apparently composed of somatostatin cells stores immunoreactive IAPP. We conclude that CGRP is a pancreatic neuropeptide and IAPP is an islet endocrine peptide in both the rat and the mouse, whereas CGRP is an islet endocrine peptide in the rat.  相似文献   

20.
Summary P-glycoprotein, an integral membrane protein acting as an energy-dependent efflux pump, has been detected immunocytochemically in the human pancreatic islets using C 494 monoclonal antibody. Intense P-glycoprotein immunoreactivity was found in both endothelial cells of islet blood capillaries and in endocrine cells. Strong expression of P-glycoprotein has been found in the capillary blood vessels at blood-tissue barrier sites and in numerous kinds of cells with secretory/excretory function. Therefore the present findings suggest that P-glycoprotein may play a role in controlling the composition of the extracellular fluids and the intracellular milieu of endocrine islet cells and possibly in regulating their secretory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号