首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs (miRNA) are small non-coding RNAs that inhibit gene expression through binding to complementary messenger RNA sequences. miRNAs have been predicted to target genes important for pancreas development, proper endocrine cell function and metabolism. We previously described that miRNA-7 (miR-7) was the most abundant and differentially expressed islet miRNA, with 200-fold higher expression in mature human islets than in acinar tissue. Here we have analyzed the temporal and spatial expression of miR-7 in human fetal pancreas from 8 to 22 weeks of gestational age (wga). Human fetal (8–22 wga) and adult pancreases were processed for immunohistochemistry, in situ hybridization, and quantitative RT-PCR of miRNA and mRNA. miR-7 was expressed in the human developing pancreas from around 9 wga and reached its maximum expression levels between 14 and 18 wga, coinciding with the exponential increase of the pancreatic endocrine hormones. Throughout development miR-7 expression was preferentially localized to endocrine cells and its expression persisted in the adult pancreas. The present study provides a detailed analysis of the spatiotemporal expression of miR-7 in developing human pancreas. The specific localization of miR-7 expression to fetal and adult endocrine cells indicates a potential role for miR-7 in endocrine cell differentiation and/or function. Future functional studies of a potential role for miR-7 function in islet cell differentiation and physiology are likely to identify novel targets for the treatment of diabetes and will lead to the development of improved protocols for generating insulin-producing cells for cell replacement therapy.  相似文献   

2.
Ding, W.-G., H. Kimura, M. Fujimura and M. Fujimiya. Neuropeptide Y and peptide YY immunoreactivities in the pancreas of various vertebrates. Peptides 18(10) 1523–1529, 1997.—NPY-like immunoreactivity was observed in nerve fibers and endocrine cells in pancreas of all species examined except the eel, which showed no NPY innervation. The density of NPY-positive nerve fibers was higher in mammals than in the lower vertebrates. These nerve fibers were distributed throughout the parenchyma, and were particularly associated with the pancreatic duct and vascular walls. In addition, the density of NPY-positive endocrine cells was found to be higher in lower vertebrates than mammals; in descending order; eel = turtle = chicken > bullfrog > mouse = rat = human > guinea pig = dog. These NPY-positive cells in the eel and certain mammals tended to be localized throughout the islet region, whereas in the turtle and chicken they were mainly scattered in the exocrine region. PYY-immunoreactivity was only present in the pancreatic endocrine cells of all species studied, and localized similarly to NPY. Thus these two peptides may play endocrine or paracrine roles in the regulation of islet hormone secretion in various vertebrate species.  相似文献   

3.
Summary Leu 7 immunoreactivity was demonstrated with the indirect peroxidase-labelled antibody method on frozen and paraffin-embedded tissue sections of human digestive organs. Anti-Leu 7 monoclonal antibody, which allegedly detects mononuclear cells with natural killer or killer activity, recognized lymphoid cells among intestinal epithelial cells and in the germinal centres of solitary lymphoid follicles of small and large intestine, and a few in gallbladder, liver and the lamina propria of the intestine. In addition, peripheral nerve fibres, endocrine cells in the gut and pancreas and carcinoid and islet cell tumours were also positively stained. At the ultrastructural level, Leu 7 antigen was localized on the plasma membrane of granulated lymphoid cells in the gut mucosa and on the secretory granules of intestinal endocrine cells. In normal pancreas, Leu 7 immunoreactivity was demonstrated in most cells containing pancreatic polypeptide and in many cells containing somatostatin or glicentin. Insulin-containing cells, however, lacked Leu 7 immunoreactant. These findings were obtained in both frozen sections and paraffin-embedded sections. The possible cross-reactivities of monoclonal antibodies are discussed as they raise an important caveat in immunohistochemical studies using these antibodies.  相似文献   

4.
Immunocytochemical double staining techniques were used to study PP- and glucagon-like-immunoreactivity in pancreatic endocrine cells of mouse. An antiserum against FMRFamide appeared to react with all PP-immunoreactive endocrine cells. With fluorescence microscopy most PP/FMRFamide-immunoreactive cells also showed glucagon-immunoreactivity, but cells containing only PP- or glucagon-like substances were found as well. The proportion of cells containing PP-, glucagon, and both immunoreactivities varied strongly from islet to islet in all parts of the pancreas. Using an electron microscopical immunogold double staining procedure on Lowicryl-embedded pancreas, PP/FMRFamide- and glucagon-immunoreactivity appeared to be present in the majority of endocrine A cells; both immunoreactivities were randomly distributed within the granules of these cells. Cells containing only PP/FMRFamide- or glucagon-immunoreactivity were also found. Glucagon- and a faint FMRFamide-immunoreactivity was also observed in osmicated epon-embedded tissue. Independent of their immunoreactivity all positive cells showed the same round electron dense secretory granules.  相似文献   

5.
Summary Immunocytochemical double staining techniques were used to study PP- and glucagon-like-immunoreactivity in pancreatic endocrine cells of mouse. An antiserum against FMRFamide appeared to react with all PP-immunoreactive endocrine cells. With fluorescence microscopy most PP/FMRFamide-immunoreactive cells also showed glucagon-immunoreactivity, but cells containing only PP-or glucagon-like substances were found as well. The proportion of cells containing PP-, glucagon, and both immunoreactivities varied strongly from islet to islet in all parts of the pancreas.Using an electron microscopical immunogold double staining procedure on Lowicryl-embedded pancreas, PP/FMRFamide-and glucagon-immunoreactivity appeared to be present in the majority of endocrine A cells; both immunoreactivities were randomly distributed within the granules of these cells. Cells containing only PP/FMRFamide-or glucagon-immunoreactivity were also found. Glucagon-and a faint FMRFamide-immunoreactivity was also observed in osmicated epon-embedded tissue. Independent of their immunoreactivity all positive cells showed the same round electron dense secretory granules.  相似文献   

6.
Zebrafish provide a highly versatile model in which to study vertebrate development. Many recent studies have elucidated early events in the organogenesis of the zebrafish pancreas; however, several aspects of early endocrine pancreas formation in the zebrafish are not homologous to the mammalian system. To better identify mechanisms of islet formation in the zebrafish, with true homology to those observed in mammals, we have temporally and spatially characterized zebrafish secondary islet formation. As is the case in the mouse, we show that Notch inhibition leads to precocious differentiation of endocrine tissues. Furthermore, we have used transgenic fish expressing fluorescent markers under the control of a Notch-responsive element to observe the precursors of these induced endocrine cells. These pancreatic Notch-responsive cells represent a novel population of putative progenitors that are associated with larval pancreatic ductal epithelium, suggesting functional homology between secondary islet formation in zebrafish and the secondary transition in mammals. We also show that Notch-responsive cells persist in the adult pancreas and possess the classical characteristics of centroacinar cells, a cell type believed to be a multipotent progenitor cell in adult mammalian pancreas.  相似文献   

7.
OBJECTIVES: Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), was recently identified in the stomach. Ghrelin is produced in a population of endocrine cells in the gastric mucosa, but expression in intestine, hypothalamus and testis has also been reported. Recent data indicate that ghrelin affects insulin secretion and plays a direct role in metabolic regulation and energy balance. On the basis of these findings, we decided to examine whether ghrelin is expressed in human pancreas. Specimens from fetal to adult human pancreas and stomach were studied by immunocytochemistry, for ghrelin and islet hormones, and in situ hybridisation, for ghrelin mRNA. RESULTS: We identified ghrelin expression in a separate population of islet cells in human fetal, neonatal, and adult pancreas. Pancreatic ghrelin cells were numerous from midgestation to early postnatally (10% of all endocrine cells). The cells were few, but regularly seen in adults as single cells at the islet periphery, in exocrine tissue, in ducts, and in pancreatic ganglia. Ghrelin cells did not express any of the known islet hormones. In fetuses, at midgestation, ghrelin cells in the pancreas clearly outnumbered those in the stomach. CONCLUSIONS: Ghrelin is expressed in a quite prominent endocrine cell population in human fetal pancreas, and ghrelin expression in the pancreas precedes by far that in the stomach. Pancreatic ghrelin cells remain in adult islets at lower numbers. Ghrelin is not co-expressed with any known islet hormone, and the ghrelin cells may therefore constitute a new islet cell type.  相似文献   

8.
Endocrine cells require several protein convertases to process the precursors of hormonal peptides that they secrete. In addition to the convertases, which have a crucial role in the maturation of prohormones, many other proteases are present in endocrine cells, the roles of which are less well established. Two of these proteases, dipeptidyl peptidase IV (EC 3.4.14.5) and membrane dipeptidase (EC 3.4.13.19), have been immunocytochemically localized in the endocrine pancreas of the pig. Membrane dipeptidase was present exclusively in cells of the islet of Langerhans that were positive for the pancreatic polypeptide, whereas dipeptidyl peptidase IV was restricted to cells positive for glucagon. Both enzymes were observed in the content of secretory granules and therefore would be released into the interstitial space as the granules undergo exocytosis. At this location they could act on secretions of other islet cells. The relative concentration of dipeptidyl peptidase IV was lower in dense glucagon granules, where the immunoreactivity to glucagon was higher, and vice versa for light granules. This suggests that, in A-cells, dipeptidyl peptidase IV could be sent for degradation in the endosomal/lysosomal compartment during the process of granule maturation or could be removed from granules for continuous release into the interstitial space. The intense proteolytic activity that takes place in the endocrine pancreas could produce many potential dipeptide substrates for membrane dipeptidase. (J Histochem Cytochem 47:489-497, 1999)  相似文献   

9.
A malignant tumour of the rat pancreas with features of both acinar and endocrine cells is presented. This consisted of a continuous cytoplasmic mass with numerous dispersed nuclei and branches protruding from its borders invading the surrounding exocrine tissue. The most prominent characteristic of the tumour was the co-existence of zymogen and endocrine secretory granules and cytoplasmic organelles typical of both acinar and islet cells. Some hypotheses are put forward concerning the origin of the tumour and its vasculature.  相似文献   

10.
Pancreatic islet cells provide the major source of counteractive endocrine hormones required for maintaining glucose homeostasis; severe health problems result when these cell types are insufficiently active or reduced in number. Therefore, the process of islet endocrine cell lineage allocation is critical to ensure there is a correct balance of islet cell types. There are four endocrine cell types within the adult islet, including the glucagon-producing alpha cells, insulin-producing beta cells, somatostatin-producing delta cells and pancreatic polypeptide-producing PP cells. A fifth islet cell type, the ghrelin-producing epsilon cells, is primarily found during gestational development. Although hormone expression is generally assumed to mark the final entry to a determined cell state, we demonstrate in this study that ghrelin-expressing epsilon cells within the mouse pancreas do not represent a terminally differentiated endocrine population. Ghrelin cells give rise to significant numbers of alpha and PP cells and rare beta cells in the adult islet. Furthermore, pancreatic ghrelin-producing cells are maintained in pancreata lacking the essential endocrine lineage regulator Neurogenin3, and retain the ability to contribute to cells within the pancreatic ductal and exocrine lineages. These results demonstrate that the islet ghrelin-expressing epsilon cells represent a multi-potent progenitor cell population that delineates a major subgrouping of the islet endocrine cell populations. These studies also provide evidence that many of hormone-producing cells within the adult islet represent heterogeneous populations based on their ontogeny, which could have broader implications on the regulation of islet cell ratios and their ability to effectively respond to fluctuations in the metabolic environment during development.  相似文献   

11.
Summary The histological picuture of the Langerhans' islets in hamster pancreas is quite similar to that in white rat pancreas, i.e. the B-cells are located in the middle of the islet, while the A-cells in its periphery. Very often the argyrophil cells (D-cells) are located between the A- and B-cells forming a peculiar “barrier”. The histochemical studies reveal differences between the endocrine tissue and exocrine parenchyma. In general, the islet cells are richer in enzymes, as compared with the acini. The histochemical characteristic of hamster pancreas is closest to that of white rat pancreas. Like in rat, alkaline phosphomonoesterase reaction is very strong in the A-cells, while G-6-P reaction is negative. But, concerning zinc localization, there are differences between hamster and rat. Zinc reaction is very strong in the peripheral A-cells in white rat pancreas, while in hamster this reaction is much stronger in the B-cells (the reaction is negative in the A-cells). The D-cells can not be differentiated from the other endocrine pancreatic cells by means of hystochemical studies. But these studies permit certain conclusion on the possible role of the enzymes and substances investigated in cytophysiology of the islet cells.  相似文献   

12.
Genetic analysis of early endocrine pancreas formation in zebrafish   总被引:3,自引:0,他引:3  
Endocrine pancreas of zebrafish consist of at least four different cell types that function similarly to mammalian pancreatic islet. No mutants specifically affecting formation of the endocrine pancreas have been identified during the previous large-scale mutagenesis screens in zebrafish due to invisibility of a pancreatic islet. We combined in situ hybridization method to visualize pancreatic islet with an ethyl-nitroso-urea mutagenesis screen to identify novel genes involved in pancreatic islet formation in zebrafish. We screened 900 genomes and identified 11 mutations belonging to nine different complementation groups. These mutants fall into three major phenotypic classes displaying severely reduced insulin expression, reduced insulin expression with abnormal islet morphology, or abnormal islet morphology with relatively normal number of insulin expressing cells. Seven of these mutants do not have any other visible phenotypes associated. These mutations affect different processes in pancreatic islet development. Additional analysis on glucagon and somatostatin cell specification revealed that somatostatin cells are specified at a separate domain from insulin cells whereas glucagon cells are specified adjacent to insulin cells. Furthermore, glucagon cells and somatostatin cells are always associated with insulin cells in mutants that have scattered insulin expression. These data indicate that there are separate mechanisms regulating endocrine cell migration, proliferation, and differentiation. Further study on these mutants will reveal important information on novel genes involved in pancreatic islet cell specification and morphogenesis.  相似文献   

13.
Despite their diminutive size, islets of Langerhans play a large role in maintaining systemic energy balance in the body. New technologies have enabled us to go from studying the whole pancreas to isolated whole islets, to partial islet sections, and now to islet substructures isolated from within the islet. Using a microfluidic nanodroplet-based proteomics platform coupled with laser capture microdissection and field asymmetric waveform ion mobility spectrometry, we present an in-depth investigation of protein profiles specific to features within the islet. These features include the islet-acinar interface vascular tissue, inner islet vasculature, isolated endocrine cells, whole islet with vasculature, and acinar tissue from around the islet. Compared to interface vasculature, unique protein signatures observed in the inner vasculature indicate increased innervation and intra-islet neuron-like crosstalk. We also demonstrate the utility of these data for identifying localized structure-specific drug–target interactions using existing protein/drug binding databases.  相似文献   

14.
15.
Summary Previous immunochemical investigations have demonstrated various opioid peptides in the pancreas. However, controversies exist related to the cellular localization of these peptides in the endocrine pancreas. Therefore, the guinea pig endocrine pancreas was immunohistochemically investigated for the presence of opioid peptides derived from pro-dynorphin, pro-enkephalin or pro-opiomelanocortin. Immunoreactivities were demonstrated on serial semithin sections by the peroxidase anti-peroxidase technique. In routinely immunostained sections, immunoreactivities for dynorphin A and -neo-endorphin were localized in pancreatic enterochromaffin cells, but not in islet cells. Immunoreactivity for Met-enkephalin was confined exclusively to B-cells and was localized only in some secretory granules. However, pre-treatment of semi-thin sections with trypsin and carboxypeptidase B led to a marked increase of Met-enkephalin immunoreactivity in B-cells. In addition, immunoreactivities for Met-enkephalin-Arg-Gly-Leu and bovine adrenal medulla dodecapeptide could be demonstrated in B-and A-cells, and -endorphin immunoreactivity was localized in A-cells. In no case, however, were immunoreactivities detected for bovine adrenal medulla docosapeptide, peptide F, corticotropin, melanotropin or dynorphin 1–32. The immunohistochemical findings indicate that opioids of different peptide families are present in the guinea pig endocrine pancreas. Since several opioid peptides of the corresponding pro-hormones could be demonstrated in the reference organs but not in the pancreas, it is concluded that the biosynthetic pathways of the respective precursors are different from those in the adrenal medulla or in the pituitary.  相似文献   

16.
Electron microscopic findings obtained from the pancreas of a healthy 26-year-old organ donor are reported. These findings suggest for the first time that intermediate cells (i.e. cells with morphological characteristics of exocrine acinar or ductal cells as well as endocrine islet cells) are present in the normal adult pancreas.  相似文献   

17.
Zinc is abundant in most endocrine cell types, and plays a pivotal role in the synthesis and secretion of many hormones. Recent studies have demonstrated the expression of numerous zinc transporter (ZnT) family members in the pancreas, thyroid, and adrenal glands, suggesting a role for ZnTs in regulating cellular zinc homeostasis in endocrine cells. However, the cellular distribution of ZnTs in the endocrine organs has not been well established. In the present study, the mRNA expression level, cellular distribution of ZnTs as well as liable zinc ions were examined in the mouse pituitary, adrenal glands, thyroid, and pancreas. In general, ZnT1-10 mRNA was expressed to various degrees in the detected endocrine organs, with no detectable ZnT10 mRNA in the pancreas. In the anterior pituitary, both the acidophilic and basophilic cells were immunopositive to ZnT1-5, 7, 8, except for ZnT10. In the adrenal cortex, the immunoreactivity of all the tested ZnTs, including ZnT1-5, 7, 8, 10, was observed in the zona fasciculata, and some ZnTs were detected in the zona glomerulosa, zona reticularis, and the adrenal medulla. Both the follicle epithelial cells and parafollicular cells in the thyroid gland were immunostained with ZnT1-5, 7, 8, but not ZnT10. In the endocrine pancreas, the immunoreactivity of tested ZnTs was observed to various degrees except for ZnT10 in the cytoplasm of islet cells. Furthermore, autometallographic staining showed that liable zinc was observed in the endocrine cells, such as the adrenal cortical cells, thyroid follicle epithelial cells, and the pancreatic islet cells. All together, the wide distribution of liable zinc and the phenomenon that numerous ZnT family members are partially overlapped in a subset of endocrine cells suggest an important role for the ZnT family in controlling cellular zinc levels and subsequently regulating the synthesis and secretion of hormones in the endocrine system.  相似文献   

18.
19.
The autonomic nervous system regulates hormone secretion from the endocrine pancreas, the islets of Langerhans, thus impacting glucose metabolism. The parasympathetic and sympathetic nerves innervate the pancreatic islet, but the precise innervation patterns are unknown, particularly in human. Here we demonstrate that the innervation of human islets is different from that of mouse islets and does not conform to existing models of autonomic control of islet function. By visualizing axons in three dimensions and quantifying axonal densities and contacts within pancreatic islets, we found that, unlike mouse endocrine cells, human endocrine cells are sparsely contacted by autonomic axons. Few parasympathetic cholinergic axons penetrate the human islet, and the invading sympathetic fibers preferentially innervate smooth muscle cells of blood vessels located within the islet. Thus, rather than modulating endocrine cell function directly, sympathetic nerves may regulate hormone secretion in human islets by controlling local blood flow or by acting on islet regions located downstream.  相似文献   

20.
The endocrine pancreas of the desert lizard (Chalcides ocellatus) was investigated histologically and immunocytochemically. The endocrine tissue was concentrated in the dorsal lobe, where it constituted about 7% of the total volume. In the ventral lobe the endocrine tissue formed approximately 1% of the total volume. Four endocrine cell types were observed in the pancreas of this species, namely insulin-, glucagon-, somatostatin- and pancreatic polypeptide (PP)-immunoreactive cells. The volume occupied by these cells was 1, 1, 0.6 and 0.3% of the total volume of the pancreas, respectively. Insulin-immunoreactive cells were located in the islet centre and comprised 3% of dorsal and 0.2% of the ventral lobe volume. Glucagon cells occurred at the islet periphery and amounted to 3 and 0.2% of the volume of the dorsal and ventral lobes, respectively. Somatostatin-immunoreactive cells were located at the islet periphery as well as in between the exocrine parenchyma. They constituted 1 and 0.2% of the volume of the dorsal and ventral lobes, respectively. PP-immunoreactive cells occurred mainly among the exocrine parenchyma as solitary cells. They formed only 0.03% of the volume of the dorsal lobe. The corresponding figure in the ventral lobe was 0.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号