首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sepsis is a leading cause of acute kidney injury (AKI) and mortality in children. Understanding the development of pediatric sepsis and its effects on the kidney are critical in uncovering new therapies. The goal of this study was to characterize the development of sepsis-induced AKI in the clinically relevant cecal ligation and puncture (CLP) model of peritonitis in rat pups 17-18 days old. CLP produced severe sepsis demonstrated by time-dependent increase in serum cytokines, NO, markers of multiorgan injury, and renal microcirculatory hypoperfusion. Although blood pressure and heart rate remained unchanged after CLP, renal blood flow (RBF) was decreased 61% by 6 h. Renal microcirculatory analysis showed the number of continuously flowing cortical capillaries decreased significantly from 69 to 48% by 6 h with a 66% decrease in red blood cell velocity and a 57% decline in volumetric flow. The progression of renal microcirculatory hypoperfusion was associated with peritubular capillary leakage and reactive nitrogen species generation. Sham adults had higher mean arterial pressure (118 vs. 69 mmHg), RBF (4.2 vs. 1.1 ml·min(-1)·g(-1)), and peritubular capillary velocity (78% continuous flowing capillaries vs. 69%) compared with pups. CLP produced a greater decrease in renal microcirculation in pups, supporting the notion that adult models may not be the most appropriate for studying pediatric sepsis-induced AKI. Lower RBF and reduced peritubular capillary perfusion in the pup suggest the pediatric kidney may be more susceptible to AKI than would be predicted using adults models.  相似文献   

2.
1. A thermistor probe designed for determination of renal blood flow in rabbits, consisted of a fast-responding bead thermistor and an injection port which was also used to measure renal venous pressure between injections. 2. By an in vitro calibration system, actual measured flow (Qa) correlates well with the thermodilution calculated flow (Qc), where Qc = 0.99 Qa + 4.9 (r = 0.97, n = 42). 3. The renal blood flow (RBF) as determined by the thermodilution technique in 3 control groups was 53 +/- 3 (8), 60 +/- 6 (8), and 62 +/- 3 (3) ml/min/kidney or about 9% of the cardiac output. 4. Hypovolemia (-10%) reduced RBF by 19% from the control value, whereas, hypervolemia (+10%) did not alter RBF. 5. Smoke-induced apnea resulted in hypertension (+30%) and bradycardia (-39%), and was associated with changes in RBF (-55%) and renal vascular resistance (+183%). 6. We conclude that the local thermodilution technique is a relatively easy and reliable method for estimating RBF in rabbits.  相似文献   

3.
Instantaneous measurements of renal blood flow (RBF) and glomerular filtration rate (GFR) have been performed in anesthetized dogs to determine if removal of one kidney induces early functional adaptation in the remaining kidney. Increases in RBF (10%) and GFR (20%) were observed within the first minutes after exclusion of controlateral kidney; these are the earliest events described until now. These observations favour the concept that a functional adjustement may contribute to development of compensatory renal hypertrophy.  相似文献   

4.
P C Wong  B G Zimmerman 《Life sciences》1980,27(14):1291-1297
Participation of intrarenal converting enzyme (ICE) in mediation of the renal vasodilator response to captopril (C) was studied in 7 anesthetized dogs. Blood pressure (BP), renal blood flow (RBF) and femoral blood flow (FBF) were measured and vasoconstrictor responses were elicited by i.a. injections of angiotensin (A) I to the renal and femoral vascular beds. The latter responses served as indices of intrarenal and skeletal muscle converting enzyme activity, respectively. Successive infusions of C were given i.a. to the kidney at 0.4, 0.8 and 1.6 μg/kg/min for 30 min each. RBF and renal vascular resistance (RVR) were unaffected by any of these doses of C. The % changes in RBF caused by A-I were reduced from 45 to 23, 20 and 17% by these successive doses of C, respectively; however, the decrements were not significantly different from each other. When C was administered i.v., 0.5 mg/kg, after the highest i.a. dose had been given, there was no further decrease in the response to A-I, suggesting maximal blockade of ICE obtainable by C. BP, RBF and RVR were further affected by the i.v. administration of C. BP decreased from 146 to 136 mm Hg (P<0.05), RBF increased from 240 to 290 ml/min (P<0.01) and RVR decreased from 32 to 24 mm Hg/ml/min/g (P<0.01). These results suggest that ICE plays a minor role in the renal vasodilator response to C, and implicate an influence of circulating peptides on the kidney.  相似文献   

5.
Ultrastructure of cellular elements of the microcirculatory bed and filtration-reabsorption barrier has been studied in 150 mature white rats, in which vascular fasciculus of the left kidney has been compressed for 30 min, 1-2 h with a subsequent restoration of the blood stream in the organ undergone ischemia on the 3rd, 7th, 14th, 30th, 60th, 180th, 360th days under conditions of the preliminarily right kidney nephrectomy. On the 3rd day after ischemia of the remained kidney for 30 min, structural components of the walls of the glomerular arterioles and those of the filtration-reabsorption barrier undergo certain ultrastructural changes, that with time elapsed (7, 14 days) gradually pass away, and amount of cells with hypertrophic processes increases. Ischemia for 1 h in the remained kidney with subsequent restoration of the blood stream on the 3rd, 7th days produces in the structures mentioned more pronounced destructive changes. During subsequent compensatory hypertrophy (the 30th, 60th days) of the remained kidney after its ischemia, in the microcirculatory bed elements and in the convoluted canal epitheliocytes intracellular regenerative and hyperplastic processes develop. However, ischemia for 2 h in the remained kidney produces severe destructive-necrotic phenomena in ultrastructure of the microcirculatory bed and of the filtration-reabsorption barrier.  相似文献   

6.
We have developed a system for long-term continuous monitoring of cardiovascular parameters in rabbits living in their home cage to assess what role renal sympathetic nerve activity (RSNA) has in regulating renal blood flow (RBF) in daily life. Blood pressure, heart rate, locomotor activity, RSNA, and RBF were recorded continuously for 4 wk. Beginning 4-5 days after surgery a circadian rhythm, dependent on feeding time, was observed. When averaged over all days RBF to the innervated and denervated kidneys was not significantly different. However, control of RBF around these mean levels was dependent on the presence of the renal sympathetic nerves. In particular we observed episodic elevations in heart rate and other parameters associated with activity. In the denervated kidney, during these episodic elevations, the increase in renal resistance was closely related to the increase in arterial pressure. In the innervated kidney the renal resistance response was significantly more variable, indicating an interaction of the sympathetic nervous system. These results indicate that whereas overall levels of RSNA do not set the mean level of RBF the renal vasculature is sensitive to episodic increases in sympathetic nerve activity.  相似文献   

7.
In the adult, insulin-like growth factor I (IGF-I) increases glomerular filtration rate (GFR) and renal blood flow (RBF) during both acute and chronic treatment. To study its effects on the developing kidney, chronically catheterized fetal sheep (120 +/- 1 days gestation) were infused intravenously for up to 10 days with 80 microgram/h IGF-I (n = 5) or vehicle (0.1% BSA in saline, n = 6). In contrast to previous acute studies in adult rats and humans, after 4 h of IGF-I fetal GFR and RBF were unchanged. Fractional sodium reabsorption increased (P < 0.05). However, by 4 days, GFR per kilogram had risen by 35 +/- 13% (P < 0.05), whereas RBF remained unchanged. Tubular growth and maturation may have occurred, as proximal tubular sodium reabsorption increased by ~35% (P < 0.005). Therefore, despite a marked increase in filtered sodium (~30%, P < 0.05), fractional sodium reabsorption did not change. Although the effects of IGF-I on renal function were delayed, plasma renin activity and concentration were both elevated after 4 h and remained high at 4 days (P < 0.05). Despite this, arterial pressure and heart rate did not change. Kidneys of IGF-I-infused fetuses weighed ~30% more (P = 0.05) and contained ~75% more renin than control fetuses (P < 0.005). Thus, in the fetus, the renal effects of long-term IGF-I infusion are very different from the adult, possibly because IGF-I stimulated kidney growth.  相似文献   

8.
Partial bladder outlet obstruction of the rabbit bladder results in a rapid increase in mass characterized by remodeling of the bladder wall.In this study we investigated the effect of partial outlet obstruction on microvessel density and distribution in the bladder wall immunohistochemically using CD31 as a marker for vascular endothelium, and on blood flow using a fluorescent microsphere technique. Transverse sections of bladder wall were examined after 0 (unobstructed), 1, 3, 5, 7, and 14 days of obstruction. The microvasculature of obstructed rabbit bladder mucosa and detrusor smooth muscle apparently increased relative to augmentation of these compartments, while new vessels appeared in the thickening serosa. These vascular changes correlated with results showing that, at 1 week after obstruction, blood flow (ml/min/g tissue) to the mucosa and detrusor was unchanged.Thickening of the serosa, apparent after 1 day of obstruction, began before its vascularization. Then, 1 week post-obstruction, there was significant microvessel formation in the transition region between the detrusor smooth muscle and the increasing serosa; after 2 weeks, the entire serosa was vascularized. The vascularization of the muscle-serosal transition region and then the remaining serosa apparently precedes fibroblast differentiation, providing blood supply and thus metabolic support for this process.All obstructed rabbit bladders in this study were in a state of compensated function based on their weights. Our working hypothesis is that blood flow per unit tissue mass is normal in compensated obstructed bladders, thus allowing for normal contractile function and cellular metabolism. The results of this study indicate the presence of an augmented microvasculature in compensated obstructed rabbit bladders that provides adequate blood perfusion for normal function.  相似文献   

9.
The kidney plays a central role in long-term regulation of arterial blood pressure and salt and water homeostasis. This is achieved in part by the local actions of paracrine and autacoid mediators such as the arachidonic acid-prostanoid system. The present study tested the role of specific PGE(2) E-prostanoid (EP) receptors in the regulation of renal hemodynamics and vascular reactivity to PGE(2). Specifically, we determined the extent to which the EP(2) and EP(3) receptor subtypes mediate the actions of PGE(2) on renal vascular tone. Renal blood flow (RBF) was measured by ultrasonic flowmetry, whereas vasoactive agents were injected directly into the renal artery of male mice. Studies were performed on two independent mouse lines lacking either EP(2) or EP(3) (-/-) receptors and the results were compared with wild-type controls (+/+). Our results do not support a unique role of the EP(2) receptor in regulating overall renal hemodynamics. Baseline renal hemodynamics in EP(2)-/- mice [RBF EP(2)-/-: 5.3 +/- 0.8 ml. min(-1). 100 g kidney wt(-1); renal vascular resistance (RVR) 19.7 +/- 3.6 mmHg. ml(-1). min. g kidney wt] did not differ statistically from control mice (RBF +/+: 4.0 +/- 0.5 ml. min(-1). 100 g kidney wt(-1); RVR +/+: 25.4 +/- 4.9 mmHg. ml(-1). min. 100 g kidney wt(-1)). This was also the case for the peak RBF increase after local PGE(2) (500 ng) injection into the renal artery (EP(2)-/-: 116 +/- 4 vs. +/+: 112 +/- 2% baseline RBF). In contrast, we found that the absence of EP(3) receptors in EP(3)-/- mice caused a significant increase (43%) in basal RBF (7.9 +/- 0.8 ml. min(-1). g kidney wt(-1), P < 0.05 vs. +/+) and a significant decrease (41%) in resting RVR (11.6 +/- 1.4 mmHg. ml(-1). min. g kidney wt(-1), P < 0.05 vs. +/+). Local administration of 500 ng of PGE(2) into the renal artery caused more pronounced renal vasodilation in EP(3)-/- mice (128 +/- 2% of basal RBF, P < 0.05 vs. +/+). We conclude that EP(3 )receptors mediate vasoconstriction in the kidney of male mice and its actions are tonically active in the basal state. Furthermore, EP(3) receptors are capable of buffering PGE(2)-mediated renal vasodilation.  相似文献   

10.
Although recent data point to a possible indirect role for galanin in modulating renal blood flow (RBF) and fluid homeostasis in experimental animals, there have been no systematic studies exploring the possible direct effects of the peptide on the mammalian kidney. We ascertained the RBF, glomerular filtration rate (GFR) and plasma glucose responses to direct intrarenal infusion of three progressively increasing doses of synthetic galanin in anesthetized dogs. A 50 ng/kg per min dose (n = 6) failed to affect RBF, GFR or arterial plasma glucose (APG). Yet, a 100 ng/kg per min dose elevated RBF and GFR by 13 and 14%, respectively, while concomitantly increasing APG by 38%. At 200 ng/kg per min, galanin elevated RBF and GFR by 32 and 33%, respectively, while elevating APG by 57%. Intrarenal infusion of glucose (12.5 mg/kg per min; n = 6), reproducing the percentage rise in glucose (62%) elicited by the highest dose of galanin, elevated RBF and GFR by 20 and 23%, respectively. These data indicate that the elevated plasma glucose level, stimulated by galanin infusion, may account for about 63 and 70% of the RBF and GFR responses, respectively, elicited by galanin infusion at the 200 ng dose. The factors mediating the remaining renal hyperemia and hyperfiltration await resolution.  相似文献   

11.
Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx). In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV), might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI) and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20–50mg/kg twice daily i.p. for four consecutive days) was initiated 24 hours after IRI when acute kidney injury (AKI) was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg) twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells.  相似文献   

12.
Bradykinin (BK) is a peptide known to activate afferent nerve fibers from the kidney and elicit reflex changes in the cardiovascular system. The present study was specifically designed to test the hypothesis that bradykinin B2 receptors mediated the pressor responses elicited during intrarenal bradykinin administration. Pulsed Doppler flow probes were positioned around the left renal artery to measure renal blood flow (RBF). A catheter, to permit selective intrarenal administration of BK, was advanced into the proximal left renal artery. The femoral artery was cannulated to measure mean arterial pressure (MAP). MAP, heart rate (HR), and RBF were recorded from conscious unrestrained rats while five-point cumulative dose-response curves during an intrarenal infusion of BK (5-80 microg x kg(-1) x min(-1)) were constructed. Intrarenal infusion of BK elicited dose-dependent increases in MAP (maximum pressor response, 26+/-3 mmHg), accompanied by a significant tachycardia (130+/-18 beats/min) and a 28% increase in RBF. Ganglionic blockade abolished the BK-induced increases in MAP (maximum response, -6+/-5 mmHg), HR (maximum response 31+/-14 beats/min), and RBF (maximum response, 7+/-2%). Selective intrarenal B2-receptor blockade with HOE-140 (50 microg/kg intrarenal bolus) abolished the increases in MAP and HR observed during intrarenal infusion of BK (maximum MAP response, -2+/-3 mmHg; maximum HR response, 15+/-11 beats/min). Similarly, the increases in RBF were prevented after HOE-140 treatment. In fact, after HOE-140, intrarenal BK produced a significant decrease in RBF (22%) at the highest dose of BK. Results from this study show that the cardiovascular responses elicited by intrarenal BK are mediated predominantly via a B2-receptor mechanism.  相似文献   

13.
In experimental and human diabetes mellitus, evidence for an impaired function of the vascular endothelium has been found and has been suggested to contribute to the development of vascular complications in this disease. The aim of the study was to evaluate possible regional hemodynamic in vivo differences between healthy and diabetic rats which would involve nitric oxide (NO). Central hemodynamics and regional blood flow (RBF) were studied using radioactive microspheres in early streptozotocin (STZ)-diabetic rats and compared to findings in healthy control animals. This method provides a possibility to study the total blood flow and vascular resistance (VR) in several different organs simultaneously. L-NAME iv induced widespread vasoconstriction to a similar extent in both groups. In the masseter muscle of both groups, acetylcholine 2 microg/kg per min, induced a RBF increase, which was abolished by pretreatment with L-NAME, suggesting NO as a mediator of vasodilation. In the heart muscle of both groups, acetylcholine alone was without effect while the combined infusion of acetylcholine and L-arginine induced an L-NAME-sensitive increase in RBF. The vasodilation induced by high-dose acetylcholine (10 microg/kg per min) in the kidney was more pronounced in the STZ-diabetic rats. The results indicate no reduction in basal vasodilating NO-tone in the circulation of early diabetic rats. The sensitivity to vasodilating effects of acetylcholine at the level of small resistance arterioles vary between tissues but was not impaired in the diabetic rats. In the heart muscle the availability of L-arginine was found to limit the vasodilatory effect of acetylcholine in both healthy and diabetic rats. In conclusion, the results indicate a normal action of NO in the investigated tissues of the early STZ-diabetic rat.  相似文献   

14.
The mechanisms responsible for the impairment of renal blood flow (RBF) autoregulation in cyclosporine nephrotoxicity were investigated with clearance and micropuncture studies in anesthetized rats. Early chronic cyclosporine nephrotoxicity (CCN) was induced in male rats by daily intramuscular injection of 10 mg/kg/day cyclosporine-A in olive oil for 7 days; control (CON) rats received vehicle injections. Glomerular filtration rate and RBF were both reduced by 33% in CCN when compared to CON rats. RBF autoregulation was also significantly impaired in CCN, with an autoregulation index (AI) of 0.53 +/- 0.03 vs. 0.16 +/- 0.01 in CON rats. Micropuncture studies showed that the tubuloglomerular feedback (TGF) system is not impaired in CCN. Rather, in CCN there was a slight resetting such that the maximum TGF response was greater and the onset occurred at lower rates of perfusion than in CON. In contrast, further micropuncture studies demonstrated that TGF-independent autoregulation of glomerular capillary pressure was significantly impaired in CCN, with an AI of 0.86 +/- 0.09 vs. 0.57 +/- 0.06 in CON. These results indicate that the loss of autoregulatory ability in rats with CCN results from substantial impairment of the myogenic autoregulatory mechanism that is an intrinsic property of the preglomerular vasculature of the kidney.  相似文献   

15.
The injection of Freund's adjuvant into the pericardial sac of 29 dogs resulted in chronic pericardial tamponade with persistent sodium retention. Micropuncture, clearance, and radioactive microsphere experiments were initiated 6--13 days after pericardial injection and 60 min after pericardiocentesis. Pericardiocentesis increased sodium excretion (from 12.2 to 41.3 microequiv./min) and mean arterial pressure (+ 20 mmHg (1 mmHg = 133.322 Pa)). Central venous pressure decreased 6.5 mmHg, as did hematocrit (from 45.7 to 39.8%) and plasma protein concentration (from 5.88 to 5.15 g%). Pericardiocentesis had no significant effect on renal blood flow (RBF), nor plasma flow. Redistribution of glomerular filtrate was suggested by the observation that superficial nephron glomerular filtration rate increased (from 91 to 108 nL/min) while glomerular filtration rate remained unaltered. Determination of intrarenal distribution of RBF revealed that cortical blood flow also distributed superficially. A significant increase in the fraction of RBF perfusing zone 1 (outer cortex) and a decrease in fractional perfusion of zones 2, 3 and 4 (juxtamedullary cortex) were observed in each experiment following pericardiocentesis. RBF distribution examined in a series of six animals prior to and during the development of pericardial tamponade showed the opposite effect. These results indicate that pericardiocentesis causes redistribution of both glomerular filtrate and RBF to superficial nephrons. The development of pericardial tamponade was associated with increased fractional juxtamedullary blood flow. These changes may have been the result of altered blood pressure, hematocrit, plasma protein concentration, or altered renal resistance.  相似文献   

16.
It has been shown that occlusion of the adrenal vein causes an increase in renal vascular resistance in the ipsilateral kidney in Wistar Kyoto rats (WKY). The most probable mechanism of this phenomenon is the direct inflow of adrenal catecholamines to the kidney by the adrenal renal portal circulation (ARPC). As the number of vessels of the ARPC is bigger and the tonic sympathetic activity is higher in spontaneously hypertensive rats (SHR), the aim of the current study was to compare the effect of adrenal vein occlusion on renal vascular resistance between SHR and WKY. Mean arterial blood pressure and renal blood flow (RBF) were measured and renal vascular resistance (RVR) was calculated before and after closure of the adrenal vein. Occlusion of the adrenal vein significantly reduced RBF and increased RVR in both strains of rats. The rise of the RVR was significantly higher in SHR than in WKY. Therefore we assume that the hemodynamic responsiveness of the kidney due to increase in blood flow through ARPC is greater in SHR and may contribute to the development of arterial hypertension in this strain of rat.  相似文献   

17.
It has been shown that monoclonal anti-P-selectin antibody administration protects renal function in an ischemic model of acute renal failure. This study was designed to evaluate the effect of administration of fucoidan, P-selectin inhibitor, on reduction in renal blood flow induced by ischemia/reperfusion injury in the rat. Experiments were performed on male Wistar rats weighting 35-400 g. The systemic blood pressure (mm Hg) (BP) and renal blood flow (RBF) were monitored continuously and renal vascular resistance (RVR) was calculated. After 20 min period of stabilization animals (6 rats in each group) received one of the following agents administered by continuous i.v. infusion during 165 min: 1 mg/kg of body weight of fucoidan (F1), 10 mg/kg of fucoidan (F10), 100 mg/kg of fucoidan (F100), 10 mg/kg of heparin (H), or 0.9% NaCl solution (control). After 15 min of drug administration the renal vessels of the both kidney were occluded with vascular clamps for 60 min. There were no significant changes in the initial values of RBF, RVR and BP between groups. None procedure affected significantly BP during all experiments. In F10 RBF returned to the initial values in 70th min of reperfusion and did not change up to 90th min. This value was significantly higher than respective value in the control group. In F1 group RBF in 90th min was also higher than in the control group, but it was not statistically significant. The dose of heparine and fucoidan used in the H and F100 groups failed to preserve RBF during reperfusion. In the present study we found that administration of fucoidan--P-selectin inhibitor, increases significantly postischemic renal blood flow and may have renoprotective activity.  相似文献   

18.
A multitude of evidence suggests that iodinated contrast material causes nephrotoxicity; however, there have been no previous studies that use arterial spin labeling (ASL) blood flow functional magnetic resonance imaging (fMRI) to investigate the alterations in effective renal plasma flow between normointensive and hypertensive rats following injection of contrast media. We hypothesized that FAIR-SSFSE arterial spin labeling MRI may enable noninvasive and quantitative assessment of regional renal blood flow abnormalities and correlate with disease severity as assessed by histological methods. Renal blood flow (RBF) values of the cortex and medulla of rat kidneys were obtained from ASL images postprocessed at ADW4.3 workstation 0.3, 24, 48, and 72 h before and after injection of iodinated contrast media (6 ml/kg). The H&E method for morphometric measurements was used to confirm the MRI findings. The RBF values of the outer medulla were lower than those of the cortex and the inner medulla as reported previously. Iodinated contrast media treatment resulted in decreases in RBF in the outer medulla and cortex in spontaneously hypertensive rats (SHR), but only in the outer medulla in normotensive rats. The iodinated contrast agent significantly decreased the RBF value in the outer medulla and the cortex in SHR compared with normotensive rats after injection of the iodinated contrast media. Histological observations of kidney morphology were also consistent with ASL perfusion changes. These results demonstrate that the RBF value can reflect changes of renal perfusion in the cortex and medulla. ASL-MRI is a feasible and accurate method for evaluating nephrotoxic drugs-induced kidney damage.  相似文献   

19.
目的观察血管紧张素II(AngⅡ)拮抗剂对5/6(ablation/infarction,A/I)肾切除诱导慢性肾衰竭(CRF)大鼠肾功能、肾血流量及肾内氧耗的影响。方法制备5/6(A/I)肾切除诱导慢性肾衰大鼠模型,设正常组(A组,n=14只),模型组(B组,n=14只),AngⅡ拮抗剂治疗组(氯沙坦钾联合福辛普利钠)(C组,n=14只)。给予相应干预,疗程60 d。分别测量尾动脉收缩压(SBP)、舒张压(DBP),检测大鼠尾静脉血清肌酐(Scr)、尿素氮(BUN)、血红蛋白(Hb),计算内生肌酐清除率(Ccr)。干预60 d后,检测肾血流量(RBF)、腹主动脉和肾静脉血气(AABG and RVBG),左肾静脉压(RVpO2),计算残余肾内氧耗(QO2/TNa)及观察残肾组织病理变化。结果 (1)造模后与A组比较,B、C两组的Scr、BUN和尾动脉SBP、DBP显著增加(P0.01),Ccr、Hb显著降低(P0.01),提示造模成功。(2)干预后与B组比较,C组的Scr、尾动脉SBP、DBP、QO2/TNa明显下降(P0.01),BUN降低(P0.05),Hb、Ccr、RVpO2显著升高(P0.01),RBF升高(P0.05)。(3)残肾组织病理形态学变化显示,C组的肾组织病理变化明显减轻,优于B组。结论 AngⅡ拮抗剂可以增加慢性肾衰大鼠肾血流量,降低肾内氧耗,改善肾功能及减轻肾组织病理变化,其肾脏保护作用机制可能与其调节细胞能量代谢,改善肾内氧耗有关。  相似文献   

20.
The present study assessed the short- and long-term effect of tempol, a membrane-permeable mimetic of superoxide dismutase, on renal medullary hemodynamics in spontaneously hypertensive rats (SHR). Tempol was given in the drinking water (1 mM) for 4 days or 7 wk (4-11 wk of age), and medullary blood flow (MBF) was measured over a wide range of renal arterial pressure by means of laser-Doppler flowmetry in anesthetized rats. In addition, the response of the medullary circulation to angiotensin II (5-50 ng x kg(-1) x min(-1) iv) was determined in SHR treated for 4 days with tempol. Compared with control SHR, short- and long-term treatment with tempol decreased arterial pressure by approximately 20 mmHg and increased MBF by 35-50% without altering total renal blood flow (RBF) or autoregulation of RBF. Angiotensin II decreased RBF and MBF dose dependently (approximately 30% at the highest dose) in control SHR. In SHR treated with tempol, angiotensin II decreased RBF (approximately 30% at the highest dose) but did not alter MBF significantly. These data indicate that the antihypertensive effect of short- and long-term administration of tempol in SHR is associated with a selective increase in MBF. Tempol also reduced the sensitivity of MBF to angiotensin II. Taken together, these data support the idea that tempol enhances vasodilator mechanisms of the medullary circulation, possibly by interacting with the nitric oxide system. Increased MBF and reduced sensitivity of MBF to angiotensin II may contribute to the antihypertensive action of tempol in SHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号