首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Partial outlet obstruction of the rabbit urinary bladder results, initially, in a rapid increase in bladder mass and remodeling of the bladder wall. Previously, it was shown that this response was characterized by serosal growth (thickening) which was apparent after 1 day of obstruction, before any visible vascularization was observed. After 1 week of obstruction, significant microvessel formation was seen in the transition region between the detrusor smooth muscle and the thickening serosa; after 2 weeks the entire serosa was vascularized.In this study we investigated the effect of chronic (4 week) partial outlet obstruction on microvessel density and distribution in the bladder wall immunohistochemically using CD31 as a marker for vascular endothelium. Transverse sections of bladder wall were examined after 4 weeks of no surgery, sham surgery or partial obstruction.The microvessel density of the obstructed rabbit bladder mucosa and detrusor smooth muscle increased relative to augmentation of these compartments while new vessels appeared in the thickening serosa. Although vessel density did not change with obstruction a significant shift in mean vessel circumference to the left occurred indicating a significant increase in the number of microvessels and small vessels consistent with angiogenesis.  相似文献   

2.
The differentiation patterns of smooth muscle cells (SMC) in rabbit bladder during development and in the hypertrophic response to partial outflow obstruction induced in adult animals were evaluated by biochemical and immunochemical techniques and by using a panel of monoclonal antibodies specific for desmin, vimentin, α-actin of smooth muscle (SM) type, SM myosin, and nonmuscle (NM) myosin isoforms. Desmin and SM α-actin were homogeneously distributed in SMC of developing, adult, and obstructed bladders. Conversely, marked changes in the ratio and antigenicity of SM myosin isoforms were observed by SDS electrophoresis and Western blotting, respectively. In particular, the 205 K (SM1) isoform was down-regulated with development whereas the 200 K (SM2) isoform was up-regulated around 7 days after birth and down-regulated in the obstructed bladder. Vimentin was expressed in SMC of the fetal bladder and declined markedly during postnatal, physiological hypertrophy of SMC, which occurs concomitantly with diminution of DNA synthesis. This polypeptide became detectable, however, in SMC of obstructed bladders. The 196 K (NM) myosin isoform recognized by NM-A9 antibody, present only in endothelium of blood vessels and in mucosa of normal fetal and adult bladders, became expressed in detrusor muscle, when SMC underwent a process of pathological hypertrophy. The reexpression of vimentin and the de novo appearance of NM myosin isoform in hypertrophic bladders can be reversed when the tissue mass is reduced, such as in bladders after 1-month recovery from partial obstruction. Thus, a specific NM myosin isoform can be used as a marker of SMC hypertrophy in obstructed bladder. In addition, the combined use of anti-vimentin and NM-A9 antibodies can distinguish between SMC which are in the physiological or in the pathological condition of adaptive bladder hypertrophy.  相似文献   

3.
Partial outlet obstruction of the urinary bladder has been demonstrated to induce specific dysfunctions in cellular and sub-cellular membrane structures within the bladder's smooth muscle and mucosal compartments. Recent studies have linked these membrane dysfunctions to alterations in phospholipid metabolism leading to mobilization of free arachidonic acid, the precursor for synthesis of prostaglandins (PG). The purpose of this study was to determine if partial outlet obstruction of the urinary bladder induces changes in the capacity of bladder smooth muscle and mucosa to generate PG. PG were isolated from control and partially obstructed urinary bladder smooth muscle and mucosa of male New Zealand White (NZW) rabbits. PG concentrations (PGE2, PGF2alpha and PGI2, as its stable metabolite 6-keto-PGF1alpha) were determined after 30 minute incubations using enzyme-linked immunoassay (ELISA) kits. In both control and obstructed rabbit urinary bladders, PG generation was significantly higher in isolated mucosa than muscle tissues. A significantly higher concentration of PGF2alpha, and 6-keto-PGF1alpha was measured in obstructed muscle tissue relative to controls. The concentration of 6-keto-PGF1alpha was also significantly higher than the concentrations measured for PGE2 and PGF2alpha in both control and obstructed smooth muscle samples. The generation of PGE2 was significantly higher in rabbit urinary bladder mucosa than either PGF2alpha or 6-keto-PGF1alpha in both control and obstructed samples. The capacity of obstructed mucosal tissue to generate 6-keto-PGF1alpha was significantly higher than control tissue, while no significant differences in PGE or PGF2alpha generation were noted. These data suggest obstruction of the urinary bladder induce specific elevations in PG in both smooth muscle and mucosal tissues.  相似文献   

4.
5.
Partial urinary bladder outlet obstruction (PBOO) in men, secondary to benign prostatic hyperplasia, induces detrusor smooth muscle (DSM) hypertrophy. However, despite DSM hypertrophy, some bladders become severely dysfunctional (decompensated). Using a rabbit model of PBOO, we found that although DSM from sham-operated bladders expressed nearly 100% of both the smooth muscle myosin heavy chain isoform SM-B and essential light chain isoform LC17a, DSM from severely dysfunctional bladders expressed as much as 75% SM-A and 40% LC17b (both associated with decreased maximum velocity of shortening). DSM from dysfunctional bladder also exhibited tonic-type contractions, characterized by slow force generation and high force maintenance. Immunofluorescence microscopy showed that decreased SM-B expression in dysfunctional bladders was not due to generation of a new cell population lacking SM-B. Metabolic cage monitoring revealed decreased void volume and increased voiding frequency correlated with overexpression of SM-A and LC17b. Myosin isoform expression and bladder function returned toward normal upon removal of the obstruction, indicating that the levels of expression of these isoforms are markers of the PBOO-induced dysfunctional bladders. bladder remodeling; bladder dysfunction; SM-A; LC17a; benign prostatic hyperplasia  相似文献   

6.
Bladder outlet obstruction (BOO) is a common disorder that is associated with altered bladder structure and function. For example, it is well established that BOO results in hypertrophy and hyperplasia of the bladder smooth muscle as well as detrusor instability. Since prostaglandins (PGs) and cyclic nucleotides (cyclic AMP [cAMP] and cyclic GMP [cGMP]) mediate both smooth muscle tone and proliferation, it is reasonable to suggest that changes in their levels may be involved in the pathophysiology of BOO-associated bladder disorders. Hence, the objective of this study was to investigate cyclic AMP, cyclic GMP and prostaglandins in the bladder of a rabbit model of BOO. BOO was induced in adult male New Zealand White rabbits. After 3 weeks, urinary bladders were excised, weighed and cut into segments. They were then incubated with stimulators of PGs, cAMP and cGMP and the formation of PGs, cAMP and cGMP were measured using radioimmunoassays. There was a significant increase in the obstructed bladder weights (P=0.002). The formation of PGE2, PGI2, cAMP and cGMP was significantly diminished in the detrusor (P<0.05) and bladder neck (P<0.05) in the BOO bladders compared to age-matched controls. Since PGE2, PGI2, cAMP and cGMP are known to inhibit the proliferation of smooth muscle cells (SMCs), the decreased synthesis of these factors, in BOO, may play a role in bladder SMC hypertrophy/hyperplasia. Our study points to the possible use of drugs that modulate the NO-cGMP and/or PG-cAMP axes in BOO-associated bladder pathology.  相似文献   

7.
8.
9.
The temperature sensitivity of in vitro whole bladder preparations from neonatal and adult rats with or without chronic partial urethral obstruction was investigated. After the bladder was filled to a volume eliciting isovolumetric contractions, temperature was changed between 19 and 38 degrees C. In all preparations, higher temperatures were associated with higher frequencies of spontaneous intravesical pressure waves (IVPW). In 1- to 2-wk-old neonates, IVPW amplitude increased as the temperature increased; however, in older neonates and normal adults, the opposite occurred. The transition period was at 3 wk of age when bladder volume also markedly increased. At this age as well as in adult rats with outlet obstruction, changing temperature had little influence on the amplitude of IVPW. Thus obstructed outlet bladders and 3-wk-old bladders had similar properties. It is concluded that the properties of bladder muscle are changed during postnatal maturation and that in 3-wk-old rats, when brain control of voiding is emerging, micturition is abnormal, leading to obstructive changes in bladder muscle.  相似文献   

10.
The urinary bladder depends on intracellular ATP to support a number of essential intracellular processes including contraction. The concentration of ATP is maintained by mitochondrial oxidative phosphorylation, cytosolic glycolysis and the cytosolic activity of creatine kinase, the enzyme that catalysis the rapid transfer of a phosphate from creatine phosphate (CP) to ADP resulting in the formation of ATP.Prior studies in this lab and others have demonstrated that mitochondrial respiration is significantly lower in hypertrophied bladder tissue (induced by partial outlet obstruction of the white New Zealand Rabbit). In addition to decreased mitochondrial respiration, there are significant increases in glycolysis and lactic acid formation in the hypertrophied tissue.In view of the increased glycolysis and decreased mitochondrial function in the hypertrophied tissue, and the importance in creatine kinase in maintaining cytosolic levels of ATP, the current study was designed to determine if outlet obstruction induces any changes in the activity of creatine kinase.The following is a summary of the results: 1) The bladder mass increased from 2.2 ± 0.2 gm to 11.5 ±1.6 gm at 7 days following outlet obstruction. 2) The intracellular concentrations of both ATP and CP were significantly reduced in the bladder tissue following 7 days of obstruction. 3) The percent of protein (per tissue mass) was significantly lower in the obstructed bladders, although the percent of soluble protein was similar. 4) Creatine kinase activity of control bladders showed linear kinetics with a Vmax = 1120 nmoles/mg protein/4 min and Km = 147 µM CP. 2) The creatine kinase activity of obstructed bladders also displayed linear kinetics with a Vmax = 1125 nmoles/mg protein/4 min tissue, and Km = 276 µM CP.These studies demonstrate that whereas both control and obstructed bladders have virtually identical maximum creatine kinase activities, the Km for the obstructed tissue is significantly higher than the Km for the control tissue. This may indicate that under cellular conditions (at sub-maximum substrate concentrations), the creatine kinase activity of the obstructed bladders may be significantly lower than the activity of the control bladders. In addition, the reduced tissue concentrations of ATP and CP would certainly be consistent with the reduced functional response to bethanechol and field stimulation.  相似文献   

11.
12.

Aims

Alterations in properties of the bladder with maturation are relevant physiologically and pathophysiologically. The aim of this study was to investigate alterations in bladder properties with maturation in juvenile vs. adult pig, focussing on differences between layers of the bladder wall (mucosa vs. detrusor) and the presence and functional contribution of interstitial cells (ICs).

Methods

Basal and cholinergic-induced phasic contractions (PCs) in mucosal and denuded-detrusor strips from juvenile and adult pigs were assessed. Expression of c-kit, a marker of ICs, was investigated in the mucosa and the detrusor layers of the pig bladder. The functional role of ICs in mediating PCs was examined using imatinib.

Results

Mucosal strips from juvenile and adult pig bladders demonstrated basal PCs whilst denuded-detrusor strips did not. PCs of mucosal strips from juvenile pigs were significantly greater than those from adult bladders. Immunoreactivity for c-kit was detected in mucosa and detrusor layers of pig bladder. Histological studies demonstrated a distinct layer of smooth muscle between the urothelium and bladder detrusor, termed the muscularis mucosa. Imatinib was only effective in inhibiting PCs in mucosal strips from juvenile pigs. Imatinib inhibited the carbachol-induced PCs of both juvenile and adult denuded-detrusor strips, although strips from juvenile bladders demonstrated a trend towards being more sensitive to this inhibition.

Conclusions

We confirm the presence of c-kit positive ICs in pig urinary bladder. The enhanced PCs of mucosal strips from juvenile animals could be due to altered properties of ICs or the muscularis mucosa in the bladders of these animals.  相似文献   

13.
A volumetric method has been developed which permits continuous registration of volume flows across epithelial tissues. The method was applied to volume flow measurements across rabbit gall bladder epithelium. The rate of fluid reabsorption measured in this way was twice as high as previously observed in sac preparations of the gall bladder. This is probably due to better aeration and stirring of the mucosal solution. It was demonstrated that electrical gradients across the gall bladder induced volume flows towards the negative electrode. In non-transporting bladders volume flows were linearly related with current between 300 and 900 μA in both directions. However, volume flow rates were three times higher from mucosa to serosa than in the opposite direction. From the magnitude of polarization potentials, observed after switching off the current, the conclusion was reached that all of the current-induced volume flow is an osmotic flow due to salt polarization in the unstirred layers of the tissue. By implication, so-called streaming potentials observed during osmotic flows reflect solely polarization effects. In actively transporting gall bladders a 200 μA current increased or decreased the flow rate twice as much as expected from polarization effects alone. Therefore passage of current interfered directly with the active transport mechanism of gall bladder epithelium.  相似文献   

14.
Purpose: Evidence indicates that free radicals are etiological factors in obstructive bladder disease. However, it is not clear which species of reactive oxygen or nitrogen species mediate the damage. The current studies were designed to determine if partial outlet obstruction in rabbits results in the generation of nitrotyrosine (NT). Materials and methods: Sixteen rabbits were separated into four groups of four. The rabbits in groups 1 and 2 underwent sham operation while rabbits in groups 3 and 4 underwent partial outlet obstruction. The rabbits in groups 1 and 3 were evaluated after 1 week of obstruction and the rabbits in groups 2 and 4 were evaluated after 2 weeks of obstruction. A separate group of four controls were evaluated simultaneously with the sham and obstructed rabbits. Four rabbits from each group were evaluated after 1 and 2 weeks of obstruction. Four control rabbits were also evaluated. Isolated strips were evaluated for contractile responses and NT content of the mucosa and muscle were quantitated by Western blot analysis. Results: (1) The mucosa contains both 42 and 62 kD proteins exhibiting a strong nitrotyrosine signal; the muscle presents a signal only at 62 kD. (2) The sham operations had no effect on nitrotyrosine distribution or content. (3) The nitrotyrosine of both mucosal proteins and the muscle protein are increased in the 1 week obstructed bladder; whereas, only the 62 kD signal is increased in the two week obstructed bladder mucosa. (4) The contractile response to FS are reduced to a significantly greater degree than the responses to carbachol, KCl, or ATP. Conclusions: These studies clearly demonstrated that partial outlet obstruction in rabbits results in significant increases in nitrotyrosine within the bladder and may contribute to the contractile dysfunctions mediated by partial outlet obstruction. (Mol Cell Biochem 276: 143–148, 2005)  相似文献   

15.
Transport of Salt and Water in Rabbit and Guinea Pig Gall Bladder   总被引:14,自引:3,他引:11       下载免费PDF全文
A simple and reproducible method has been developed for following fluid transport by an in vitro preparation of mammalian gall bladder, based upon weighing the organ at 5 minute intervals. Both guinea pig and rabbit gall bladders transport NaCl and water in isotonic proportions from lumen to serosa. In the rabbit bicarbonate stimulates transport, but there is no need for exogenous glucose. The transport rate is not affected by removal of potassium from the bathing solutions. Albumin causes a transient weight loss from the gall bladder wall, apparently by making the serosal smooth muscle fibers contract. Active NaCl transport can carry water against osmotic gradients of up to two atmospheres. Under passive conditions water may also move against its activity gradient in the presence of a permeating solute. The significance of water movement against osmotic gradients during active solute transport is discussed.  相似文献   

16.
Purpose Partial bladder outlet obstruction (PBOO) results in marked biochemical alterations in the bladder. In this study, we focused on comparison of thapsigargin sensitive sarco/endoplasmic reticulum Ca2+ ATPase activity (SERCA) and Citrate Synthase after short term PBOO in young versus old rabbits. Materials and methods A total of 20 young and 20 mature male rabbits were divided into 4 sub-groups of 5 rabbits each (4 obstructed and 1 sham-control rabbit). The rabbits in the groups were evaluated after 1, 3, 7, and 14 days of obstruction, respectively. The activities of SERCA and citrate synthase were examined as markers for sarcoplasmic reticular calcium storage and release and mitochondrial function, respectively. Results The SERCA activity of bladder body smooth muscle in the young animals increased at 7 and 14 days. For the old rabbits, the SERCA activity decreased significantly by 1 day and remained this level throughout the course of obstruction, and was significantly lower than young at all time periods. The citrate synthase activity in the young animals decreased over the 1–7 days, and then returned toward control level by 14 days following obstruction. In the old animals, citrate synthase activity of bladder body smooth muscle progressively decreased over the course of the study, and was significantly lower in the old than the young animals after 14 days obstructed. Conclusion The urinary bladders of the young rabbits have a considerable greater ability to adapt to PBOO than do those of the old rabbits. The deterioration of mitochondrial and SR function may be important mechanisms underlying geriatric voiding dysfunction.  相似文献   

17.
Cysteine-rich protein (Cyr61) and connective tissue growth factor (CTGF) are key immediate early growth factors with functions in cell proliferation, differentiation, and extracellular matrix synthesis. Studies were performed to assess the gene expression profile of Cyr61 and CTGF in rat urinary bladder during growth in response to partial outlet obstruction. The mRNA levels of Cyr61 as determined by ribonuclease protection assay increased sharply after 1 day and remained elevated throughout the time period of the obstruction. This correlates well with increased bladder weight. The CTGF mRNA levels seemed to peak within the second week of the urethral obstruction and correlate well with increased type I collagen mRNA. The expression pattern of either Cyr61 or CTGF proteins corroborated that of their respective mRNAs. Immunohistochemical analyses showed that immunoreactivity of Cyr61 was confined to detrusor smooth muscle and that of CTGF was detected within both detrusor muscle and lamina propria layers. These data strongly indicate the involvement of Cyr61 and CTGF in bladder wall remodeling as a result of the outlet obstruction.  相似文献   

18.
Partial urinary bladder outlet obstruction mediates cyclic ischemia and reperfusion resulting in the generation of both reactive oxygen species and reactive nitrogen species. It is theorized that with an increase in the level of free radicals, the level of protective antioxidants should decrease. To test this hypothesis, two electron transfer assays, the FRAP method and the CUPRAC method, were used to determine the level of antioxidant reactivity of obstructed and control bladder tissue. The results showed that the CUPRAC assay detected a significant decrease in the reactivity of antioxidants found within the obstructed bladder tissue as compared to the control bladder tissue in both the muscle and mucosa. The FRAP assay did not detect any difference between the muscle and mucosa of the obstructed and control bladder tissue.  相似文献   

19.
Partial outlet obstruction of the rabbit bladder induces serosal thickening and smooth muscle (SM) hypertrophy. Within thickened serosa, submesothelial (mesenchymal) cells differentiate into SM cells after 30 days of obstruction [S. Buoroet al. Lab. Invest.69, 589–602, 1993]. Here, we show that submesothelial cells transiently express keratin (K) 18 but not K8 soon after obstruction. We investigated a possible relationship between keratin expression and cell proliferation/differentiationin vivoandin vitro.The results of this study indicate that expression of K18 is spatiotemporally related to the pattern of cell proliferation with respect to the localization of an elastic membrane which divides the thickened serosa into an “extrinsic” and an “intrinsic” region. Moreover, K18 is not present in bladder mesenchyma during early development, indicating that its expression in the adult is not attributable to a dedifferentiation process. However, simultaneous K18, K8, and desmoplakin (DP) expression can be induced in normal and thickened serosa upon treatment with bromo-deoxyuridine. Our results indicate that K18 is a marker of proliferating mesenchymal cells in rabbit serosa, whereas the combined expression of K18, K8, and DP might be related to the hypothesized alterations in the stability of gene expression. A model is proposed in which keratin-containing submesothelial cells can act as a “transit” cell phenotype involved in both regenerating mesothelial cells and formation of SM cells.  相似文献   

20.
Recent work has uncovered a role of the microRNA (miRNA) miR-29 in remodeling of the extracellular matrix. Partial bladder outlet obstruction is a prevalent condition in older men with prostate enlargement that leads to matrix synthesis in the lower urinary tract and increases bladder stiffness. Here we tested the hypothesis that miR-29 is repressed in the bladder in outlet obstruction and that this has an impact on protein synthesis and matrix remodeling leading to increased bladder stiffness. c-Myc, NF-κB and SMAD3, all of which repress miR-29, were activated in the rat detrusor following partial bladder outlet obstruction but at different times. c-Myc and NF-κB activation occurred early after obstruction, and SMAD3 phosphorylation increased later, with a significant elevation at 6 weeks. c-Myc, NF-κB and SMAD3 activation, respectively, correlated with repression of miR-29b and miR-29c at 10 days of obstruction and with repression of miR-29c at 6 weeks. An mRNA microarray analysis showed that the reduction of miR-29 following outlet obstruction was associated with increased levels of miR-29 target mRNAs, including mRNAs for tropoelastin, the matricellular protein Sparc and collagen IV. Outlet obstruction increased protein levels of eight out of eight examined miR-29 targets, including tropoelastin and Sparc. Transfection of human bladder smooth muscle cells with antimiR-29c and miR-29c mimic caused reciprocal changes in target protein levels in vitro. Tamoxifen inducible and smooth muscle-specific deletion of Dicer in mice reduced miR-29 expression and increased tropoelastin and the thickness of the basal lamina surrounding smooth muscle cells in the bladder. It also increased detrusor stiffness independent of outlet obstruction. Taken together, our study supports a model where the combined repressive influences of c-Myc, NF-κB and SMAD3 reduce miR-29 in bladder outlet obstruction, and where the resulting drop in miR-29 contributes to matrix remodeling and altered passive mechanical properties of the detrusor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号