首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 712 毫秒
1.
正氨基酸及其衍生物具有重要的代谢与调控功能。随着代谢工程技术的迅速发展,代谢工程育种逐步取代传统的育种技术,在氨基酸生产菌株的选育中占据了主导地位,特别是在优良性状的选育,如菌株的低值原料利用能力、抗逆性等方面表现出越来越重要的作用。文章主要介绍氨基酸生产菌株的代谢工程育种技术及其发展趋势,以及代谢工程育种技术在菌株优良性状选育方面的应用。  相似文献   

2.
芳香族氨基酸包括L-苯丙氨酸(L-Phe)、L-酪氨酸(L-Tyr)和L-色氨酸(L-Trp),是生物体内非常重要的必需氨基酸,具有重要的生物学功能,广泛应用于医药、食品和饲料等领域。本文中,笔者介绍了芳香族氨基酸的生物合成途径以及代谢调控,综述了构建大肠杆菌芳香族氨基酸生产菌株的代谢工程策略。针对现阶段工业化生产芳香族氨基酸存在的问题,笔者对进一步应用代谢工程策略改造芳香族氨基酸菌株进行了展望。  相似文献   

3.
大肠杆菌乙酸耐受性菌株的构建及其耐受机制研究进展   总被引:1,自引:0,他引:1  
乙酸是微生物发酵生产常见的副产物,也可作为碳源存在于木质纤维素水解液等非粮原料发酵培养基中。培养基中含有高浓度的乙酸/乙酸盐时会抑制细胞生长、降低生物量,影响目标产品的产量和产率。研究乙酸耐受性机制,改进菌株的乙酸耐受性,构建具有高乙酸耐受性工程菌株,对于以乙酸为碳源或利用含乙酸的原料进行高附加值产品发酵生产具有重要意义。本文综述了通过代谢工程、实验室适应性进化、全局转录机器工程和基于CRISPR可追踪基因组工程等方法构建大肠杆菌乙酸耐受性菌株的研究进展,进一步从乙酸同化代谢、氨基酸依赖型代谢、离子转运系统调节和细胞膜成分修饰等4个方面阐述了大肠杆菌乙酸耐受性菌株的耐受性应答机制,总结了大肠杆菌乙酸耐受菌株的生产应用,展望了提高大肠杆菌乙酸耐受方法和大肠杆菌乙酸耐受机制的研究方向。  相似文献   

4.
氨基酸是蛋白质的基本组成单元,对人和动物的营养健康十分重要,广泛应用于饲料、食品、医药和日化等领域。目前,氨基酸主要通过微生物发酵可再生原料生产,氨基酸产业是我国生物制造的重要支柱产业之一。氨基酸菌株主要通过随机诱变和代谢工程改造结合筛选获得。菌株生产水平进一步提高的核心限制之一是缺乏高效、快速和准确的筛选方法,因此,发展氨基酸菌株的高通量筛选方法对关键功能元件挖掘及高产菌株的创制筛选至关重要。本文综述了氨基酸生物传感器的设计,及其在功能元件、高产菌株的高通量进化筛选和代谢途径动态调控中的应用研究进展,讨论了现有氨基酸生物传感器存在的问题和性能提升改造策略,并展望了开发氨基酸衍生物生物传感器的重要性。  相似文献   

5.
随着抗癌药物制剂、氨基酸输液制剂及甜味二肽生产的飞速发展,对原料氨基酸的需求量日益增长。传统的发酵工业越来越不能满足需求,势必被以基因工程为基础的新兴发酵工业所代替。通过建立大肠杆菌及棒状杆菌的高效载体受体系统,运用DNA重组、定向突变等手段,对代谢途径及关键酶进行了深入系统的研究,为代谢工程注入了新的活力,为获得高产、优质且易于自动化生产的菌株打下了基础  相似文献   

6.
以木质纤维素为原料的二代燃料乙醇工业生产对发酵微生物的基本要求,一是可对木质纤维素组分中的全糖发酵,二是对预处理过程产生的毒性物质具有高耐受性。酿酒酵母(Saccharomyces cerevisiae)是具有优良生产性能的传统乙醇发酵生产菌株,是适合包括二代燃料乙醇等生物基化合物转化的理想底盘细胞。近30年来,利用理性代谢工程改造、非理性适应性进化以及新兴起的合成生物学等策略,对酿酒酵母进行精准构制,极大地提高了其二代燃料乙醇生产的产业化性能。综述了适于二代燃料乙醇生产酿酒酵母精准构制过程中的己糖和戊糖代谢途径工程、辅酶工程、糖转运蛋白、抗性元件发掘以及产业化推进等方面的研究进展。  相似文献   

7.
琥珀酸是一种具有重要应用价值的四碳平台化合物。微生物法发酵生产琥珀酸以其社会、环境和经济优势展现出良好的发展前景。谷氨酸棒杆菌被广泛应用于氨基酸、核苷酸等高附加值化学品的工业化生产,在厌氧条件下细胞处于生长停滞状态,但仍能高效利用碳源合成有机酸,通过代谢工程改造的谷氨酸棒杆菌有望成为理想的琥珀酸生产菌株。结合近年来谷氨酸棒杆菌生产琥珀酸取得的最新成果,本文综述了构建高产琥珀酸工程菌株的代谢工程策略、底物的扩展利用,并展望了将来的研究方向。  相似文献   

8.
酪氨酸是三大芳香族氨基酸之一,广泛用于食品、医药和化工等领域。转运系统工程为代谢工程改造大肠杆菌选育酪氨酸生产菌株提供了一种重要的研究策略。大肠杆菌中酪氨酸胞内转运主要通过aroP和tyrP基因编码的通透酶进行调控。以酪氨酸生产菌株HGXP为出发菌株,利用CRISPR-Cas9技术成功构建了aroP和tyrP基因敲除菌,并通过发酵试验考察了调节转运系统对酪氨酸生产的影响。发酵结果表明,aroP和tyrP基因敲除菌酪氨酸产量分别达到3.74 g/L和3.45 g/L,较出发菌株酪氨酸产量分别提高了19%和10%。对诱导温度进行了优化,结果表明38℃为最佳诱导温度。在3 L发酵罐上进行了补料分批发酵,aroP和tyrP基因敲除菌酪氨酸产量进一步提高至44.5 g/L和35.1 g/L,较出发菌株酪氨酸产量分别提高了57%和24%。研究结果对代谢工程强化大肠杆菌生产酪氨酸具有重要的参考价值。  相似文献   

9.
氨基酸作为一类营养物质在维持机体正常的生理生化反应方面具有重要的功能,常用作食品、药品和化妆品等的添加剂。氨基酸的生产主要依靠微生物发酵,产氨基酸菌的选育却是制约大规模工业生产氨基酸的重要因素。随着微生物分子育种技术的发展和运用,利用代谢工程改造细胞本身固有的代谢网络,指导氨基酸高产菌的选育已成为当前研究的热点。以谷氨酸棒杆菌(Corynebacterium glutamicum)为例,就该菌株代谢网络的特征以及高产氨基酸的代谢工程策略和应用进行综述。  相似文献   

10.
通过随机突变和定向选择而进行的定向进化(又称分子进化或人工进化)在改造酶的催化特性和稳定性、扩展酶的底物范围等方面具有广泛的应用。近年来,定向进化也开始应用在对结构基因的启动子区域和具有调节功能的蛋白如转录因子等进行代谢工程改造,并成功选育了对环境胁迫因素具有较强耐受性,以及发酵效率提高的微生物菌种。以下着重介绍近年来启动子的定向进化,包括启动子的强度和调节功能的分子进化,以及细胞全局转录工程等技术在微生物代谢工程中的应用,这些定向进化技术使人们可以更精细地调节基因表达水平,并可同时改变细胞内多个基因的转录水平,是代谢工程研究新的有力工具。  相似文献   

11.
Driven by requirements for sustainability as well as affordability and efficiency, metabolic engineering of plants and microorganisms is increasingly being pursued to produce compounds for clinical applications. This review discusses three such examples of the clinical relevance of metabolic engineering: the production of omega-3 fatty acids for the prevention of cardiovascular disease; the biosynthesis of artemisinic acid, an anti-malarial drug precursor, for the treatment of malaria; and the production of the complex natural molecule taxol, an anti-cancer agent. In terms of omega-3 fatty acids, bioengineering of fatty acid metabolism by expressing desaturases and elongases, both in soybeans and oleaginous yeast, has resulted in commercial-scale production of these beneficial molecules. Equal success has been achieved with the biosynthesis of artemisinic acid at low cost for developing countries. This is accomplished through channeling the flux of the isoprenoid pathway to the specific genes involved in artemisinin biosynthesis. Efficient coupling of the isoprenoid pathway also leads to the construction of an Escherichia coli strain that produces a high titer of taxadiene-the first committed intermediate for taxol biosynthesis. These examples of synthetic biology demonstrate the versatility of metabolic engineering to bring new solutions to our health needs.  相似文献   

12.
Due to advances made in the development of stable isotope based carbon oxidation methods, the determination of amino acid requirements in humans has been an active area of research for the past 2 decades. The indicator amino acid oxidation (IAAO) method developed in our laboratory for humans has been systematically applied to determine almost all indispensable amino acid requirements in adult humans. Nutritional application of experimentally derived amino acid requirement estimates depends upon the capacity of food proteins to meet the amino acid requirements in humans. Therefore, there is a need to know the proportion of dietary amino acids which are bioavailable, or metabolically available to the body for protein synthesis following digestion and absorption. Although this concept is widely applied in animal nutrition, it has not been applied to human nutrition due to lack of data. We developed a new in vivo method in growing pigs to identify the metabolic availability of amino acids in foods using the IAAO concept. This metabolic availability method has recently been adapted for use in humans. As this newly developed IAAO based method to determine metabolic availability of amino acids in foods is suitable for rapid and routine analysis in humans, it is a major step forward in defining the protein quality of food sources and integrating amino acid requirement data with dietary amino acid availability of foods.  相似文献   

13.
Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. We review advances in selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use; produce non-natural amino acids, alcohols, and carboxylic acids; and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes.  相似文献   

14.
Microorganisms capable of efficient production of amino acids have traditionally been developed by random mutation and selection method, which might cause unwanted physiological changes in cellular metabolism. Rational genome-wide metabolic engineering based on systems and synthetic biology tools, which is termed 'systems metabolic engineering', is rising as an alternative to overcome these problems. Recently, several amino acid producers have been successfully developed by systems metabolic engineering, where the metabolic engineering procedures were performed within a systems biology framework, and entire metabolic networks, including complex regulatory circuits, were engineered in an integrated manner. Here we review the current status of systems metabolic engineering successfully applied for developing amino acid producing strains and discuss future prospects.  相似文献   

15.
Amino acids are among the major products in biotechnology in both volume and value, and the global market is growing. Microbial fermentation is the dominant method used for industrial production, and today the most important microorganisms used are Corynebacteria utilizing sugars. For low-prize bulk amino acids, the possibility of using alternative substrates such as methanol has gained considerable interest. In this mini review, we highlight the unique genetics and favorable physiological traits of thermotolerant methylotroph Bacillus methanolicus, which makes it an interesting candidate for overproduction of amino acids from methanol. B. methanolicus genes involved in methanol consumption are plasmid-encoded and this bacterium has a high methanol conversion rate. Wild-type strains can secrete 58 g/l of L: -glutamate in fed-batch cultures at 50 degrees C and classical mutants secreting 37 g/l of L: -lysine have been selected. The relative high growth temperature is an advantage with respect to both reactor cooling requirements and low contamination risks. Key genes in L: -lysine and L: -glutamate production have been cloned, high-cell density methanol fermentation technology established, and recently a gene delivery method was developed for this organism. We discuss how this new knowledge and technology may lead to the construction of improved L: -lysine and L: -glutamate producing strains by metabolic engineering.  相似文献   

16.
提高国内支链氨基酸产生菌的高产菌株选育水平有助于缩短与国外生产之间的差距,满足国内市场需求。根据支链氨基酸生物合成途径及代谢调节,重点阐述了合成过程中关键酶的代谢调控,介绍了诱变育种、代谢工程、基因组改组及全局转录机器工程四种育种策略的研究进展。在支链氨基酸选育方面,全局转录机器工程育种目前虽无成功实例,但具有很大的潜力,而其他育种策略在氨基酸的选育中均发挥重要作用,可供国内相关育种工作者参考使用。  相似文献   

17.
So far multiple differences in prostate cancer-specific amino acids metabolism have been discovered. Moreover, attempts to utilize these alterations for prostate cancer diagnosis and treatment have been made. The prostate cancer metabolism and biosynthesis of amino acids are particularly focused on anaplerosis more than on energy production. Other crucial requirements on amino acids pool come from the serine, one?carbon cycle, glycine synthesis pathway and folate metabolism forming major sources of interproducts for synthesis of nucleobases necessary for rapidly proliferating cells. Considering the lack of some amino acids biosynthetic pathways and/or their extraordinary importance for prostate cancer cells, there is a widespread potential for targeted therapeutic applications with no effect on non-malignant cells. This review summarizes the up-to-date knowledge of the importance of amino acids for prostate cancer pathogenesis with a special emphasis on potential applications of metabolic variabilities in the new oncologic paradigm of precision medicine.  相似文献   

18.
19.
The aromatic amino acids, l-tryptophan, l-phenylalanine, and l-tyrosine, can be manufactured by bacterial fermentation. Until recently, production efficiency of classical aromatic amino-acid-producing mutants had not yet reached a high level enough to make the fermentation method the most economic. With the introduction of recombinant DNA technology, it has become possible to apply more rational approaches to strain improvement. Many recent activities in this metabolic engineering have led to several effective approaches, which include modification of terminal pathways leading to removal of bottleneck or metabolic conversion, engineering of central carbon metabolism leading to increased supply of precursors, and transport engineering leading to reduced intracellular pool of the aromatic amino acids. In this review, advances in metabolic engineering for the production of the aromatic amino acids and useful aromatic intermediates are described with particular emphasis on two representative producer organisms, Corynebacterium glutamicum and Escherichia coli.  相似文献   

20.
Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields.This review gives an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each.Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs.Although the production processes of amino acids have been extensively investigated in previous studies, a comprehensive overview of the developments in bioprocess technology has not been reported yet. This review states the importance of the fermentation process for industrial amino acids production, underlining the strengths and the weaknesses of the process. Moreover, the potential of innovative approaches utilizing macro and microalgae or bacteria are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号