首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Weekly releases of Chrysoperla carnea for control of Scirtothrips perseae were evaluated in replicated field plots in two commercial avocado orchards in southern California, USA. Two release techniques and rates commonly employed by commercial pest control advisors who routinely use this generalist predator for S. perseae control were assessed. Release technique one utilized C. carnea eggs glued to paper squares that were stapled to leaves of experimental trees at a rate of 41,000 eggs per ha. Release technique two used a motorized backpack sprayer to apply a dry mixture of lacewing eggs and larvae to trees at a rate of 514,501 per ha. Pest populations were monitored by making bi-weekly population counts of S. perseae larvae and adults on leaves, and adult densities were simultaneously monitored in each experimental plot with yellow sticky cards. In the laboratory, degree-day accumulation until death of immature C. carnea was determined at temperatures representative of field conditions when predators were provisioned with varying amounts of food or different food types. Preference for S. perseae instars by first, second, and third instar C. carnea was assessed in the laboratory, and intraguild predation towards larvae and adult females of a co-occurring generalist predatory thrips, Franklinothrips orizabensis, was investigated along with intraspecific predation rates. Both release strategies failed to significantly reduce S. perseae populations in comparison to non-treated control plots. Approximately 35–96% of C. carnea eggs and larvae applied with the motorized sprayer landed on the ground. C. carnea larvae lived for approximately 1–2 days when provisioned with either no food, an avocado leaf or avocado pollen. Longevity was extended to 14–15 days when prey was provided. C. carnea larvae showed no preference for first or second instar S. perseae, all predator instars attacked first instar F. orizabensis, but only second and third instar C. carnea managed attacks on second instar F. orizabensis larvae. No adult female F. orizabensis were attacked and no attacks by F. orizabensis on C. carnea were recorded. Second instar C. carnea engaged in the highest levels of intraspecific predation.  相似文献   

2.
M. S. Awan 《BioControl》1990,35(2):203-210
Three species of hemipteran predators preyed differently upon 1st instarHeliothis punctiger Wallengren larvae.Cermatulus nasalis consumed more larvae thanOechalia schellenbergii which consumed more larvae thanTropiconabis nigrolineatus. All the species consumed significantly less 1st instar larvae on plants than what they consumed in Petri-dishes. Fifth instar predators showed significant differences in terms of prey consumption due to sex independent of searching conditions. Only 4th and 5th instars ofT. nigrolineatus attacked and captured 2nd instars ofH. punctiger larvae. The other 2 species however readily attacked and consumed 2nd instarH. punctiger larvae. Their prey consumption was similar in Petri-dishes and on plants. Only 5th instars ofT. nigrolineatus could subdue and capture 3rd instarH. punctiger larvae. Second instar pentatomids captured just one 3rd instar larva but older instars killed and ate more. Fourth instarH. punctiger larvae were immune to attacks by allT. nigrolineatus and younger pentatomids due to their defense ploys but 5th instar pentatomids could subdue and capture them. None of the predators captured 5th instarH. punctiger larvae except few 5th instar females ofC. naslis andO. schellenbergii.   相似文献   

3.
Scirtothrips perseae Nakahara was discovered attacking avocados in California, USA, in 1996. Host plant surveys in California indicated that S. perseae has a highly restricted host range with larvae being found only on avocados, while adults were collected from 11 different plant species. As part of a management program for this pest, a “classical” biological control program was initiated and foreign exploration was conducted to delineate the home range of S. perseae, to survey for associated natural enemies and inventory other species of phytophagous thrips on avocados grown in Mexico, Guatemala, Costa Rica, the Dominican Republic, Trinidad, and Brazil. Foreign exploration efforts indicate that S. perseae occurs on avocados grown at high altitudes (>1500 m) from Uruapan in Mexico south to areas around Guatemala City in Guatemala. In Costa Rica, S. perseae is replaced by an undescribed congener as the dominant phytophagous thrips on avocados grown at high altitudes (>1300 m). No species of Scirtothrips were found on avocados in the Dominican Republic, Trinidad, or Brazil. In total, 2136 phytophagous thrips were collected and identified, representing over 47 identified species from at least 19 genera. The significance of these species records is discussed. Of collected material 4% were potential thrips biological control agents. Natural enemies were dominated by six genera of predatory thrips (Aeolothrips, Aleurodothrips, Franklinothrips, Leptothrips, Scolothrips, and Karnyothrips). One genus each of parasitoid (Ceranisus) and predatory mite (Balaustium) were found. Based on the results of our sampling techniques, prospects for the importation of thrips natural enemies for use in a “classical” biological control program in California against S. perseae are not promising.  相似文献   

4.
The recent invasion of California by avocado thrips, Scirtothrips perseae, has had a serious economic impact on the Californian avocado industry. Here we report the isolation and characterization of six microsatellite loci for S. perseae, four of which were highly polymorphic (number of observed alleles ranged from three to 13 and expected heterozygosity from 0.31 to 0.87). These markers will be used to investigate the invasion history and route of entry into California of S. perseae. Three of the six loci successfully amplified in other Scirtothrips and Neohydatothrips species.  相似文献   

5.
Predatory behaviors of Neoseiulus californicus (McGregor) and Galendromus helveolus (Chant) attacking Oligonychus perseae Tuttle, Baker and Abbatiello on avocado leaves were videotaped and analyzed. Behaviors were recorded for “fresh” predators that were used ≤ 48 hr post receipt from a commercial insectary and “cold stored” predators that were maintained at 12°C for ≈ 14 days. Fresh and cold stored G. helveolus were observed to attack O. perseae only after invading webbed nests. Conversely, fresh and cold stored N. californicus employed three different modes of predatory attack: (1) intercepting and attacking migrant O. perseae outside of web nests; (2) attacking prey through nest webbing; or (3) invading and attacking O. perseae inside nests. Predatory efficacy of both N. californicus and G. helveolus was reduced following cold storage, as both species engaged in certain predatory behaviors less frequently in comparison to predators that were not stored at low temperatures. Our observed results for N. californicus and G. helveolus attacking O. perseae are interpreted in relation to the chaetotaxy hypothesis, which proposes that phytoseiid invasion efficiency and propensity of webbed nests is facilitated by dorsal setal lengths. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Twenty-four-hour attack rates and the search strategy of third instar Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) attacking 1 to 16 third instar Planococcus citri Risso (Homoptera: Pseudococcidae) were measured on green and yellow-variegated Solenostemon scutellarioides (L.) Codd (= Coleus blumei (Bentham)) (Labiatae) plants of different sizes. Selected life history characteristics of C. montrouzieri fed different amounts of P. citri as prey from third instar to adults were also examined. On average, predators attacked 1 to 4 mealybugs, depending on the number of mealybugs and plant size. There was no effect of plant color on attack rates. Attack rates were positively related to prey density, whereas the estimated area searched by predators was inversely related to prey density. Analyses suggest that leaf area was the plant characteristic that most affected attack rates. Predators fed few prey had a decrease in body weight and survival. The implications for the use of C. montrouzieri in biological control are discussed.  相似文献   

7.
Abstract:  Microplitis mediator (Haliday) (Hym., Braconidae) is an important parasitoid of early instar larvae of the European cabbage moth, Mamestra brassicae L. (Lep., Noctuidae). In the laboratory, we examined attack responses of female M. mediator to the first three larval instars of M. brassicae . Females were presented with M. brassicae larvae either one individual at a time in a no-choice experiment, or three individuals, one from each instar, simultaneously in a choice experiment. Whether or not there was choice, naïve female parasitoids attacked a high proportion of larvae and did not discriminate among instars. In the no-choice experiment, attacked larvae were reared, and parasitoid cocoons were produced from about 76% of larvae attacked as first and second instars, but from only 19% of larvae attacked as third instars. Dissections of attacked larvae from the choice experiment showed that about 79% of attacks on first and second instars resulted in oviposition compared with only 49% for third instars. When given choice, frequency and number of attacks on first instar larvae increased with increasing parasitoid experience. Our results suggest that first and second instar larvae of M. brassicae are suitable hosts for M. mediator , but that third instar larvae are suboptimal both because oviposition attempts were frequently unsuccessful and because immature parasitoids failed to complete development. Nevertheless, naïve attacking parasitoids exhibited minimal discrimination among instars, although experienced parasitoids most frequently attacked first instar larvae. The host selection behaviour of M. mediator is discussed in the context of optimal foraging theory and implications for biological control.  相似文献   

8.
Abstract Understanding predator–prey interactions has a pivotal role in biological control programs. This study evaluated the functional response of three larval instars of the green lacewing, Chrysoperla carnea (Stephens), preying upon eggs and first instar larvae of the cotton bollworm, Helicoverpa armigera Hübner. The first and second instar larvae of C. carnea exhibited type II functional responses against both prey stages. However, the third instar larvae of C. carnea showed a type II functional response to the first instar larvae of H. armigera, but a type III functional response to the eggs. For the first instar larvae of C. carnea, the attack rate on H. armigera eggs was significantly higher than that on the larvae, whereas the attack rate of the second instar C. carnea on H. armigera larvae was significantly higher than that on the eggs. For the third instar larvae of C. carnea, the attack rate on the larvae was 1.015 ± 0.278/h, and the attack coefficient on the eggs was 0.036 ± 0.005. The handling times of the third instar larvae on larvae and eggs were 0.087 ± 0.009 and 0.071 ± 0.001 h, respectively. The highest predation rate was found for the third instar larvae of C. carnea on H. armigera eggs. Results of this study revealed that the larvae of C. carnea, especially the third instar, had a good predation potential in controlling H. armigera eggs and larvae. However, for a comprehensive estimation of the bio‐control abilities of C. carnea toward H. armigera, further field‐based studies are needed.  相似文献   

9.
Mate recognition inCryptomyzus aphids: copulation and insemination   总被引:1,自引:0,他引:1  
The acceptability of three widely distributed Australian Menispermaceae,Tinospora smilacina Benth.,Sarcopetalum harveyanum F. Muell. andStephania japonica (Thunb.) Miers, as food for larvae of the fruitpiercing moth,Othreis fullonia (Clerck), was examined in three laboratory experiments. When larvae were presented with plant species individually total development times were shortest onT. smilacina and longest onS. japonica, despite relatively similar consumption rates within most instars.T. smilacina elicited greater (P<0.05) relative growth rates thanS. japonica in all instars except the 6th. In the second experiment, when larvae were allowed to select from each of the 3 plants, noS. japonica was chosen by 1 st instars and it represented only 3.7% of food consumed by 2nd instars. Significantly moreT. smilacina was eaten in each instar thanS. japonica, and more thanS. harveyanum except in the 2nd and 4th instars. The final experiment examined the abilities of larvae to switch hosts when forced after the 1st and 3rd instars. After the first or second food change largest average headcapsule widths were associated with feeding onT. smilacina as the most recent food. Feeding by final instars onT. smilacina also resulted in the shortest development time and highest puparial weights. While some larvae survived irrespective of plant sequence 83.3% of the recorded mortality occurred while larvae were exposed toS. japonica, principally during the 1st instar. These experiments lend support to field observations which suggest thatT. smilacina is a major host ofO. fullonia whileS. japonica is notS. harveyanum is probably an important alternate host whenT. smilacina is scarce.  相似文献   

10.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

11.
The predacious behaviour of Dytiscus circumcinctus and D. latissimus larvae was studied experimentally. When offered different prey simultaneously, D. latissimus larvae preferred cased caddis larvae relative to mayfly nymphs and isopods, whereas in D. circumcinctus the preference order was reversed. Notonectid nymphs and tadpoles were consumed in higher numbers by D. circumcinctus than by D. latissimus larvae. D. circumcinctus larvae and instar III larvae of D. latissimus most frequently captured caddis larvae through the case wall, whereas the instar I and II larvae of D. latissimus normally attacked the thorax of the exposed larva from above the front opening of the case. Limnephilus borealis, L. nigriceps and L. rhombicus caddis larvae differed in case structure, and they were all successfully captured by D. latissimus and D. circumcinctus instar II and III larvae. Neither capture success nor ingestion efficiency varied significantly between the two Dytiscus species or between different prey species. Instar II and III D. circumcinctus larvae had shorter reaction times than those of D. latissimus. The larger L. borealis and L. rhombicus larvae were preferred by the two last Dytiscus larval instars, and the handling time of these two prey was longer than that of L. nigriceps larvae.  相似文献   

12.
Nabis roseipennis Reuter nymphs demonstrated a preference for nuclear polyhedrosis virus (NPV) — infected over healthyAnticarsia gemmatalis Hübner larvae when offered a choice of larval prey in Petri dishes and on soybean. In Petri dishes, small (second-third instar) and large (fifth-sixth instar) nymphs attacked a significantly greater number of diseased than healthy larvae at all larval instars tested (first-fifth instars) and exposure periods (2, 5 and 24 h), except that at 2 h the number of 1st and 3rd instar larvae attacked by large nymphs did not differ significantly (P≤0.05). Nabis roseipennis caged with larvae on individual soybean plants in the greenhouse resulted in a generally low percentage of attack by small and large nymphs after 2 days, ranging from 5.6 to 36.7%. As in the Petri dishes, the nabids showed a significant preference for diseased larvae over healthy larvae attacked for all nabid and larval sizes on soybean, with the percentage of diseased larvae attacked ranging from 28.0 to 65.4% (P≤0.05). This preference for diseased larvae on soybean as well as in Petri dishes demonstrates that the preference was not due to the close proximity in which the host and prey were found in the Petri dishes. The preference for diseased larvae may be due to a reduction in a defensive response in late stages of disease. This material is based upon work supported in part by USDA Grant No. 83-CRCR-1-1212.  相似文献   

13.
1. Ontogenetic shifts in prey choice and predator behaviour can affect food‐web structure. Therefore, it is important to establish if the diet and feeding activity differ between life‐stages of the same species. This hypothesis was tested for second, third, fourth and fifth larval instars of Rhyacophila dorsalis by comparing their diel activity and feeding patterns. Second to fifth instars collected from two streams were used either for gut analyses or for observations of their activity and feeding patterns in three stream tanks. Food was provided in excess; being organisms living in bryophytes on top of a large stone in each tank, augmented by different‐sized larvae of Ephemeroptera, Simuliidae and Chironomidae. As few first instars for gut analyses were found in the field, the diet of first instars reared in the laboratory was also studied. 2. Larvae for gut analyses were taken 1 h before dusk or dawn (n = 50 larvae per instar for each day or night sample). First and second instars fed on the smaller food items with no significant day‐night differences in diet. Gut contents indicated a progressive trend from feeding chiefly at night in third instars to almost exclusively at night in fifth instars. Fourth and fifth instars fed on the larger food items, whilst the diet of the third instar larvae overlapped with that of both the earlier and later instars. 3. Diel activity patterns of single larvae differed between instars but not within each instar (n = 20 larvae per instar). Second instars were active throughout the 24 h, with peaks at dusk, around midnight, dawn and around midday. A similar pattern was shown by third instars but the peak of activity at midday was less than the other three peaks. Prey were captured only during these peaks for both instars. Fourth and fifth instars were most active, and fed only, at night. They used an ambush strategy to capture more active prey at dusk and dawn (e.g. Baetis, Gammarus), and a searching strategy to capture more sedentary prey during the night (e.g. chironomids, simuliids). These experiments provided support for the hypothesis under test. If competition and/or interference occur between instars, then it could be reduced between earlier and later instars because of differences in their diet and diel pattern of feeding activity.  相似文献   

14.
Summary The searching and handling behaviors ofHarmonia axyridis larvae to the colony ofRhopalosiphum padi were experimentally examined and the processes of their aggregation to the prey colony was analyzed. All the instar larvae searched for the prey at random and they have no preference to the prey colony, but except the 1st instar they tend to aggregate to the plants with prey colonies. The 1st instar larvae tend to stay on the plants they once located. The 2nd to 4th instar larvae often emigrate from the plants without prey colony but seldom emigrate from the plants with prey colonies, and consequently, they aggregate to the plants with prey colonies. The expense of time to eat prey (in the 2nd and 3rd instars) and the change of searching behavior for the prey after feeding (in the 3rd and 4th instars) are responsible for the larval concentration to prey colony as a trapping effect for predators to prey colony.  相似文献   

15.
Intraguild predation (IGP) betweenthe pentatomid Podisus maculiventris(Say) and the coccinellid Harmoniaaxyridis (Pallas) in the absence or presenceof the extraguild prey Spodopteralittoralis (Boisduval) and Myzuspersicae (Sulzer) was studied in thelaboratory. Interactions were asymmetric infavor of the pentatomid. Podisusmaculiventris readily fed upon eggs and larvaeof H. axyridis, but adult beetles wererarely attacked. Success of attacks by P.maculiventris was stage dependent, fourthinstars and adults being more successful inkilling ladybeetle larvae than second instars.Attacks by H. axyridis on the pentatomidwere rare and none of them were successful. Theeffect of introducing extraguild prey on thelevel of IGP was tested both in petri dishesand on caged sweet pepper plants. Whensufficient numbers of S. littoralislarvae were present to satiate the pentatomid,predation on H. axyridis larvae decreasedsignificantly, indicating that the coccinellidis a less preferred or less vulnerable prey.When the aphid M. persicae was presentedas extraguild prey, levels of IGP were notaltered. Nymphs of P. maculiventrissuccessfully completed development whenexclusively fed on larvae of H. axyridis,but developmental time was longer than onlepidopteran prey. No pentatomid nymphs reachedadulthood on aphids alone. IGP by P.maculiventris on H. axyridis may be ofsome importance in greenhouse crops, where bothpredators are being used increasingly inaugmentative biological control programs.Nonetheless, it is expected that in practicelarger larvae and adults of H. axyridiswill escape most attacks by the pentatomid.  相似文献   

16.
Predation upon lady beetle (Coleoptera: Coccinellidae) eggs in the field is most often instances of egg cannibalism by larvae or adults while the majority of the remaining predation events upon coccinellid eggs is done by other species of Coccinellidae. Thus the recent introduction and establishment of Harmonia axyridis in the US could negatively affect native species of Coccinellidae via egg predation. However, little is known regarding the suitability of interspecific coccinellid eggs as a food source for larval development. In this study, it was found that native first or third instar Coleomegilla maculata and Olla v-nigrum larvae were incapable of surviving to the adult stage when provided solely exotic H. axyridis eggs. In stark contrast, H. axyridis larvae survived equally well when cannibalizing eggs or eating eggs of either native species. When C. maculata and O. v-nigrum were grouped as ‘native’ and compared with the exotic H. axyridis, more native eggs were attacked than exotic eggs and a higher percentage of eggs was attacked by H. axyridis larvae. Native and exotic larvae attacked a similar percentage of native eggs but native larvae attacked significantly fewer exotic eggs than did exotic larvae. These data suggest that H. axyridis may prey upon the eggs of these native species, when encountered in the field, compared with the likelihood of the native species preying upon H. axyridis eggs. Therefore, eggs of the native species C. maculata and O. v-nigrum will continue to be subjected to cannibalism and also to possible predation by other native species and the exotic H. axyridis.  相似文献   

17.
Avocado scab was recorded as present in New Zealand in international databases on the basis of one isolate (ICMP 10613) identified by morphological features as Sphaceloma perseae. However, sequence analysis of the rDNA internal transcribed spacer (ITS) region showed that this isolate was dissimilar to the ITS region of other Sphaceloma species, and to S. perseae. By phylogenetic analysis, isolate ICMP 10613 was identified as a species of Phaeosphaeria. To identify S. perseae reliably and quickly, specific polymerase chain reaction (PCR) primers were developed and tested. These PCR primers detected the authentic strain and another strain available from international collections, but did not detect isolate ATCC 11190, or the New Zealand isolate ICMP 10613 which were deposited as S. perseae. No other fungi commonly present in New Zealand avocado orchards were amplified by these primers, nor were three other species of Elsinoë (E. ampelina, E. fawcettii and E. pyri). By phylogenetic analysis of ITS sequence, the atypical isolate ATCC 11190 was identified as Elsinoë araliae, whereas isolate ICMP 10613 was identified as Phaeoseptoria sp. (anamorphic Phaeosphaeria). Re‐examination of the scar symptoms on New Zealand avocado fruit showed they were dissimilar to herbarium specimens of S. perseae from Florida and from Cuba. Leaf symptoms typical of this disease have not been found in New Zealand, and isolations from over 1000 scars on fruit onto selective media yielded no fungi identifiable as S. perseae. These results show that ICMP 10613 was mis‐identified as S. perseae. The record of avocado scab in New Zealand was shown to be incorrect, and there is no evidence that the causal fungus occurs in New Zealand.  相似文献   

18.
The parasitoidEucelatoria bryani Sabrosky regulates the larval behavior of its hostHelicoverpa zea (Boddie). Parasitized third, fourth and fifth instars burrow into the soil 0.7–3.4 days earlier than unparasitized larvae that normally enter the soil to pupate at the end of the fifth and final larval instar. Parasitized third instars molt once then burrow as fourth instars, one instar earlier than normal. WhenE. bryani pupariated on the soil surface in the field, none survived to the adult stage. However,E. bryani adults emerged from 49.2% of hosts that had burrowed into the soil. By accelerating the timing ofH. zea burrowing behavior and causing host larvae to enter the soil before death,E. bryani ensures its pupariation in an environment with improved protection against natural enemies and lethal temperatures.  相似文献   

19.
Aphidophagous coccinellid larvae have a wide range of potential prey in alfalfa and during times of low aphid abundance, larvae may supplement their diet with alternative prey. To understand the effects of the seasonal aphid availability on alternative prey use, an order-specific monoclonal antibody, DrosW-VI-B8, was used to examine the frequency of dipteran predation by these important natural enemies. Over 400 larvae were hand-collected from alfalfa and, in parallel, arthropod abundance was recorded. Harmonia axyridis and Coccinella septempunctata larvae were abundant early in the season when aphid populations were at their peak and Coleomegilla maculata larvae were collected later in the season when potato leafhoppers were abundant in the alfalfa. A relatively low proportion of field-collected H. axyridis, C. septempunctata, and C. maculata tested positive for dipteran proteins throughout the season. Similar to prior studies examining stage differences in coccinellid food breadth, older instars tested positive for dipteran proteins (3rd instar, 6% positive; 4th instar, 7% positive) but no early instars screened positive. This study provides a valuable insight into the trophic linkages that exist between coccinellid larvae and Diptera.  相似文献   

20.
Summary Larvae pass through five instars in the temperate, subterranean ponerine ant, Amblyopone silvestrii. Field colonies displayed a large decrease in the number of eggs during mid-summer, despite the fact that queens maintained fully developed ovaries with mature eggs. Observations of laboratory colonies indicate that cannibalism by 1st and 2nd instar larvae caused this decrease in egg number. These instars consumed a total of 66–75% of eggs in the nest, with each larva consuming 2–3 eggs before molting to the 3rd instar. At that time the larvae began to feed on arthropods. The preferred prey of A. silvestrii consists of entire centipedes; the large size of these prey items relative to the size of early instar larvae makes it difficult for the larvae to feed on these prey. Additionally, workers of A. silvestrii do not engage in oral trophallaxis. Consequently, oophagy is a plausible method to feed these very small larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号