首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
张书祥  赵志虎 《生物学杂志》2003,20(2):17-18,22
以小鼠转录因子Zif268的三锌指DNA结合区为模板,利用重叠(Overlap)PCR技术,获得Zif268关键氨基酸位点同时突变的三锌指突变体ZF123、2ZF123。以ZFl23、2ZF123为模板,PCR扩增获得TAT—ZF123,TAT—2ZF123序列。构建表达质拉PET—28—a^ —TAT—ZF123,pET—28—a^ —TAT—2ZF123。为利用HIVTAT蛋白的跨膜功能,实现ZF123、2ZF123在哺乳动物细胞中的表达打下基础。  相似文献   

2.
锌指蛋白是最大的蛋白家族,是识别核酸最常见的、最有效的结构元件。通过选择合适的表达载体及诱导表达条件,实现了小鼠转录因子Zif268的锌指DNA结合区在大肠杆菌中的部分可溶性表达。凝胶迁移率移动试验证实纯化的可溶部分锌指DNA结合区可以特异性识别、结合其天然靶序列,提示锌指DNA结合区在大肠杆菌中得到了功能性表达。锌指DNA结合区在大肠杆菌中的功能性表达成功为锌指蛋白DNA相互作用的胞内遗传筛选模型的建立奠定了基础。  相似文献   

3.
PTD-BDNF融合基因克隆、表达和纯化   总被引:1,自引:0,他引:1  
构建含蛋白转导结构域(PTD)与脑源性神经营养因子(BDNF)融合基因的质粒,并在大肠肝菌中表达。用PCR扩增PTD-BDNF融合基因,经DNA测序无误后插入表达质粒pJW2构建质粒pJPB,转化大肠杆菌并进行PTD-BDNF蛋白的诱导表达和纯化。结果DNA序列分析表明构建含有PTD-BDTF融合基因的质粒与设计相同,PTD-BDNF融合蛋白在大肠杆菌中获得表达并进一步纯化。  相似文献   

4.
PLZF(promyelocytic leukaemia zinc finger protein)是一种重要的转录抑制因子,它由位于N端的BTB结构域和C端的锌指结构域构成。鉴于目前对于锌指结构域的立体结构还不是十分清楚,对其进行了高效表达和提纯。为了表达PLZF蛋白的锌指结构域,在其编码序列的5'端加上起始密码ATG后插入到表达载体PET-11a的多克隆位点。构建好的表达质粒转化到BL21 (DE3)大肠杆菌内并用IPTG诱导表达,发现重组蛋白主要以不溶性的包涵体形式在胞内表达。用含有SDS变性剂的缓冲液溶解包涵体后,采用凝胶过滤方法将重组蛋白纯化到纯度达96%以上。对纯化后的蛋白质用反透析的方法进行复性,然后用DNA结合实验进行活性分析,发现复性后的蛋白质具有特异的DNA结合活性,这为进一步研究PLZF蛋白锌指结构域的立体结构打下了重要基础。  相似文献   

5.
胡杨锌指蛋白基因克隆及其结构分析   总被引:15,自引:0,他引:15  
王俊英  尹伟伦  夏新莉 《遗传》2005,27(2):245-248
锌指蛋白属于核转录因子家族,在原核生物与真核生物基因转录调控中发挥作用。分析了耐盐锌指蛋白Alfin-1基因在苜蓿与拟南芥中的保守性后,设计了一对引物。以胡杨水培叶片为材料,从总RNA中通过RT-PCR分离得到一个锌指蛋白基因,其cDNA长924bp。分析其氨基酸序列表明,存在一个典型的Cys2/His2锌指结构,从第556位开始有一个富含G的启动子结合位点GTGGGG。由于具有相同功能的转录因子在结构和DNA结合区的氨基酸序列上具有保守性,因此,从结构分析上可以推测该基因与Alfin-1在功能上是有一定的相关性。  相似文献   

6.
kriipple型锌指蛋白是一类具有重要功能的转录调节因子。初步克隆了一个新的人类kriipple型锌指蛋白基因,经国际基因命名委员会批准命名为ZNF359。此基因长3271个碱基,含6个外显子,在基因组DNA上长18kb。它编码的蛋白质全长643个氨基酸,含一个KRAB框,16个C2H2型的锌指,在两者之间还有一个典型的中间重复序列。Northern Bolt分析表明该基因在人类早期胚胎的各个组织中普遍表达,且在肾、心脏和肺的表达水平最强。其结构和表达特征预示着它编码的是一个具DNA结合功能的转录调控因子。  相似文献   

7.
锌指蛋白结构及功能研究进展   总被引:7,自引:0,他引:7  
锌指蛋白是一类具有手指状结构域的转录因子,对基因调控起重要的作用。根据其保守结构域的不同,可将锌指蛋白主要分为C2H2型、C4型和C6型。锌指通过与靶分子DNA、RNA、DNA-RNA的序列特异性结合,以及与自身或其他锌指蛋白的结合,在转录和翻译水平上调控基因的表达。我们简要综述了近年来锌指蛋白结构、分类及其与核酸及蛋白质相互作用等方面的研究进展。  相似文献   

8.
利用Bac-to-Bac杆状病毒表达系统表达DEK蛋白并进行纯化。首先以pFastBacI质粒构建重组质粒pFastBacI-DEK,转化DH10Bac大肠杆菌后获得重组穿梭载体Bacmid-DEK,通过脂质体介导转染Sf9细胞产生具有强感染力的重组杆状病毒AcNPV-DEK。用此重组杆状病毒AcNPV-DEK感染Sf9细胞表达His-DEK融合蛋白。在非变性条件下,利用Ni-NTA agarose对表达的His-DEK融合蛋白进行纯化,经SDS-PAGE和Western blotting分析,在50 kDa处出现特异性蛋白条带并证实其为His-DEK融合蛋白。凝胶迁移阻滞实验表明,融合蛋白His-DEK与DNA 的结合具有结构特异性,其与超螺旋型DNA结合活性强于与线性化DNA的结合活性。真核表达并纯化的融合蛋白His-DEK与DNA的结合活性要明显强于原核表达的融合蛋白His-CDB。DEK 蛋白的磷酸化修饰会阻碍其与DNA的结合,而Sf9细胞中表达的融合蛋白His-DEK存在磷酸化修饰,将His-DEK去磷酸化后,其与DNA的结合活性有所提高。  相似文献   

9.
采用PCR扩增法得到小鼠TAp63γ野生型及两种缺失突变体的cDNA,3种cDNA与表达载体pGEX-2TK重组构建成GST融合表达质粒并转化感受态E.coli BL21 (DE3),经IPTG诱导了小鼠TAp63γ野生型及两种缺失突变体的可溶性表达. 诱导表达的菌液经离心收集菌体、超声破碎及Triton X-100增溶后获得可溶性表达蛋白粗提液. 利用Glutathione Sepharose 4 Fast Flow亲合层析纯化出电泳均一的3种GST融合蛋白. 凝胶滞留分析证实仅野生型小鼠TAp63γ蛋白能特异结合p53靶序列,经序列比对及同源建模分析,表明小鼠TAp63γ DBD结合区的完整性、关键氨基酸的保守性及三维结构的相似性可能是其DNA结合活性所必需的.  相似文献   

10.
真核生物中锌指蛋白的结构与功能   总被引:3,自引:0,他引:3  
真核生物中的许多蛋白质分子包含锌指结构区,这类蛋白称为锌指蛋白.锌指蛋白因其包含特殊的指状结构,在对DNA、蛋白质和RNA的识别和结合中起重要作用.许多锌指蛋白的锌指结构域包含能与DNA特异结合的区域,并与某些效应结构域(如KRAB、SCAN、BTB/POZ、SNAG、SANT和PLAG等)相连,这类锌指蛋白常作为转录因子起作用,可调控靶基因的转录.一些锌指蛋白包含蛋白质识别结构域(如LIM锌指、MYND锌指、PHD锌指和RING锌指等),它们能够特异地介导蛋白质之间的相互作用,因此被称作蛋白适配器.此外,某些锌指蛋白还可以结合RNA,起转录后调控作用.本文就锌指蛋白与DNA、RNA以及蛋白质分子间的相互作用作一综述.  相似文献   

11.
The Zif268 zinc finger-DNA complex has served as a model system for understanding how Cys2His2 type zinc fingers recognize DNA. Structural studies of the Zif268-DNA complex revealed that residues at four positions in the alpha helix of each zinc finger play key roles in recognition, but there has been no information about the precise contributions of individual residues. Here we report the results of binding studies involving five mutants of Zif268 that have changes in the base-contacting residues of finger one. These studies let us evaluate the contributions that Arg18 (position -1 of the alpha helix), Asp20 (position 2), Glu21 (position 3), and Arg24 (position 6) make to the overall energy of DNA binding. Our results confirm the important role played by these arginines. By comparing the affinities of the wild type and mutant peptides for various sites, we also prove that Asp20 and Glu21 play important roles in determining binding site specificity.  相似文献   

12.
We have recently described an engineered zinc finger protein (Gq1) that binds with high specificity to the intramolecular G-quadruplex formed by the human telomeric sequence 5'-(GGTTAG)(5)-3', and that inhibits the activity of the enzyme telomerase in vitro. Here we report site-directed mutagenesis, biophysical, and molecular modeling studies that provide new insights into quadruplex recognition by the zinc finger scaffold. We show that any one finger of Gq1 can be replaced with the corresponding finger of Zif268, without significant loss of quadruplex affinity or quadruplex versus duplex discrimination. Replacement of two fingers, with one being finger 2, of Gq1 by Zif268 results in significant impairment of quadruplex recognition and loss of discrimination. Molecular modeling suggests that the zinc fingers of Gq1 can bind to the human parallel-stranded quadruplex structure in a stable arrangement, whereas Zif268-quadruplex models show significantly weaker binding energy. Modeling also suggests that an important role of the key protein finger residues in the Gq1-quadruplex complex is to maintain Gq1 in an optimum conformation for quadruplex recognition.  相似文献   

13.
14.
We demonstrated that amyloid-forming peptides could be selected from phage-displayed library via proteolysis-based selection protocol. The library of 28-residue peptides based on a sequence of the second zinc finger domain of Zif268, and computationally designed betabetaalpha peptide, FSD-1, was presented monovalently on the surface of M13 phage. The library coupled the infectivity of phage particles to proteolytic stability of a peptide introduced into the coat protein III linker. It was designed to include variants with a strong potential to fold into betabetaalpha motif of zinc finger domains, as expected from secondary structure propensities, but with no structure stabilization via zinc ion coordination. As our primary goal was to find novel monomeric betabetaalpha peptides, the library was selected for stable domains with the assumption that folded proteins are resistant to proteolysis. After less than four rounds of proteolytic selection with trypsin, chymotrypsin, or proteinase K, we obtained a number of proteolysis-resistant phage clones containing several potential sites for proteolytic attack with the proteinases. Eight peptides showing the highest proteolysis resistance were expressed and purified in a phage-free form. When characterized, the peptides possessed proteolytic resistance largely exceeding that of the second zinc finger domain of Zif268 and FSD-1. Six of the characterized peptides formed fibrils when solubilized at high concentrations. Three of them assembled into amyloids as determined through CD measurements, Congo red and thioflavin T binding, and transmission electron microscopy.  相似文献   

15.
Cys(2)-His(2)-type zinc finger proteins have a tandemly repeated array structure consisting of independent finger modules. They are expected to elevate the DNA binding affinity and specificity by increasing the number of finger modules. To investigate the relation between the number and the DNA binding affinity of the zinc finger, we have designed the two- to four-finger peptides by connecting the central zinc finger (finger 2) of Sp1 with the canonical linker sequence, Thr-Gly-Glu-Lys-Pro. Gel mobility shift assays reveal that the cognate three- and four-finger peptides, Sp1(zf222) and Sp1(zf2222), strongly bind to the predicted target sequences, but the two-finger peptide, Sp1(zf22), does not. Of special interest is the fact that the dissociation constant for Sp1(zf2222) binding to the target DNA is comparable to that for Sp1(zf222). The methylation interference, DNase I and hydroxyl radical footprintings, and circular permutation analyses demonstrate that Sp1(zf2222) binds to its target site with three successive zinc fingers and the binding of the fourth zinc finger is inhibited by DNA bending induced by the binding of the three-finger domain. The present results strongly indicate that the zinc finger protein binds to DNA by the three-finger domain as one binding unit. In addition, this information provides the basis for the design of a novel multifinger protein with high affinity and specificity for long DNA sequences, such as chromosomal DNAs.  相似文献   

16.
The Cys(2)His(2)-type zinc finger is a common DNA binding motif that is widely used in the design of artificial zinc finger proteins. In almost all Cys(2)His(2)-type zinc fingers, position 4 of the α-helical DNA-recognition site is occupied by a Leu residue involved in formation of the minimal hydrophobic core. However, the third zinc finger domain of native Zif268 contains an Arg residue instead of the conserved Leu. Our aim in the present study was to clarify the role of this Arg in the formation of a stable domain structure and in DNA binding by substituting it with a Lys, Leu, or Hgn, which have different terminal side-chain structures. Assessed were the metal binding properties, peptide conformations, and DNA-binding abilities of the mutants. All three mutant finger 3 peptides exhibited conformations and thermal stabilities similar to the wild-type peptide. In DNA-binding assays, the Lys mutant bound to target DNA, though its affinity was lower than that of the wild-type peptide. On the other hand, the Leu and Hgn mutants had no ability to bind DNA, despite the similarity in their secondary structures to the wild-type. Our results demonstrate that, as with the Leu residue, the aliphatic carbon side chain of this Arg residue plays a key role in the formation of a stable zinc finger domain, and its terminal guanidinium group appears to be essential for DNA binding mediated through both electrostatic interaction and hydrogen bonding with DNA phosphate backbone.  相似文献   

17.
Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein–protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.  相似文献   

18.
BACKGROUND: Several methods have been developed for creating Cys2His2 zinc finger proteins that recognize novel DNA sequences, and these proteins may have important applications in biological research and gene therapy. In spite of this progress with design/selection methodology, fundamental questions remain about the principles that govern DNA recognition. One hypothesis suggests that recognition can be described by a simple set of rules--essentially a "recognition code"--but careful assessment of this proposal has been difficult because there have been few structural studies of selected zinc finger proteins. RESULTS: We report the high-resolution cocrystal structures of two zinc finger proteins that had been selected (as variants of Zif268) to recognize a eukaryotic TATA box sequence. The overall docking arrangement of the fingers within the major groove of the DNA is similar to that observed in the Zif268 complex. Nevertheless, comparison of Zif268 and the selected variants reveal significant differences in the pattern of side chain-base interactions. The new structures also reveal side chain-side chain interactions (both within and between fingers) that are important in stabilizing the protein-DNA interface and appear to play substantial roles in recognition. CONCLUSIONS: These new structures highlight the surprising complexity of zinc finger-DNA interactions. The diversity of interactions observed at the protein-DNA interface, which is especially striking for proteins that were all derived from Zif268, challenges fundamental concepts about zinc finger-DNA recognition and underscores the difficulty in developing any meaningful recognition code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号