首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
Agrobacterium-mediated transformation of rice was done using the binary vector pNSP3, harbouring the rice chitinase (chi11) gene under maize ubiquitin promoter and the tobacco β-1,3-glucanase gene under CaMV 35S promoter in the same T-DNA. Four of the six T0 plants had single copies of complete T-DNAs, while the other two had complex integration patterns. Three of the four single-copy lines showed a 3:1 segregation ratio in the T1 generation. Northern and western blot analyses of T1 plants revealed constitutive expression of chitinase and β-1,3-glucanase genes. Homozygous T2 plants of the single-copy lines CG20, CG27 and CG53 showed 62-, 9.6- and 11-fold higher chitinase activity over the control plants. β-1,3-Glucanase activity was 1.1- to 2.5-fold higher in the transgenic plants. Bioassay of homozygous T2 plants of the three single-copy transgenic lines against Rhizoctonia solani revealed a 60% reduction in sheath blight Disease Index in the first week. The Disease Index increased from 61.8 in the first week to 90.6 in the third week in control plants, while it remained low (26.8–34.2) in the transgenic T3 plants in the corresponding period, reflecting the persistence of sheath blight resistance for a longer period.  相似文献   

2.
Transgenic broccoli plants expressing a Trichoderma harzianum endochitinase gene were obtained by Agrobacterium tumefaciens-mediated transformation. PCR and Southern blot analysis confirmed the presence of the gene in plants initially selected via resistance to kanamycin. Primary transformants (T0) and selfed progeny (T1) were examined for expression of the endochitinase gene using a fluorometric assay and for their resistance to the fungal pathogens Alternaria brassicicola and Sclerotinia sclerotiorum. All transgenic plants with elevated endochitinase activity had the expected 42 kDa endochitinase band in western blot analysis, whereas no such band was detected in the non-transgenic control. Leaves of most mature T0 plants had 14–37 times higher endochitinase activity than controls; mature T1 plants had higher endochitinase activity (100–200 times that in controls), in part because of lower control values. T0 plantlets in vitro or young plants in soil had higher absolute and relative endochitinase activity. When detached leaves of T0 plants were inoculated with A. brassicicola, lesion size showed a significant negative correlation with endochitinase levels. After inoculation of two-month old T0 plants with A. brassicicola, all 15 transgenic lines tested showed significantly less severe disease symptoms than controls. In contrast, lesion size on petioles of T0 and T1 plants inoculated with S. sclerotiorum was not statistically different from controls.  相似文献   

3.
4.
Inheritance of gusA and neo genes in transgenic rice   总被引:21,自引:0,他引:21  
Inheritance of foreign genes neo and gusA in rice (Oryza sativa L. cv. IR54 and Radon) has been investigated in three different primary (T0) transformants and their progeny plants. T0 plants were obtained by co-transforming protoplasts from two different rice suspension cultures with the neomycin phosphotransferase II gene [neo or aph (3) II] and the -glucuronidase gene (uidA or gusA) residing on separate chimeric plasmid constructs. The suspension cultures were derived from callus of immature embryos of indica variety IR54 and japonica variety Radon. One transgenic line of Radon (AR2) contained neo driven by the CaMV 35S promoter and gusA driven by the rice actin promoter. A second Radon line (R3) contained neo driven by the CaMV 35S promoter and gusA driven by a promoter of the rice tungro bacilliform virus. The third transgenic line, IR54-1, contained neo driven by the CaMV 35S promoter and gusA driven by the CaMV 35S.Inheritance of the transgenes in progeny of the transgenic rice was investigated by Southern blot analysis and enzyme assays. Southern blot analysis of genomic DNA showed that, regardless of copy numbers of the transgenes in the plant genome and the fact that the two transgenes resided on two different plasmids before transformation, the introduced gusA and neo genes were stably transmitted from one generation to another and co-inherited together in transgenic rice progeny plants derived from self-pollination. Analysis of GUS and NPT II activities in T1 to T2 plants provided evidence that inheritance of the gusA and neo genes was in a Mendelian fashion in one plant line (AR2), and in an irregular fashion in the two other plant lines (R3 and IR54-1). Homozygous progeny plants expressing the gusA and neo genes were obtained in the T2 generation of AR2, but the homozygous state was not found in the other two lines of transgenic rice.  相似文献   

5.
Summary Embryogenic soybean [Glycine max (L.) Merrill] cultures were transformed with a Manduca sexta chitinase (msc) gene using microprojectile bombardment. A 1.7 kb DNA fragment encoding a tobacco hornworm chitinase was cloned into the rice transformation vector pGL2, under the control of the maize ubiquitin promoter and linked to the hpt gene as a selectable marker. After bombardment, hygromycin-resistant tissues were isolated and cultured to give rise to clones of transgenic material. Four hygromycin-resistant clones were converted into plants. Two clones were positive for the msc gene via polymerase chain reaction (PCR) and Southern blot analysis. The integration inheritance, and expression of transgenes were confirmed by molecular analysis of transgenic soybean plants. Progeny analysis showed that the introduced genes were inherited and segregated in a 3:1 Mendelian fashion. DNA blot experiments and progeny inheritance analysis indicated that the plants contained several copies of the msc gene and that the insertion occurred at a single locus. Northern blotting analysis confirmed the expression of the transgenes. Western blot analysis of transgenic plants and their progeny revealed the presence of a protein with a molecular weight of 48kDa that reacted with the Manduca sexta antibody. Progeny from the chitinase-positive plants were tested for their resistance to the soybean cyst nematode. Plants expressing the insect chitinase did not manifest enhanced resistance to the soybean cyst nematode.  相似文献   

6.
Bai X  Wang Q  Chu C 《Transgenic research》2008,17(6):1035-1043
Based on the Cre/loxP system, we have developed a novel marker-free system mediating a direct auto-excision of loxP-flanked marker genes from T1 transgenic rice without any treatment or further offspring crossing. To achieve this, the floral-specific promoter OsMADS45 was isolated from rice and the expression patterns of OsMADS45 promoter was characterised by using the pOs45:GUS transgenic plants. Furthermore, the binary vector with Cre recombinase under the control of OsMADS45 promoter was constructed and introduced into rice by Agrobacterium-mediated transformation and transgenic rice plants were generated. Southern blot analysis showed that auto-excision of the selective markers occurred in some T1 progeny of the transgenic plants, suggesting that a high auto-excision frequency can be achieved with our Cre/loxP system. This auto-excision strategy provides an efficient way of removing the selectable marker gene from transgenic rice. Xianquan Bai and Qiuyun Wang contributed equally to the work.  相似文献   

7.
Finger millet plants conferring resistance to leaf blast disease have been developed by inserting a rice chitinase (chi11) gene through Agrobacterium-mediated transformation. Plasmid pHyg-Chi.11 harbouring the rice chitinase gene under the control of maize ubiquitin promoter was introduced into finger millet using Agrobacterium strain LBA4404 (pSB1). Transformed plants were selected and regenerated on hygromycin-supplemented medium. Transient expression of transgene was confirmed by GUS histochemical staining. The incorporation of rice chitinase gene in R0 and R1 progenies was confirmed by PCR and Southern blot analyses. Expression of chitinase gene in finger millet was confirmed by Western blot analysis with a barley chitinase antibody. A leaf blast assay was also performed by challenging the transgenic plants with spores of Pyricularia grisea. The frequency of transient expression was 16.3% to 19.3%. Stable frequency was 3.5% to 3.9%. Southern blot analysis confirmed the integration of 3.1 kb chitinase gene. Western blot analysis detected the presence of 35 kDa chitinase enzyme. Chitinase activity ranged from 19.4 to 24.8. In segregation analysis, the transgenic R1 lines produced three resistant and one sensitive for hygromycin, confirming the normal Mendelian pattern of transgene segregation. Transgenic plants showed high level of resistance to leaf blast disease compared to control plants. This is the first study reporting the introduction of rice chitinase gene into finger millet for leaf blast resistance.  相似文献   

8.
Wang J  Chen Z  Du J  Sun Y  Liang A 《Plant cell reports》2005,24(9):549-555
Transgenic plants with introduced pest-resistant gene offer an efficient alternative insect control. The novel insect-resistant gene combination, chitinase(chi) and BmkIT(Bmk), containing an insect-specific chitinase gene and a scorpion insect toxin gene was introduced into Brassica napus cultivar via Agrobacterium-mediated transformation. Fifty-seven regenerated plantlets with kanamycin-resistance were obtained. Transgenic plants were verified by Southern blot analysis. Enzyme-linked immunosorbent assay (ELISA) and bioassay of artificial inoculation with diamondback moth (Plutella maculipenis) (DBM) larvae indicated that some of the transgenic plants were high-level expression for both chitinase and scorpion toxin proteins and performed high resistance against the tested pest infestation. The genetic analysis of T1 progeny confirmed that the inheritance of introduced genes followed the Mendelian rules.  相似文献   

9.
Various chitinases have been shown to inhibit the growth of fungal pathogens in in vitro as well as in planta conditions. chi194, a wheat chitinases gene encoding a 33-kDa chitinase protein, was overexpressed in tomato plants (cv. Pusa Ruby) under the control of maize ubiquitin 1 promoter. The integration of transgene in tomato plants was confirmed with polymerase chain reaction (PCR) and Southern blot analysis. The inheritance of the transgene in T1 and T2 generations were shown by molecular analysis and the hygromycin sensitivity test. The broad range of chitinase activity was observed among the transgenic lines in T0 and a similar range was retained in the T1 and T2 generations. Most importantly, the transgenic tomato lines with high chitinase activity were found to be highly resistant to the fungal pathogen Fusarium oxysporum f. sp. lycopersici. Thus, the results demonstrated that the expression of the wheat endochitinase chi194 in tomato plants confers resistance against Fusarium wilt disease caused by the fungal pathogen Fusarium oxysporum f. sp. lycopersici.  相似文献   

10.
Theobroma cacao L. plants over-expressing a cacao class I chitinase gene (TcChi1) under the control of a modified CaMV-35S promoter were obtained by Agrobacterium-mediated transformation of somatic embryo cotyledons. Southern blot analysis confirmed insertion of the transgene in eight independent lines. High levels of TcChi1 transgene expression in the transgenic lines were confirmed by northern blot analysis. Chitinase activity levels were measured using an in vitro fluorometric assay. The transgene was expressed at varying levels in the different transgenic lines with up to a sixfold increase of endochitinase activity compared to non-transgenic and transgenic control plants. The in vivo antifungal activity of the transgene against the foliar pathogen Colletotrichum gloeosporioides was evaluated using a cacao leaf disk bioassay. The assay demonstrated that the TcChi1 transgenic cacao leaves significantly inhibited the growth of the fungus and the development of leaf necrosis compared to controls when leaves were wound inoculated with 5,000 spores. These results demonstrate for the first time the utility of the cacao transformation system as a tool for gene functional analysis and the potential utility of the cacao chitinase gene for increasing fungal pathogen resistance in cacao.  相似文献   

11.
J. Wang  K. Zuo  W. Wu  J. Song  X. Sun  J. Lin  X. Li  K. Tang 《Biologia Plantarum》2004,48(4):509-515
Tobacco leaf discs were transformed with a plasmid pBIBnNHX1, containing the selectable marker neomycin phosphotransferase gene (nptII) and Na+/H+ vacuolar antiporter gene from Brassica napus (BnNHX1), via Agrobacterium tumefaciens-mediated transformation. Thirty-two independent transgenic plants were regenerated. Polymerase chain reaction (PCR) and Southern blot analyses confirmed that the BnNHX1 gene had integrated into plant genome and Northern blot analysis revealed the transgene expression at various levels in transgenic plants. Transgenic plants expressing BnNHX1 had enhanced salt tolerance and could grow and produce seeds normally in the presence of 200 mM NaCl. Analysis for the T1 progenies derived from seven independent transgenic primary transformants expressing BnNHX1 showed that the transgenes in most tested independent T1 lines were inherited at Mendelian 3:1 segregation ratios. Transgenic T1 progenies could express BnNHX1 and had salt tolerance at levels comparable to their T0 parental lines. This study implicates that the BnNHX1 gene represents a promising candidate in the development of crops for enhanced salt tolerance by genetic engineering.  相似文献   

12.
The integration, expression, and stability of the Respiratory Syncytial Virus (RSV)-F protein was analyzed in a T3 generation of transgenic cherry tomato, Solanum lycopersicum L. cv. Swifty Belle, plants. Expression of the RSV-F antigen, under the control of the fruit-specific promoter E-8, was investigated in T3 plants derived from a transgenic line, identified as #120. Transgene integration of the RSV-F gene in the T3 generation was initially determined by polymerase chain reaction (PCR). PCR analysis from line 120-7-2 revealed that all T3 plants were homozygous for the transgene; whereas, line 120-6-4 showed segregation for the transgene. Enzyme-linked immunosorbent assay (ELISA) was used to quantify levels of RSV-F protein in these plants, and protein levels ranged from 0–22 μg/g of fresh weight, with an average of ~3 μg/g fresh weight. Southern blot analysis of the highest expressing plants revealed presence of a single copy of the RSV-F transgene in these plants.  相似文献   

13.
The Saccharomyces cerevisiae chitinase, encoded by the CTS1-2 gene has recently been confirmed by in vitro tests to possess antifungal abilities. In this study, the CTS1-2 gene has been evaluated for its in planta antifungal activity by constitutive overexpression in tobacco plants to assess its potential to increase the plant's defence against fungal pathogens. Transgenic tobacco plants, generated by Agrobacterium-mediated transformation, showed stable integration and inheritance of the transgene. Northern blot analyses conducted on the transgenic tobacco plants confirmed transgene expression. Leaf extracts from the transgenic lines inhibited Botrytis cinerea spore germination and hyphal growth by up to 70% in a quantitative in vitro assay, leading to severe physical damage on the hyphae. Several of the F1 progeny lines were challenged with the fungal pathogen, B. cinerea, in a detached leaf infection assay, showing a decrease in susceptibility ranging from 50 to 70%. The plant lines that showed increased disease tolerance were also shown to have higher chitinase activities.  相似文献   

14.
Wang J  Li Y  Liang C 《Transgenic research》2008,17(3):417-424
The aroA-M1 encoding the mutant of 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) was introduced into the Brassica juncea genome by sonication-assisted, pollen-mediated transformation. The plasmid DNA and collected pollen grains were mixed in 0.3 mol/L sucrose solution and treated with mild ultrasonication. The treated pollen was then pollinated onto the oilseed stigmas after the stamens were removed artificially. Putative transgenic plants were obtained by screening germinating seeds on a medium containing glyphosate. Southern blot analysis of glyphosate-resistant plants indicated that the aroA-M1 gene had been integrated into the oilseed genome. Western blot analysis further confirmed that the EPSPS coded by aroA-M1 gene was expressed in transgenic plants. The transgenic plants exhibited increased resistance to glyphosate compared to untransformed plants. Some of those transgenic plants had considerably high resistance to glyphosate. The genetic analysis of T1 progeny further confirmed that the inheritance of the introduced genes followed the Mendelian rules. The results indicated that foreign genes can be transferred by pollen-mediated transformation combined with mild ultrasonication.  相似文献   

15.
Castor (cv. DCS-9) has been transformed through Agrobacterium-mediated and particle gun bombardment methods using appropriate vectors containing the Bt chimeric gene cry1EC driven by enhanced 35S promoter. About 81 and 12 putative transformants were regenerated following selection on hygromycin and kanamycin, respectively. Southern analysis of DNA extracted from T0 plants confirmed integration of the introduced gene in castor genome. The integration and inheritance of the introduced genes was demonstrated up to T4 generation by PCR and Southern analysis. Southern analysis of two events having single and two copies showed the same pattern of integration in the subsequent generations. Insect feeding experiments conducted in the laboratory by releasing neonate larvae of castor semilooper and S. litura on leaf tissues excised from transgenic and control plants showed varying degrees of larval mortality and slow growth in larvae fed on transgenic leaf tissue. Field bioassays against Spodoptera litura and castor semilooper conducted for eight events in T1–T4 generations under net confinement were more informative and events conferring resistance to the two major defoliators were identified.  相似文献   

16.
A silicon carbide whisker-mediated gene transfer system with recovery of fertile and stable transformants was developed for cotton (Gossypium hirsutum L.) cv. Coker-312. Two-month-old hypocotyl-derived embryogenic/non-embryogenic calli at different days after subculture were treated with silicon carbide whiskers for 2 min in order to deliver pGreen0029 encoding GUS gene and pRG229 AVP1 gene, encoding Arabidopsis vacuolar pyrophosphatase, having neomycin phosphotransferaseII (nptII) genes as plant-selectable markers. Three crucial transformation parameters, i.e., callus type, days after subculture and selection marker concentration for transformation of cotton calli were evaluated for optimum efficiency of cotton embryogenic callus transformation giving upto 94% transformation efficiency. Within six weeks, emergence of kanamycin-resistant (kmr) callus colonies was noted on selection medium. GUS and Southern blot analysis showed expression of intact and multiple transgene copies in the transformed tissues. Kanamycin wiping of leaves from T1, T2, and T3 progeny plants revealed that transgenes were inherited in a Mendelian fashion. Salt treatment of T1 AVP1 transgenic cotton plants showed significant enhancement in salt tolerance as compared to control plants. Thus far, this is first viable physical procedure after particle bombardment available for cotton that successfully can be used to generate fertile cotton transformants.  相似文献   

17.
In an analysis of 339 independent T 0 transgenic rice lines generated by Agrobacterium-mediated transformation, albino plants appeared in the T 1 generation in two single-copy transgenic lines, O54 and O36 and in one double-copy transgenic line, C18. While the T 0 plants of these three lines were green, albino and green plants emerged in a 1:3 ratio in the T 1 generation. The albino phenotype segregated as a monogenic recessive trait. Southern blot analysis of the green and albino plants in the T 1 generation confirmed that the albino trait and the T-DNA insertion events were unlinked. Segregation of the albino trait from the transgenic trait in the lines O54 and O36 was confirmed in T 2 and T 3 generations, respectively. Homozygous transgenic plants free from the albino trait were also identified. In the double-copy transgenic line C18, we genetically separated the two transgenic loci, out-segregated the albino locus from both transgene loci, and identified homozygous plants for each of the transgenic events by Southern blot analysis in the T 1 generation itself. Thus, we demonstrate that when an albino trait appears in the T 1 generation and is unlinked to a transgene locus, the albino locus can be segregated from the transgene locus and homozygous transgenic lines free from albinos can be established.  相似文献   

18.
In this paper we describe the production of transgenic broccoli and cauliflower with normal phenotype using an Agrobacterium rhizogenes-mediated transformation system with efficient selection for transgenic hairy-roots. Hypocotyls were inoculated with Agrobacterium strain A4T harbouring the bacterial plasmid pRiA4 and a binary vector pMaspro::GUS whose T-DNA region carried the gus reporter gene. pRiA4 transfers TL sequences carrying the rol genes that induce hairy root formation. Transgenic hairy-root production was increased in a difficult-to-transform cultivar by inclusion of 2,4-D in the medium used to resuspend the Agrobacterium prior to inoculation. Transgenic hairy roots could be selected from inoculated explants by screening root sections for GUS activity; this method eliminated the use of antibiotic resistance marker genes for selection. Transgenic hairy roots were produced from two cauliflower and four broccoli culivars. Shoots were regenerated from transgenic hairy root cultures of all four cultivars tested and successfully acclimatized to glasshouse conditions, although some plants had higher than diploid ploidy levels. Southern analysis confirmed the transgenic nature of these plants. T0 plants from seven transgenic lines were crossed or selfed to produce viable seed. Genetic analysis of T1 progeny confirmed the transmission of traits and revealed both independent and co-segregation of Ri TL-DNA and vector T-DNA. GUS-positive phenotypically normal progeny free of TL-DNA were identified in three transgenic lines out of the six tested representing all the cultivars regenerated including both cauliflower and broccoli.  相似文献   

19.
Leaf discs of grapevine cv. Seyval blanc originating from in vitro cultures were transformed with Agrobacterium tumefaciens strain LBA 4404 harbouring the vector pGJ42 carrying genes for chitinase and RIP (ribosome-inactivating protein) in an attempt to improve fungal resistance. The gene for neomycin phosphotransferase II (nptII) was used as the selectable marker gene. The explants were cocultivated for 2 days with recombinant Agrobacteria and then submitted to selection on NN69 medium containing 100 mg/l kanamycin. Successful regeneration and conversion of transgenic plantlets were obtained. Stable integration of foreign DNA was confirmed by PCR and Southern blot analyses, and protein expression was detected by Western blot. The regenerated transgenic plants were adapted to the greenhouse and showed no evidence of phenotypical alterations. The foreign genes introduced into the transformed plants did not effect the expected improvement in fungal disease resistance under field conditions for the major pests Uncinula necator and Plasmopara viticola.  相似文献   

20.
Split embryonic axes of 21-day old immature sunflower (Helianthus annuus L.) embryos were bombarded by microparticles and then co-cultured with disarmed Agrobacterium tumefaciens strain EHA105 bearing a binary vector carrying nptII and uidA genes. Apical shoot bud development and organogenesis induced on the explants led T0 transgenic plants. Southern blot analysis revealed complex integration patterns in T0 plants. The uidA gene segregated as a dominant trait and single-insertion events were observed in T1 plants. Patterns similar to those of T1 plants were observed in T2 progeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号