首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previous studies have demonstrated that 14-3-3 proteins exist in all the eukaryotic organisms studied; however, studies on the 14-3-3 proteins have not been involved in the halotolerant, unicellular green alga Dunaliella salina so far. In the present study, a cDNA encoding 14-3-3 protein of D. salina was cloned and sequenced by PCR and rapid amplification of cDNA end (RACE) technique based on homologous sequences of the 14-3-3 proteins found in other organisms. The cloned cDNA of 1485 bp in length had a 29.2 kDa of molecular weight and contained a 774 bp of open reading frame encoding a polypeptide of 258 amino acids. Like the other 14-3-3 proteins, the deduced amino acid sequences of the D. salina 14-3-3 protein also contained two putative phosphorylation sites within the N-terminal region (positions 62 and 67). Furthermore, an EF hand motif characteristic for Ca2+-binding sites was located within the C-terminal part of this polypeptide (positions 208–219). Analysis of bioinformatics revealed that the 14-3-3 protein of D. salina shared homology with that of other organisms. Real-time quantitative PCR demonstrated that expression of the 14-3-3 protein gene is cell cycle-dependent.  相似文献   

2.
棉花143-3L基因的分子鉴定及其在纤维发育中优势表达分析   总被引:1,自引:0,他引:1  
14-3-3蛋白以二聚体形式存在于所有真核生物中,是一种高度保守的调节蛋白,在细胞生长、增殖、凋亡、信号转导等生命活动中发挥着重要调控作用。我们在棉纤维cDNA文库中分离克隆到1个基因(cDNA),编码14-3-3蛋白类似物,命名为Gh14-3-3L(Gossypiumhirsutum14-3-3-like)。该cDNA长度为1,029bp,包含762bp开放阅读框,其编码蛋白由253个氨基酸组成。Gh14-3-3L与其他真核生物的14-3-3蛋白具有较高的同源性,并具有14-3-3蛋白的基本结构:二聚体结构域、磷酸化丝氨酸富集识别序列、4个CC结构和1个EFHand结构。Northern杂交分析显示Gh14-3-3L在棉纤维发育早期优势表达,且在10DPA棉纤维细胞中表达量最高,这表明Gh14-3-3L基因可能涉及棉纤维细胞伸长过程的调节。研究还表明,该基因在胚珠和花瓣组织中也有较强的表达,但在其他组织中表达较弱或不表达。  相似文献   

3.
利用RT-PCR和RACE技术,从菠菜中首次获得了14-3-3蛋白基因的全长cDNA序列(GenBank登录号JX952165),命名为So14-3-3.该基因全长1 166 bp,开放阅读框801 bp,编码266个氨基酸.序列比对发现So143 3蛋白与其他植物14-3-3蛋白氨基酸序列一致性高达77.6%~84.7%.半定量RT-PCR表明,随NO3-胁迫处理时间的延长和浓度的增加,菠菜根和叶中So14-3-3基因的表达增强.实验构建了pGEX4T-So14-3-3原核表达载体,并通过IPTG诱导后获得分子量约为56 kD的蛋白.进一步的蛋白质印迹检测结果表明,随着NO3处理时间的延长和浓度的增加,So14-3-3蛋白表达也增加.该实验结果为进一步研究So14 3-3蛋白功能提供了基本的实验基础.  相似文献   

4.
14-3-3 proteins in neurological disorders   总被引:1,自引:0,他引:1  
14-3-3 proteins were originally discovered as a family of proteins that are highly expressed in the brain. Through interactions with a multitude of binding partners, 14-3-3 proteins impact many aspects of brain function including neural signaling, neuronal development and neuroprotection. Although much remains to be learned and understood, 14-3-3 proteins have been implicated in a variety of neurological disorders based on evidence from both clinical and laboratory studies. Here we will review previous and more recent research that has helped us understand the roles of 14-3-3 proteins in both neurodegenerative and neuropsychiatric diseases.  相似文献   

5.
14-3-3 proteins are a family of highly conserved polypeptides that function as small adaptors that facilitate a diverse array of cellular processes by binding phosphorylated target proteins. One of these processes is the regulation of the cell cycle. Here we characterized the role of Bmh1, a 14-3-3 protein, in the cell cycle regulation of the fungus Ustilago maydis. We found that this protein is essential in U. maydis and that it has roles during the G2/M transition in this organism. The function of 14-3-3 in U. maydis seems to mirror the proposed role for this protein during Schizosaccharomyces pombe cell cycle regulation. We provided evidence that in U. maydis 14-3-3 protein binds to the mitotic regulator Cdc25. Comparison of the roles of 14-3-3 during cell cycle regulation in other fungal system let us to discuss the connections between morphogenesis, cell cycle regulation and the evolutionary role of 14-3-3 proteins in fungi.  相似文献   

6.
In order to study the effect of repression of 14-3-3 genes on actual activity of the nitrate reductase (NR) in Nicotiana benthamiana leaves, Nb14-3-3a gene was silenced by virus-induced gene silencing (VIGS) method using potato virus X (PVX). Expression of Nb14-3-3a as well as Nb14-3-3b genes was altogether repressed in the leaves of PVX-14-3a-infected plants. Furthermore, two-dimensional gel electrophoresis and immunoblot analysis with anti-14-3-3 antiserum suggested that the expressions of Nb14-3-3a and Nb14-3-3b proteins are accordingly repressed in PVX-14-3a-infected plants. It is well known that binding of 14-3-3 proteins to phosphorylated NR leads to substantial decrease in NR activity of leaves under darkness. Therefore, we studied the changes in NR activity in response to light/dark transitions in the leaves of PVX-14-3a-infected plants. NR activation state was kept at a high level under darkness in PVX-14-3a-infected plants, but not in PVX-green fluorescent protein (GFP)-infected and control plants. This result suggests that Nb14-3-3a and/or Nb14-3-3b proteins are indeed involved in the inactivation of NR activity under darkness in N. benthamiana.  相似文献   

7.
Molecular evolution of the 14-3-3 protein family   总被引:9,自引:0,他引:9  
Members of the highly conserved and ubiquitous 14-3-3 protein family modulate a wide variety of cellular processes. To determine the evolutionary relationships among specific 14-3-3 proteins in different plant, animal, and fungal species and to initiate a predictive analysis of isoform-specific differences in light of the latest functional and structural studies of 14-3-3, multiple alignments were constructed from forty-six 14-3-3 sequences retrieved from the GenBank and SwissProt databases and a newly identified second 14-3-3 gene fromCaenorhabditis elegans. The alignment revealed five highly conserved sequence blocks. Blocks 2–5 correlate well with the alpha helices 3, 5, 7, and 9 which form the proposed internal binding domain in the three-dimensional structure model of the functioning dimer. Amino acid differences within the functional and structural domains of plant and animal 14-3-3 proteins were identified which may account for functional diversity amongst isoforms. Protein phylogenic trees were constructed using both the maximum parsimony and neighbor joining methods of the PHYLIP(3.5c) package; 14-3-3 proteins fromEntamoeba histolytica, an amitochondrial protozoa, were employed as an outgroup in our analysis. Epsilon isoforms from the animal lineage form a distinct grouping in both trees, which suggests an early divergence from the other animal isoforms. Epsilons were found to be more similar to yeast and plant isoforms than other animal isoforms at numerous amino acid positions, and thus epsilon may have retained functional characteristics of the ancestral protein. The known invertebrate proteins group with the nonepsilon mammalian isoforms. Most of the current 14-3-3 isoform diversity probably arose through independent duplication events after the divergence of the major eukaryotic kingdoms. Divergence of the seven mammalian isoforms beta, zeta, gamma, eta, epsilon, tau, and sigma (stratifin/ HME1) occurred before the divergence of mammalian and perhaps before the divergence of vertebrate species. A possible ancestral 14-3-3 sequence is proposed. Correspondence to: D.C. Shakes  相似文献   

8.
9.
14-3-3 proteins are ubiquitously expressed proteins which serve as central adaptors in different signal transduction cascades. In this study, yeast two-hybrid screening of a rat brain cDNA library identified a novel gene product termed zetin 1/rBSPRY that interacts with 14-3-3 zeta. The zetin 1/rBSPRY gene is ubiquitously expressed in a variety of rat tissues, with highest expression being found in testis. In adult brain, high levels of zetin 1/rBSPRY mRNA were observed in the hippocampus, cerebral cortex, and piriform cortex. Biochemical studies confirmed zetin 1/rBSPRY to interact with 14-3-3 zeta. Transient co-transfection in COS 7 cells caused a partial redistribution of zetin 1/rBSPRY into 14-3-3 zeta enriched submembranous foci at leading edges. Our results suggest a role for zetin 1/rBSPRY-14-3-3 interactions at specialized submembrane domains.  相似文献   

10.
Lima L  Seabra A  Melo P  Cullimore J  Carvalho H 《Planta》2006,223(3):558-567
In this report we demonstrate that plastid glutamine synthetase of Medicago truncatula (MtGS2) is regulated by phosphorylation and 14-3-3 interaction. To investigate regulatory aspects of GS2 phosphorylation, we have produced non-phosphorylated GS2 proteins by expressing the plant cDNA in E. coli and performed in vitro phosphorylation assays. The recombinant isoenzyme was phosphorylated by calcium dependent kinase(s) present in leaves, roots and nodules. Using an (His)6-tagged 14-3-3 protein column affinity purification method, we demonstrate that phosphorylated GS2 interacts with 14-3-3 proteins and that this interaction leads to selective proteolysis of the plastid located isoform, resulting in inactivation of the isoenzyme. By site directed mutagenesis we were able to identify a GS2 phosphorylation site (Ser97) crucial for the interaction with 14-3-3s. Phosphorylation of this target residue can be functionally mimicked by replacing Ser97 by Asp, indicating that the introduction of a negative charge contributes to the interaction with 14-3-3 proteins and subsequent specific proteolysis. Furthermore, we document that plant extracts contain protease activity that cleaves the GS2 protein only when it is bound to 14-3-3 proteins following either phosphorylation or mimicking of phosphorylation by Ser97Asp.  相似文献   

11.
Plants and protozoa contain a unique family of calcium-dependent protein kinases (CDPKs) which are defined by the presence of a carboxyl-terminal calmodulin-like regulatory domain. We present biochemical evidence indicating that at least one member of this kinase family can be stimulated by 14-3-3 proteins. Isoform CPK-1 from the model plant Arabidopsis thaliana was expressed as a fusion protein in E. coli and purified. The calcium-dependent activity of this recombinant CPK-1 was shown to be stimulated almost twofold by three different 14-3-3 isoforms with 50% activation around 200 nM. 14-3-3 proteins bound to the purified CPK-1, as shown by binding assays in which either the 14-3-3 or CPK-1 were immobilized on a matrix. Both the 14-3-3 binding and activation of CPK-1 were specifically disrupted by a known 14-3-3 binding peptide LSQRQRSTpSTPNVHMV (IC50=30 μM). These results raise the question of whether 14-3-3 can modulate the activity of CDPK signal transduction pathways in plants.  相似文献   

12.
The Raf-1 protein kinase is a major activator of the ERK MAPK pathway, which links signaling by a variety of cell surface receptors to the regulation of cell proliferation, survival, differentiation and migration. Signaling by Raf-1 is regulated by a complex and poorly understood interplay between phosphorylation events and protein–protein interactions. One important mode of Raf-1 regulation involves the phosphorylation-dependent binding of 14-3-3 proteins. Here, we have examined the mechanism whereby the C-terminal 14-3-3 binding site of Raf-1, S621, controls the activation of MEK-ERK signaling. We show that phosphorylation of S621 turns over rapidly and is enriched in the activated pool of endogenous Raf-1. The phosphorylation on this site can be mediated by Raf-1 itself but also by other kinase(s). Mutations that prevent the binding of 14-3-3 proteins to S621 render Raf-1 inactive by specifically disrupting its capacity to bind to ATP, and not by gross conformational alteration as indicated by intact MEK binding. Phosphorylation of S621 correlates with the inhibition of Raf-1 catalytic activity in vitro, but 14-3-3 proteins can completely reverse this inhibition. Our findings suggest that 14-3-3 proteins function as critical cofactors in Raf-1 activation, which induce and maintain the protein in a state that is competent for both ATP binding and MEK phosphorylation.  相似文献   

13.
Mackie S  Aitken A 《The FEBS journal》2005,272(16):4202-4210
We isolated two novel 14-3-3 binding proteins using 14-3-3 zeta as bait in a yeast two-hybrid screen of a human brain cDNA library. One of these encoded the C-terminus of a neural specific armadillo-repeat protein, delta-catenin (neural plakophilin-related arm-repeat protein or neurojungin). delta-Catenin from brain lysates was retained on a 14-3-3 affinity column. Mutation of serine 1072 in the human protein and serine 1094 in the equivalent site in the mouse homologue (in a consensus binding motif for 14-3-3) abolished 14-3-3 binding to delta-catenin in vitro and in transfected cells. delta-catenin binds to presenilin-1, encoded by the gene most commonly mutated in familial Alzheimer's disease. The other clone was identified as the insulin receptor tyrosine kinase substrate protein of 53 kDa (IRSp53). Human IRSp53 interacts with the gene product implicated in dentatorubral-pallidoluysian atrophy, an autosomal recessive disorder associated with glutamine repeat expansion of atrophin-1.  相似文献   

14.
植物14-3-3蛋白研究进展   总被引:1,自引:0,他引:1  
14-3-3蛋白是真核生物中许多信号传导级联反应的主要调节分子,易于与具有磷酸化的丝氨酸和苏氨酸残基的靶蛋白互作进而调节碳氮代谢、三羧酸循环、莽草酸合成等多种生理过程中的多种酶活性。该文根据近年来国内外对14-3-3蛋白的研究进展,对植物中14-3-3蛋白的发现、基因鉴定、结构和功能以及14-3-3蛋白与其靶蛋白的互作机制进行综述,并对14-3-3蛋白的研究提出了进一步的展望。  相似文献   

15.
About thirty years after the initial identification of 14-3-3 proteins in mammalian brain, they are now thought to be ubiquitous among eukaryotes. We identified five cDNAs encoding 14-3-3 proteins of Nicotiana tabacum L. using a polymerase chain reaction (PCR)-based screening strategy. A phylogenetic analysis was carried out with 14-3-3 amino-acid sequences from twelve plant species. The results showed that 14-3-3 proteins of plants can be divided into at least five different subgroups. Four of these subgroups resulted from early gene duplication events that happened prior to the speciation of most of the plant species considered. Interestingly, 14-3-3 epsilon isoforms from mammals and insects form one subgroup together with epsilon-like isoforms from plants. The 14-3-3 genes known from monocots descend from the same ancestor, forming the fifth subgroup. Received: 30 June 1997 / Accepted: 29 August 1997  相似文献   

16.
17.
The 14-3-3 protein family interacts with more than 2000 different proteins in mammals, as a result of its specific phospho-serine/phospho-threonine binding activity. Seven paralogs are strictly conserved in mammalian species. Here, we show that during adipogenic differentiation of 3T3-L1 preadipocytes, the level of each 14-3-3 protein paralog is regulated independently. For instance 14-3-3β, γ, and η protein levels are increased compared to untreated cells. In contrast, 14-3-3ε protein levels decreased after differentiation while others remained constant. In silico analysis of the promoter region of each gene showed differences that explain the results obtained at mRNA and protein levels.  相似文献   

18.
在龙眼体胚发生早期的蛋白质组学研究中,发现1个体胚发生相关未知蛋白DlUP-3,通过简并引物结合RACE技术进行其基因全长序列克隆。结果显示:(1)克隆到的龙眼体胚发生相关未知蛋白基因DlUP-3的全长cDNA序列为1 681bp,开放阅读框由1 017个核苷酸组成,编码338个氨基酸(GenBank登录号为GQ167202)。(2)生物信息学分析发现,该基因推导蛋白分子量为36 854.2Da,pI为9.05;该蛋白为Ras蛋白质家族成员,具有ATP/GTP-binding site motif A(P-loop)结合位点和1个典型的Ras_like_GTPase superfamily组件,无典型信号肽结构,但有跨膜螺旋的亲水性蛋白;不规则卷曲是其最大量的结构元件,散布于整个蛋白质中。(3)实时荧光定量PCR分析显示,该基因在龙眼体胚发生过程中均有表达,其中以胚性愈伤组织阶段表达量最低,而球形胚阶段最高。研究表明,DlUP-3基因在龙眼体胚发生过程尤其是球形胚阶段有重要的作用,为进一步研究该基因在龙眼体胚发生过程中的功能奠定了基础。  相似文献   

19.
14-3-3 Proteins are found to bind to a growing number of eukaryotic proteins and evidence is accumulating that 14-3-3 proteins serve as modulators of enzyme activity. Several 14-3-3 protein recognition motifs have been identified and an increasing number of target proteins have been found to contain more than one binding site for a 14-3-3 protein. It is thus possible that 14-3-3 dimers function as clamps that simultaneously bind to two motifs within a single binding partner. Phosphorylation of a number of binding motifs has been shown to increase the affinity for 14-3-3 proteins but other mechanisms also regulate the association. It has recently been demonstrated that fusicoccin induces a tight association between 14-3-3 proteins and the plant plasma membrane H+-ATPase. Phorbol esters and other hydrophobic molecules may have a similar effect on the association between 14-3-3 proteins and specific binding partners.  相似文献   

20.
The 14-3-3 proteins are a large family of approximately 30 kDa acidic proteins and acting in the regulation of many biological processes. In this study, a 14-3-3 zeta (Pi14-3-3z) gene from the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae) was isolated and characterized. The full-length cDNA of Pi14-3-3z is 1382 bp, including a 5'-untranslated region (UTR) of 141 bp, 3′-UTR of 497 bp and an open reading frame (ORF) of 744 bp encoding a polypeptide of 247 amino acids which contains a 14-3-3 homologues domain (PF00244). The deduced Pi14-3-3z protein sequence has 81%–100% identity with the homologues in comparison to with other individuals. qPCR analysis revealed that Pi14-3-3z was expressed at the four developmental stages and in all tissues tested. Based on the amino acid of 14-3-3z, phylogenetic analysis demonstrated a similar topology with the traditional classification, suggesting 14-3-3z protein has the potential value in phylogenetic inference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号