首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小干扰RNA靶向VEGF基因体内外抑制乳腺癌细胞MCF-7的增殖   总被引:3,自引:0,他引:3  
 血管生成与肿瘤生长、侵袭、转移密切相关.血管内皮生长因子能特异地促进内皮细胞分裂、增殖及迁移,在肿瘤新生血管生成过程中起着至关重要的作用.通过RNAi抑制VEGF表达的抗血管生成疗法可有效应用于肿瘤治疗.本研究采用化学修饰的siRNA在体内外抑制VEGF基因表达,探讨化学修饰的siRNA介导的RNA干扰技术在乳腺癌基因治疗的可行性和特异性.选用阳离子脂质体LipofectamineTM2000作为转染试剂,将针对人VEGF基因的小干扰RNA(small interfering RNA,siRNA)转染人类乳腺细胞株MCF-7和裸鼠移植瘤,在体内外诱导RNAi.采用四甲基偶氮唑蓝(MTT)法,逆转录聚合酶链反应(RT-PCR),蛋白印迹实验等检测siRNA治疗组和对照组VEGF基因表达及细胞增殖变化.体外实验结果显示:靶向VEGF基因siRNA转染乳腺癌MCF-7细胞后,细胞生长抑制率达52.5%;VEGF的mRNA和蛋白表达水平显著降低(P<0.01);裸鼠体内实验结果显示:siRNA治疗组瘤组织的增长受到明显抑制;RT-PCR结果同时表明治疗组VEGF表达下调.体内外对照组各指标无显著变化.化学修饰的siRNA介导的RNAi在体内外均能成功下调靶基因VEGF的表达,抑制MCF-7细胞增殖,是潜在的肿瘤治疗新方法.  相似文献   

2.
为探讨MCF-7乳腺癌细胞分泌的血管内皮生长因子( vascular endothelial growth factor, VEGF)对树突状细胞(dendritic cell, DC)功能及其分化的影响,针对VEGF基因设计siRNA(small interfering RNA, siRNA),采用脂质体转染法以100 nmol/L最佳转染浓度导入MCF-7乳腺癌细胞(siRNA组),以脂质体Lipofectamine 2000TM转染MCF-7 乳腺癌细胞培养上清培养正常DC作为对照(对照组),采用ELISA法检测经siRNA 干扰VEGF基因后的MCF-7 乳腺癌细胞分泌的VEGF因子含量, Western 印迹检测VEGF蛋白表达,以探讨siRNA的基因沉默效果;以siRNA组和对照组培养上清分别培养外周血单个核细胞,用流式细胞仪检测所诱导DC表型CD1a、CD80、CD83、CD86和HLA-DR的表达,用MTT法检测转染前后两组DC 诱导的细胞毒性T淋巴细胞(cytotoxic T lymphocyte, CTL)对MCF-7细胞的细胞毒作用.结果显示,MCF-7 乳腺癌细胞培养上清能明显抑制正常DC分化成熟及抗原递呈能力,干扰VEGF基因后MCF-7 乳腺癌细胞培养上清对DC的影响明显降低,CD80、CD83、CD86和HLA-DR的表达较对照组显著升高,而CD1a表达下降(P<0.01).转染前后DC 诱导的CTL对MCF-7细胞的杀伤活性有明显差异(P<0.01).由此可见,siRNA可靶向抑制MCF-7乳腺癌细胞VEGF的表达,下调VEGF后的MCF-7 细胞上清对DC分化成熟及功能的抑制作用明显降低,从而推测VEGF在肿瘤的发生、发展和免疫抑制方面可能起着重要的作用.  相似文献   

3.
BackgroundThe use of RNA interference (iRNA) therapy has proved to be an interesting target therapy for the cancer treatment; however, siRNAs are unstable and quickly eliminated from the bloodstream. To face these barriers, the use of biocompatible and efficient nanocarriers emerges as an alternative to improve the success application of iRNA to the cancer, including breast cancer.ResultsA hybrid nanocarrier composed of calcium phosphate as the inorganic phase and a block copolymer containing polyanions as organic phase, named HNPs, was developed to deliver VEGF siRNA into metastatic breast cancer in mice. The particles presented a rounded shape by TEM images with average size measured by DLS suitable and biocompatible for biomedical applications. The XPS and EDS spectra confirmed the hybrid composition of the nanoparticles. Moreover, after intravenous administration, the particles accumulated mainly in the tumor site and kidneys, which demonstrates the tumor targeting accumulation through the Enhanced Permeability and Retention Effect (EPR). A significant decrease in size of the tumors treated with the nanoparticles containing siVEGF (HNPs-siVEGF) was observed and the reduction was related to enhanced tumor accumulation of siRNA as well as in vivo VEGF silencing at gene and protein levels.ConclusionThe hybrid system prepared was successful in promoting the RNAi effect in vivo with very low toxicity.General significanceThis study shows the valuable development of a hybrid nanoparticle carrying VEGF siRNA, as well as their tumor targeting, accumulation and reduction in mice triple-negative breast cancer.  相似文献   

4.
The effect of blocking VEGF activity in solid tumors extends beyond inhibition of angiogenesis. However, no studies have compared the effectiveness of mechanistically different anti-VEGF inhibitors with respect to changes in tumor growth and alterations in the tumor microenvironment. In this study we use three distinct breast cancer models, a MDA-MB-231 xenograft model, a 4T1 syngenic model, and a transgenic model using MMTV-PyMT mice, to explore the effects of various anti-VEGF therapies on tumor vasculature, immune cell infiltration, and cytokine levels. Tumor vasculature and immune cell infiltration were evaluated using immunohistochemistry. Cytokine levels were evaluated using ELISA and electrochemiluminescence. We found that blocking the activation of VEGF receptor resulted in changes in intra-tumoral cytokine levels, specifically IL-1β, IL-6 and CXCL1. Modulation of the level these cytokines is important for controlling immune cell infiltration and ultimately tumor growth. Furthermore, we demonstrate that selective inhibition of VEGF binding to VEGFR2 with r84 is more effective at controlling tumor growth and inhibiting the infiltration of suppressive immune cells (MDSC, Treg, macrophages) while increasing the mature dendritic cell fraction than other anti-VEGF strategies. In addition, we found that changes in serum IL-1β and IL-6 levels correlated with response to therapy, identifying two possible biomarkers for assessing the effectiveness of anti-VEGF therapy in breast cancer patients.  相似文献   

5.
One of the biggest challenges for small interfering RNAs (siRNAs) as therapeutic agents is their insufficient cellular delivery efficiency. We developed long circulating and cationic liposomes to improve the cell uptake and inhibitory effectiveness of siRNA on the expression of vascular endothelial growth factor (VEGF) in cancer cells. SiRNA liposomes were obtained by polyelectrolyte complexation between negatively charged siRNA and positively charged liposome prepared by a hydration method. Gel electrophoresis was used to evaluate the loading efficiency of siRNA on the cationic liposome. The optimized siRNA liposomes were observed to be spherical in shape and had smooth surfaces with particle sizes of 167.7?±?2.0?nm and zeta potentials of 4.03?±?0.69?mV, which had no significant change when stored at 4?°C for three months. Fluorescence-activated cell sorting studies and confocal laser scanning images indicated that the cationic liposomes significantly increased the uptake of fluorescence-labeled siRNA in cancer cells. Effects of the siRNA on the inhibition of VEGF were tested by measuring concentrations of VEGF in cell culture media via an enzyme-linked immunosorbent assay and intracellular VEGF levels using a western blotting method. The liposomal siRNA was significantly effective at inhibiting the expression of VEGF in lung, liver and breast cancer cells. Optimal liposomes could effectively deliver siRNA into cancer cells and inhibit VEGF as a therapy agent.  相似文献   

6.
目的:探讨促吞噬肽衍生物T肽抑制裸鼠术后残瘤生长的作用机理。方法:建立MCF-7乳腺癌裸鼠皮下移植瘤术后残瘤模型,观察8mg/kg剂量T肽对残余肿瘤组织的生长情况,并采用免疫组化和Western印迹检测给药后残瘤组织血管内皮生长因子(VEGF)的表达,采用RT-PCR检测不同T肽浓度对血管内皮细胞VEGF基因转录的影响。结果:T肽对MCF-7乳腺癌裸鼠皮下移植瘤术后残瘤生长表现出良好的抑制作用,按照瘤重得出的抑制率为68.2%,按照肿瘤体积得出的抑制率为67.6%,T肽给药组裸鼠残瘤组织中VEGF的表达量较空白对照组明显减少。血管内皮细胞中T肽呈剂量相关性抑制VEGF基因的转录。结论:T肽的抗癌作用与其抑制肿瘤微环境肿瘤组织和血管内皮细胞中VEGF的表达有密切联系,预示着T肽有潜力成为预防术后残瘤生长的抗癌新药。  相似文献   

7.
应用化学修饰的小干扰RNA(small interference RNA,siRNA)抑制裸鼠乳腺癌移植瘤血管内皮生长因子受体-2基因(VEGFR2,又称kinase insert domain-containing receptor, KDR)的表达, 探讨抑制肿瘤血管生成对人乳腺癌(MCF-7)裸鼠移植瘤生长的影响.雌裸鼠皮下种植MCF 7 细胞,肿瘤长至一定大小时, 随机分为对照组(A)、转染试剂对照组(B)、小剂量治疗组(C)及大剂量治疗组(D).肿瘤局部分别注射葡萄糖溶液、In vivo jetPEITM转染试剂和In vivo jetPEITM转染试剂包裹的KDRsiRNA.22 d后处死全部动物, 取肿瘤, 测其大小及重量, HE 及免疫组化染色,微血管密度计数,同时用RT-PCR检测KDR基因的表达水平.结果显示,siRNA治疗组瘤组织的增长受到明显抑制;HE染色显示,治疗组肿瘤中心区出现大面积细胞坏死;免疫组化结果显示,染色阳性血管数明显低于对照组;同时RT-PCR结果表明,治疗组KDR表达下调.对照组各指标无显著变化.因此,化学修饰的siRNA介导的RNAi可以降低人乳腺癌裸鼠移植瘤血管中KDR 表达, 抑制血管生成进而抑制肿瘤的生长,是潜在的肿瘤治疗新方法.  相似文献   

8.
本研究应用RNA干扰(RNAi)技术高效抑制VEGF的表达,明显降低了人肝癌细胞株SMMC7721的致瘤性。化学合成针对人VEGF基因的siRNA,体外瞬时转染人肝癌细胞株SMMC7721,RT-PCR和Elisa法检测表明VEGFsiRNA实验组与对照组相比,细胞内VEGFmRNA表达下降了76.16%,VEGF分泌蛋白表达则下降了96.28%,而MTT法结果显示VEGFsiRNA对SMMC7721细胞增殖没有明显作用。体内实验中,不同时间对荷SMMC7721细胞瘤裸小鼠进行siRNA直接瘤内注射,同时测量瘤体积,最后取瘤块进行组织切片观察并进行分子生物学分析,结果显示,与对照组相比,VEGFsiRNA实验组肿瘤体积明显缩小,瘤内出现细胞坏死,同时肿瘤组织中VEGFmRNA和蛋白表达水平均明显降低。  相似文献   

9.
Silymarin is a naturally available bioflavonoid and is a strong antioxidant with a capacity to inhibit the formation of tumors in several cancer models. In the present study, we investigated whether dietary supplementation of silymarin has any role in lipid components, lipid-metabolizing enzymes, free fatty acid profile, and expression of cyclooxygenase-2 (COX-2) in N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinoma in rats. NDEA-induced rats showed severe hyperlipidemia along with upregulated expression of COX-2 as revealed by western blotting and immunohistochemistry. Dietary silymarin supplementation attenuated this hyperlipidemia and downregulated the expression of COX-2. Thus we conclude that compounds like silymarin with potent hypolipidemic effect are strong candidates as chemopreventive agents for the treatment of liver cancer.  相似文献   

10.
We designed to investigate the effects of down-regulating the tumor susceptibility gene 101 (TSG101) on the proliferation and apoptosis of the human breast cancer MCF-7 cell line, and the role of the MAPK/ERK signal pathway in this process. The siRNA against TSG101 was transfected into the breast cancer MCF-7 cell line using Lipofectamine 2000. After TSG101 knockdown, the proliferation of MCF-7 cells was measured by the MTT assay. The cell cycle distribution and apoptosis were examined by using flow cytometry while cell migration was measured using a transwell assay. The protein level of p-ERK was further assessed by immunofluorescence and western blotting. Our results are as following, the MCF-7 cells transfected with TSG101 siRNA proliferated significantly slower and exhibited significantly increased rates of apoptosis compared to the control cells. In the TSG101 siRNA transfected cells, the percentage of cells in the G?/G? and S phase of the cell cycle was significantly higher and lower, respectively, compared to the control cells. Moreover, the migration ability of TSG101 siRNA transfected cells was lower than the control groups. Lastly, the level of p-ERK protein in TSG101 siRNA transfected cells was significantly decreased compared with the control cells. In conclusion, TSG101 knockdown in breast cancer cells induces apoptosis and inhibits proliferation. The TSG101 depleted cells are arrested at the G?/S transition of the cell cycle. The migration of breast cancer cells is also impaired by TSG101 siRNA. TSG101 may play a biological role through modulation of the MAPK/ERK signaling pathway in breast cancer.  相似文献   

11.
Mesangioproliferative glomerulonephritis is a disease that has a high incidence in humans. In this disease, the proliferation of glomerular mesangial cells and the production of extracellular matrix are important. In recent years, the RNAi technology has been widely used in the treatment of various diseases due to its capability to inhibit the gene expression with high specificity and targeting. The objective of this study was to decrease mesangial cell proliferation by knocking down PDGF-B and its receptor, PDGFR-β. To be able to use small interfering RNAs (siRNAs) in the treatment of this disease successfully, it is necessary to develop appropriate delivery systems. Chitosan, which is a biopolymer, is used as a siRNA delivery system in kidney drug targeting. In order to deliver siRNA molecules targeted at PDGF-B and PDGFR-β, chitosan/siRNA nanoplexes were prepared. The in vitro characterization, transfection studies, and knockdown efficiencies were studied in immortalized and primary rat mesangial cells. In addition, the effects of chitosan nanoplexes on mesangial cell proliferation and migration were investigated. After in vitro transfection, the PDGF-B and PDGFR-β gene silencing efficiencies of PDGF-B and PDGFR-β targeting siRNA-containing chitosan nanoplexes were 74 and 71% in immortalized rat mesangial cells and 66 and 62% in primary rat mesangial cells, respectively. siPDGF-B- and siPDGFR-β-containing nanoplexes indicated a significant decrease in mesangial cell migration and proliferation. These results suggested that mesangial cell proliferation may be inhibited by silencing of the PDGF-B signaling pathway. Gene silencing approaches with chitosan-based gene delivery systems have promise for the efficient treatment of renal disease.  相似文献   

12.
The newly discovered human voltage-gated proton channel Hv1 is essential for proton transfer, which contains a voltage sensor domain (VSD) without a pore domain. We report here for the first time that Hv1 is specifically expressed in the highly metastatic human breast tumor tissues, but not in poorly metastatic breast cancer tissues, detected by immunohistochemistry. Meanwhile, real-time RT-PCR and immunocytochemistry showed that the expression levels of Hv1 have significant differences among breast cancer cell lines, MCF-7, MDA-MB-231, MDA-MB-468, MDA-MB-453, T-47D and SK-BR-3, in which Hv1 is expressed at a high level in highly metastatic human breast cancer cell line MDA-MB-231, but at a very low level in poorly metastatic human breast cancer cell line MCF-7. Inhibition of Hv1 expression in the highly metastatic MDA-MB-231 cells by small interfering RNA (siRNA) significantly decreases the invasion and migration of the cells. The intracellular pH of MDA-MB-231 cells down-regulated Hv1 expression by siRNA is obviously decreased compared with MDA-MB-231 with the scrambled siRNA. The expression of matrix metalloproteinase-2 and gelatinase activity in MDA-MB-231 cells suppressed Hv1 by siRNA were reduced. Our results strongly suggest that Hv1 regulates breast cancer intracellular pH and exacerbates the migratory ability of metastatic cells.  相似文献   

13.
14.
Cyclin L1 (CCNL1) and tissue inhibitor of matrix metalloproteinase-1 (TIMP1) are candidate genes involved in several types of cancer. However, the expression of CCNL1 and the relationship between CCNL1 and TIMP1 in breast cancer cells is unknown. Using patients’ breast cancer tissues, the expression of CCNL1 and TIMP1 was measured by cDNA microarray and further confirmed by real-time RT-PCR and western blotting. Overexpression or repression of CCNL1 and TIMP1, individually or together, was performed in breast cancer MDA-MB-231 cells by transient transformation methods to investigate their role in breast cancer cell growth. Simultaneously, mRNA and protein expression levels of CCNL1 and TIMP1 were also measured. CCNL1 and TIMP1 expression was significantly elevated in breast cancer tissues compared with that in peri-breast cancer tissues of patients by cDNA microarray and these results were further confirmed by real-time RT-PCR and western blotting. Interestingly, in vitro experiments showed a stimulatory effect of TIMP1 and an inhibitory effect of CCNL1 on growth of MDA-MB-231 cells. Co-expression or co-repression of these two genes did not affect cell growth. Overexpression of CCNL1 and TIMP1 individually induced overexpression of each other. These data demonstrate that there is a fine balance between CCNL1 and TIMP1, which may contribute to breast cancer development.  相似文献   

15.
As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis.  相似文献   

16.
Vascular endothelial growth factor (VEGF) is up-regulated in the vast majority of human tumors. The up-regulation of VEGF not only plays important roles in tumor angiogenesis, but also provides a target for tumor treatment with small interfering RNA (siRNA) that targets VEGF; however, it is unclear whether a quite high up-regulation of VEGF will affect the efficiency of RNA interference strategies targeting VEGF. A high level expression of VEGF was found in CNE cells from a nasopharyngeal car-cinoma cell line. In this study, we investigate whether VEGF-specific siRNAs can effectively suppress VEGF expression in CNE cells, and study the methods for the use of VEGF-specific siRNAs as potential therapeutic agents. CNE cells with high VEGF expression induced by hypoxia were transfected with VEGF-specific siRNAs. The expression of VEGF was effectively suppressed by VEGF-specific siRNAs, measured by ELISA, Western blot analysis and RT-PCR. Furthermore, experiments in nude mice bear-ing nasopharyngeal carcinoma xenograft were initiated 5 d after injection of CNE cells. VEGF-specific siRNAs were modified with 2′-deoxy, then injected into the tumors, and a liposome-mediated siRNA transfection system and ultrasound exposure were used to help delivery of the siRNAs. Tumor growth was reduced significantly after 3 weeks’ treatment. These studies suggest that VEGF-specific siRNAs still can effectively suppress VEGF expression even in tumor cell lines with a relatively high level of VEGF expression, such as CNE, and VEGF-specific siRNAs modified with 2′-deoxy can be used as po-tential agents for tumor therapy.  相似文献   

17.
MicroRNAs (miRNAs) are involved in oncogenesis by suppression of proto-oncogenes or tumor suppressive genes. This review presents data of suppressive miRNAs role in the mechanisms of occurrence and development of malignant tumors of breast cancer as the example—that is the most widespread oncopathology in women. Targets and functions of suppressive and antimetastatic miRNAs have been illustrated, as well as for suppressive miRNAs with an oncogenic potential (such as miR-200a, miR-200c) that appears probably owing to the ability of miRNA to interact with a variety of targets depending on the cellular content. Based on the published and the authors’ own data, the role of hypermethylation of promoter regions in inhibition of expression and regulatory function of miRNA genes in breast cancer was characterized. In conclusion, the authors pointed future prospects of clinical application of suppressive miRNAs in diagnostics and treatment of breast cancer.  相似文献   

18.
The present study examined factors that may be involved in the development of hypoxic periventricular white matter damage in the neonatal brain. Wistar rats (1-day old) were subjected to hypoxia and the periventricular white matter (corpus callosum) was examined for the mRNA and protein expression of hypoxia-inducible factor-1alpha (HIF-1alpha), endothelial, neuronal and inducible nitric oxide synthase (eNOS, nNOS and iNOS), vascular endothelial growth factor (VEGF) and N-methyl-D-aspartate receptor subunit 1 (NMDAR1) between 3 h and 14 days after hypoxic exposure by real-time RT-PCR, western blotting and immunohistochemistry. Up-regulated mRNA and protein expression of HIF-1alpha, VEGF, NMDAR1, eNOS, nNOS and iNOS in corpus callosum was observed in response to hypoxia. NMDAR1 and iNOS expression was found in the activated microglial cells, whereas VEGF was localized to astrocytes. An enzyme immunoassay showed that the VEGF concentration in corpus callosum was significantly higher up to 7 days after hypoxic exposure. NO levels, measured by colorimetric assay, were also significantly higher in hypoxic rats up to 14 days after hypoxic exposure as compared with the controls. A large number of axons undergoing degeneration were observed between 3 h and 7 days after the hypoxic exposure at electron-microscopic level. Our findings point towards the involvement of excitotoxicity, VEGF and NO in periventricular white matter damage in response to hypoxia.  相似文献   

19.
While hormone-dependent, mammary tumors induced with carcinogens (DMBA or NMU) in intact rats have been used extensively for studying aromatase inhibitors, there is currently no suitable model to investigate their effects in human breast cancers in vivo. While hormone responsive tumors can be formed in the athymic mouse using human breast carcinoma MCF-7 cells, due to the low ovarian estrogen production, tumor growth is induced with estradiol supplementation. Thus, this model is unsuitable for studies of aromatase inhibitors. We have induced tumors without the need for estrogen supplementation by co-inoculating MCF-7 cells with Matrigel, a basement membrane preparation, into intact athymic mice. In one experiment, 45 days after inocubation, mice were assigned to the control group or 4-hydroxyandrostenedione (4-OHA) (1 mg/day s.c.) treatment for 52 days. Tumor volumes in the control mice increased 672%, whereas tumor volumes in the treated mice did not change significantly (178.9 ± 16.2 to 336.6 ± 120 mm3). In the second experiment, 55 days after inoculation, groups of mice were treated with the antiestrogen, tamoxifen (5 μg/day s.c.) or vehicle (controls). Tumor volumes in the control mice increased 325% in 58 days, whereas there was no significant change in tumor volume in the tamoxifen treated group (338.8 ± 55.3 to 330.6 ± 84.9 mm3). The results suggest that (1) the tumors resulting from MCF-7 cells co-inoculated with Matrigel are estrogen-dependent and (2) tamoxifen and 4-OHA were effective in suppressing growth of these tumors. The results suggest that this model should be useful for evaluating the effects of aromatase inhibitors and for comparing breast cancer treatments.  相似文献   

20.
Antitumor activity of an adenovirus harboring human IL-24 in colon cancer   总被引:1,自引:0,他引:1  
Data have increasingly shown that melanoma differentiation associated gene-7 (Mda-7/IL-24) has growth suppression activity and can induce apoptosis in many tumor cells, but to our knowledge there have been few studies about its role in colon cancer. We examined its anti-cancer effect on colon cancer. We constructed a recombinant replication-deficient adenovirus carrying human melanoma differentiation associated gene-7 (Ad-IL-24) and examined its apoptosis-inducing efficacy on the colon cancer HT-29 cell line and on an oxaliplatin-resistant cell line HT-29/oxa, using a combination of flow cytometry, growth suppressive activity by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and xenografts. Furthermore, we tested the suppression activity of Mda-7/IL-24 on vascular endothelial growth factor (VEGF) and microvessel density (MVD), as well as the inductive effect on expression of the growth arrest and DNA damage gene (GADD) in xenograft tumors by immunohistochemistry. Melanoma differentiation associated gene-7 can inhibit the growth of colon cancer cell lines and induced apoptosis in about (5.6 ± 0.3)% of HT-29 cells (P < 0.05). Xenograft growth was retarded in vivo in mice treated with melanoma differentiation associated gene-7, but the tumor proliferation rate for this group was not significantly different in comparison to controls (P > 0.05). Furthermore, melanoma differentiation associated gene-7 induced expression of a growth arrest and DNA damage (GADD) gene and reduced the expression of both VEGF and MVD in xenograft tumors. This study supports a potential therapeutic effect for melanoma differentiation associated gene-7 on colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号