首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintaining effective immune response is an essential factor in the survival of small populations. One of the most important immune gene regions is the highly polymorphic major histocompatibility complex (MHC). We investigated how a population bottleneck and recovery have influenced the diversity and selection in three MHC class II loci, DLA‐DRB1, DLA‐DQA1 and DLA‐DQB1, in the Finnish wolf population. We studied the larger Russian Karelian wolf population for comparison and used 17 microsatellite markers as reference loci. The Finnish and Karelian wolf populations did not differ substantially in their MHC diversities ( = 0.047, P = 0.377), but differed in neutral microsatellite diversities ( = 0.148, P = 0.008). MHC allele frequency distributions in the Finnish population were more even than expected under neutrality, implying balancing selection. In addition, an excess of nonsynonymous compared to synonymous polymorphisms indicated historical balancing selection. We also studied association between helminth (Trichinella spp. and Echinococcus canadensis) prevalence and MHC diversity at allele and SNP level. MHC‐heterozygous wolves were less often infected by Trichinella spp. and carriers of specific MHC alleles, SNP haplotypes and SNP alleles had less helminth infections. The associated SNP haplotypes and alleles were shared by different MHC alleles, which emphasizes the necessity of single‐nucleotide‐level association studies also in MHC. Here, we show that strong balancing selection has had similar effect on MHC diversities in the Finnish and Russian Karelian wolf populations despite significant genetic differentiation at neutral markers and small population size in the Finnish population.  相似文献   

2.
Large carnivores were persecuted to near extinction during the last centuries, but have now recovered in some countries. It has been proposed earlier that the recovery of the Northern European brown bear is supported by migration from Russia. We tested this hypothesis by obtaining for the first time continuous sampling of the whole Finnish bear population, which is located centrally between the Russian and Scandinavian bear populations. The Finnish population is assumed to experience high gene flow from Russian Karelia. If so, no or a low degree of genetic differentiation between Finnish and Russian bears could be expected. We have genotyped bears extensively from all over Finland using 12 validated microsatellite markers and compared their genetic composition to bears from Russian Karelia, Sweden, and Norway. Our fine masked investigation identified two overlapping genetic clusters structured by isolation-by-distance in Finland (pairwise FST = 0.025). One cluster included Russian bears, and migration analyses showed a high number of migrants from Russia into Finland, providing evidence of eastern gene flow as an important driver during recovery. In comparison, both clusters excluded bears from Sweden and Norway, and we found no migrants from Finland in either country, indicating that eastern gene flow was probably not important for the population recovery in Scandinavia. Our analyses on different spatial scales suggest a continuous bear population in Finland and Russian Karelia, separated from Scandinavia.  相似文献   

3.
The Orchidaceae is characterised by a diverse range of life histories, reproductive strategies and geographic distribution, reflected in a variety of patterns in the population genetic structure of different species. In this study, the genetic diversity and structure was assessed within and among remnant populations of the critically endangered sexually deceptive orchid, Caladenia huegelii. This species has experienced severe recent habitat loss in a landscape marked by ancient patterns of population fragmentation within the Southwest Australian Floristic Region, a global biodiversity hotspot. Using seven polymorphic microsatellite loci, high levels of within-population diversity (mean alleles/locus = 6.73; mean H E = 0.690), weak genetic structuring among 13 remnant populations (F ST = 0.047) and a consistent deficit of heterozygotes from Hardy–Weinberg expectation were found across all populations (mean F IS = 0.22). Positive inbreeding coefficients are most likely due to Wahlund effects and/or inbreeding effects from highly correlated paternity and typically low fruit set. Indirect estimates of gene flow (Nm = 5.09 using F ST; Nm = 3.12 using the private alleles method) among populations reflects a historical capacity for gene flow through long distance pollen dispersal by sexually deceived wasp pollinators and/or long range dispersal of dust-like orchid seed. However, current levels of gene flow may be impacted by habitat destruction, fragmentation and reduced population size. A genetically divergent population was identified, which should be a high priority for conservation managers. Very weak genetic differentiation indicates that the movement and mixing of seeds from different populations for reintroduction programs should result in minimal negative genetic effects.  相似文献   

4.
Habitat fragmentation has often been implicated in the decline of many species. For habitat specialists and/or sedentary species, loss of habitat can result in population isolation and lead to negative genetic effects. However, factors other than fragmentation can often be important and also need to be considered when assessing the genetic structure of a species. We genotyped individuals from 13 populations of the cooperatively breeding Brown‐headed Nuthatch Sitta pusilla in Florida to test three alternative hypotheses regarding the effects that habitat fragmentation might have on genetic structure. A map of potential habitat developed from recent satellite imagery suggested that Brown‐headed Nuthatch populations in southern Florida occupied smaller and more isolated habitat patches (i.e. were more fragmented) than populations in northern Florida. We also genotyped individuals from a small, isolated Brown‐headed Nuthatch population on Grand Bahama Island. We found that populations associated with more fragmented habitat in southern Florida had lower allelic richness than populations in northern Florida (P = 0.02), although there were no differences in heterozygosity. Although pairwise estimates of FST were low overall, values among southern populations were generally higher than northern populations. Population assignment tests identified K = 3 clusters corresponding to a northern cluster, a southern cluster and a unique population in southeast Florida; using sampling localities as prior information revealed K = 7 clusters, with greater structure only among southern Florida populations. The Bahamas population showed moderate to high differentiation compared with Florida populations. Overall, our results suggest that fragmentation could affect gene flow in Brown‐headed Nuthatch populations and is likely to become more pronounced over time.  相似文献   

5.

Connectivity, the exchange of individuals among locations, is a fundamental ecological process that explains how otherwise disparate populations interact. For most marine organisms, dispersal occurs primarily during a pelagic larval phase that connects populations. We paired population structure from comprehensive genetic sampling and biophysical larval transport modeling to describe how spiny lobster (Panulirus argus) population differentiation is related to biological oceanography. A total of 581 lobsters were genotyped with 11 microsatellites from ten locations around the greater Caribbean. The overall F ST of 0.0016 (P = 0.005) suggested low yet significant levels of structuring among sites. An isolation by geographic distance model did not explain spatial patterns of genetic differentiation in P. argus (P = 0.19; Mantel r = 0.18), whereas a biophysical connectivity model provided a significant explanation of population differentiation (P = 0.04; Mantel r = 0.47). Thus, even for a widely dispersing species, dispersal occurs over a continuum where basin-wide larval retention creates genetic structure. Our study provides a framework for future explorations of wide-scale larval dispersal and marine connectivity by integrating empirical genetic research and probabilistic modeling.

  相似文献   

6.
Approximate Bayesian computation (ABC) is useful for parameterizing complex models in population genetics. In this study, ABC was applied to simultaneously estimate parameter values for a model of metapopulation coalescence and test two alternatives to a strict metapopulation model in the well‐studied network of Daphnia magna populations in Finland. The models shared four free parameters: the subpopulation genetic diversity (θS), the rate of gene flow among patches (4Nm), the founding population size (N0) and the metapopulation extinction rate (e) but differed in the distribution of extinction rates across habitat patches in the system. The three models had either a constant extinction rate in all populations (strict metapopulation), one population that was protected from local extinction (i.e. a persistent source), or habitat‐specific extinction rates drawn from a distribution with specified mean and variance. Our model selection analysis favoured the model including a persistent source population over the two alternative models. Of the closest 750 000 data sets in Euclidean space, 78% were simulated under the persistent source model (estimated posterior probability = 0.769). This fraction increased to more than 85% when only the closest 150 000 data sets were considered (estimated posterior probability = 0.774). Approximate Bayesian computation was then used to estimate parameter values that might produce the observed set of summary statistics. Our analysis provided posterior distributions for e that included the point estimate obtained from previous data from the Finnish D. magna metapopulation. Our results support the use of ABC and population genetic data for testing the strict metapopulation model and parameterizing complex models of demography.  相似文献   

7.
Landscape features often shape patterns of gene flow and genetic differentiation in plant species. Populations that are small and isolated enough also become subject to genetic drift. We examined patterns of gene flow and differentiation among 12 floodplain populations of the selfing annual jewelweed (Impatiens capensis Meerb.) nested within four river systems and two major watersheds in Wisconsin, USA. Floodplain forests and marshes provide a model system for assessing the effects of habitat fragmentation within agricultural/urban landscapes and for testing whether rivers act to genetically connect dispersed populations. We generated a panel of 12,856 single nucleotide polymorphisms and assessed genetic diversity, differentiation, gene flow, and drift. Clustering methods revealed strong population genetic structure with limited admixture and highly differentiated populations (mean multilocus FST = 0.32, FST’ = 0.33). No signals of isolation by geographic distance or environment emerged, but alleles may flow along rivers given that genetic differentiation increased with river distance. Differentiation also increased in populations with fewer private alleles (R2 = 0.51) and higher local inbreeding (R2 = 0.22). Populations varied greatly in levels of local inbreeding (FIS = 0.2–0.9) and FIS increased in more isolated populations. These results suggest that genetic drift dominates other forces in structuring these Impatiens populations. In rapidly changing environments, species must migrate or genetically adapt. Habitat fragmentation limits both processes, potentially compromising the ability of species to persist in fragmented landscapes.  相似文献   

8.
Hymenopteran inquiline species have been proposed to originate by sympatric speciation through intraspecific social parasitism. One such parasite, Myrmica microrubra, was recently synonymized with its Myrmica rubra host, because comparisons across Europe indicated insufficient genetic differentiation. Here, we use microsatellite markers to study genetic differentiation more precisely in a sample of Finnish M. rubra and its inquilines collected at two localities, supplemented with mitochondrial DNA sequences. The parasite had much lower genetic variation than the host at three of the four loci studied. Genetic differentiation between the host populations was moderate (F ST = 0.089), whereas the parasite populations were more strongly subdivided (F ST = 0.440). The host and parasite were highly genetically differentiated both across populations (F ST = 0.346) and in strict sympatry (0.327, 0.364), a result that remained robust both in a haplotype network and in PCA ordination. Individual assignments of genotypes indicated that gene flow between sympatric host and inquiline populations is reduced by about an order of magnitude relative to the gene flow within the morphs. Our results suggest that the parasitic morph of M. rubra may be an incipient species, but it remains unclear to what extent the observed genetic differentiation between host and inquiline is due to possible assortative mating and selection against hybrids or to recurrent bottlenecking and genetic drift. We conclude that an explicitly functional species concept would be unambiguous in treating this inquiline as a full species, as it begets its own kind and maintains its integrity in spite of occasional interbreeding with the host.  相似文献   

9.
The wheat midge, Sitodiplosis mosellana, is an important pest in Northern China. We tested the hypothesis that the population structure of this species arises during a range expansion over the past 30 years. This study used microsatellite and mitochondrial loci to conduct population genetic analysis of S. mosellana across its distribution range in China. We found strong genetic structure among the 16 studied populations, including two genetically distinct groups (the eastern and western groups), broadly consistent with the geography and habitat fragmentation. These results underline the importance of natural barriers in impeding dispersal and gene flow of S. mosellana populations. Low to moderate genetic diversity among the populations and moderate genetic differentiation (F ST = 0.117) between the two groups were also found. The populations in the western group had lower genetic diversity, higher genetic differentiation and lower gene flow (F ST = 0.116, Nm = 1.89) than those in the eastern group (F ST = 0.049, Nm = 4.91). Genetic distance between populations was positively and significantly correlated with geographic distance (r = 0.56, P<0.001). The population history of this species provided no evidence for population expansion or bottlenecks in any of these populations. Our data suggest that the distribution of genetic diversity, genetic differentiation and population structure of S. mosellana have resulted from a historical event, reflecting its adaptation to diverse habitats and forming two different gene pools. These results may be the outcome of a combination of restricted gene flow due to geographical and environmental factors, population history, random processes of genetic drift and individual dispersal patterns. Given the current risk status of this species in China, this study can offer useful information for forecasting outbreaks and designing effective pest management programs.  相似文献   

10.
Non-invasive genetic sampling (NGS) is increasingly used to estimate the abundance of rare or elusive species such as the wolf (Canis lupus), which cannot be directly counted in forested mountain habitats. Wolf individual and familial home ranges are wide, potentially connected by long-range dispersers, and their populations are intrinsically open. Appropriate demographic estimators are needed, because the assumptions of homogeneous detection probability and demographic closeness are violated. We compiled the capture–recapture record of 418 individual wolf genotypes identified from ca. 4,900 non-invasive samples, collected in the northern Italian Apennines from January 2002 to June 2009. We analysed this dataset using novel capture–recapture multievent models for open populations that explicitly account for individual detection heterogeneity (IDH). Overall, the detection probability of the weakly detectable individuals, probably pups, juveniles and migrants (P = 0.08), was ca. six times lower than that of the highly detectable wolves (P = 0.44), probably adults and dominants. The apparent annual survival rate of weakly detectable individuals was lower (Φ = 0.66) than those of highly detectable wolves (Φ = 0.75). The population mean annual finite rate of increase was λ = 1.05 ± 0.11, and the mean annual size ranged from N = 117 wolves in 2003 to N = 233 wolves in 2007. This procedure, combining large-scale NGS and multievent IDH demographic models, provides the first estimates of abundance, multi-annual trend and survival rates for an open large wolf population in the Apennines. These results contribute to deepen our understanding of wolf population ecology and dynamics, and provide new information to implement sound long-term conservation plans.  相似文献   

11.
Alnus hirsuta in Korea was measured to estimate the amount and pattern of genetic diversity and population structure. The mean genetic diversity within populations was 0.166. Korean alder populations have slightly high levels of genetic diversity compared to those of two Canadian alder species. The genetic differentiation among populations accounted for 9% of the total variation. The rate of gene flow was estimated high (Nm=2.63). Analysis of inbreeding coefficient, calculated for all polymorphic loci in each population, showed a substantial heterozygote deficiency relative to Hardy-Weinberg expectations. The mean G ST value of A. hirsuta in Korea was 0.087. The low value of G ST in this species, reflecting little spatial genetic differentiation, may indicate extensive gene flow. A relationship between the mean heterozygosity and annual rainfall showed a positive relationship (r 2=0.54, F=4.67). Received 8 August 1998/ Accepted in revised form 7 July 1999  相似文献   

12.
Parrotia subaequalis (Hamamelidaceae) is a Tertiary relic species endemic in eastern China. We used inter‐simple sequence repeat (ISSR) markers to access genetic diversity and population genetic structure in natural five populations of P. subaequalis. The levels of genetic diversity were higher at species level (= 0.2031) but lower at population level (= 0.1096). The higher genetic diversity at species levels might be attributed to the accumulation of distinctive genotypes which adapted to the different habitats after Quaternary glaciations. Meanwhile, founder effects on the early stage, and subsequent bottleneck of population regeneration due to its biological characteristics, environmental features, and human activities, seemed to explain the low population levels of genetic diversity. The hierarchical AMOVA revealed high levels (42.60%) of among‐population genetic differentiation, which was in congruence with the high levels of Nei's genetic differentiation index (GST = 0.4629) and limited gene flow (Nm = 0.5801) among the studied populations. Mantel test showed a significant isolation‐by‐distance, indicating that geographic isolation has a significant effect on genetic structure in this species. Unweighted pair‐group method with arithmetic average clustering, PCoA, and Bayesian analyses uniformly recovered groups that matched the geographical distribution of this species. In particular, our results suggest that Yangtze River has served as a natural barrier to gene flow between populations occurred on both riversides. Concerning the management of P. subaequalis, the high genetic differentiation among populations indicates that preserving all five natural populations in situ and collecting enough individuals from these populations for ex situ conservation are necessary.  相似文献   

13.
Common root rot (CRR) and spot blotch, caused by Cochliobolus sativus (Ito and Kurib.) Drechsl. ex Dast., are important diseases of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) worldwide. However, the population biology of C. sativus is still poorly understood. In this study, the genetic structure of three C. sativus populations, consisting of isolates sampled respectively from barley leaves (BL), barley roots (BR) and wheat roots (WR) in North Dakota, was analysed with amplified fragment length polymorphism (AFLP) markers. A total of 127 AFLP loci were generated among 208 C. sativus isolates analysed with three primer combinations. Gene diversity (= 0.277–0.335) were high in all three populations. Genetic variation among C. sativus individuals within population accounted for 74%, whereas 26% of the genetic variation was explained among populations. Genetic differentiation was high (ØPT = 0.261, corrected = 0.39), whereas gene flow (Nm) ranged from 1.27 to 1.56 among the three populations analysed. The multilocus linkage disequilibrium (LD) (= 0.076–0.117) was moderate in C  sativus populations. Cluster analyses indicate that C. sativus populations differentiated according to the hosts (barley and wheat) and tissues (root and leaf) although generalists also exist in North Dakota. Crop breeding may benefit from combining genes for resistance against both specialists and generalists of C. sativus.  相似文献   

14.
Western lowland gorillas (Gorilla gorilla gorilla) are designated as critically endangered and wild populations are dramatically declining as a result of habitat destruction, fragmentation, diseases (e.g., Ebola) and the illegal bushmeat trade. As wild populations continue to decline, the genetic management of the North American captive western lowland gorilla population will be an important component of the long‐term conservation of the species. We genotyped 26 individuals from the North American captive gorilla collection at 11 autosomal microsatellite loci in order to compare levels of genetic diversity to wild populations, investigate genetic signatures of a population bottleneck and identify the genetic structure of the captive‐born population. Captive gorillas had significantly higher levels of allelic diversity (t7 = 4.49, = 0.002) and heterozygosity (t7 = 4.15, = 0.004) than comparative wild populations, yet the population has lost significant allelic diversity while in captivity when compared to founders (t7 = 2.44, = 0.04). Analyses suggested no genetic evidence for a population bottleneck of the captive population. Genetic structure results supported the management of North American captive gorillas as a single population. Our results highlight the utility of genetic management approaches for endangered nonhuman primate species.  相似文献   

15.
The Chinese soft-shelled turtle (Pelodiscus sinensis) is one of the most important economical chelonians in the world. To understand the genetic variations of the Chinese soft-shelled turtle in China, 62 individuals were sampled from three localities and 18 polymorphic microsatellite loci tested were used to detect genetic diversity and population structure. Results showed that the genetic diversity of the wild P. sinensis was high. Except for the Wuhu populations, the majority of microsatellite loci are not deviation from Hardy–Weinberg equilibrium in the other two populations. AMOVA analysis indicated that genetic variations occurred mainly within populations (97.4%) rather than among populations (2.6%). The gene flow estimates (Nm) among three geographic populations demonstrated that strong gene flow existed (Nm > 1, mean 6). The present study supported that different habitats, breed turtles escaped, multiple paternity and long evolutionary history may be responsible for the current genetic diversity and differentiation in the wild Chinese soft-shelled turtle.  相似文献   

16.
Marine populations are typically characterized by weak genetic differentiation due to the potential for long‐distance dispersal favouring high levels of gene flow. However, strong directional advection of water masses or retentive hydrodynamic forces can influence the degree of genetic exchange among marine populations. To determine the oceanographic drivers of genetic structure in a highly dispersive marine invertebrate, the giant California sea cucumber (Parastichopus californicus), we first tested for the presence of genetic discontinuities along the coast of North America in the northeastern Pacific Ocean. Then, we tested two hypotheses regarding spatial processes influencing population structure: (i) isolation by distance (IBD: genetic structure is explained by geographic distance) and (ii) isolation by resistance (IBR: genetic structure is driven by ocean circulation). Using RADseq, we genotyped 717 individuals from 24 sampling locations across 2,719 neutral SNPs to assess the degree of population differentiation and integrated estimates of genetic variation with inferred connectivity probabilities from a biophysical model of larval dispersal mediated by ocean currents. We identified two clusters separating north and south regions, as well as significant, albeit weak, substructure within regions (FST = 0.002, = .001). After modelling the asymmetric nature of ocean currents, we demonstrated that local oceanography (IBR) was a better predictor of genetic variation (R2 = .49) than geographic distance (IBD) (R2 = .18), and directional processes played an important role in shaping fine‐scale structure. Our study contributes to the growing body of literature identifying significant population structure in marine systems and has important implications for the spatial management of P. californicus and other exploited marine species.  相似文献   

17.
Cagaita (Eugenia dysenterica) is a widespread plant found in the Brazilian cerrado. Its fruit is used for popular consumption and for industrial purposes. A battery of 346 primer pairs developed for Eucalyptus spp. was tested on cagaita. Only 10 primer pairs were found to be transferable between the two species. Using a polyacrilamide gel, an average of 10.4 alleles per locus was detected, in a sample of 116 individuals from 10 natural populations of cagaita. Seven polymorphic loci allowed estimation of genetic parameters, including expected average heterozigosity HE = 0.442, diversity among populations, RST = 0.268 and gene flow Nm = 0.680.  相似文献   

18.
Genetic variations in the giant panda populations in Wanglang and Baoxing Nature Reserves were evaluated in this study. Panda feces were collected from these two reserves and DNA samples extracted from the feces were genotyped at 13 microsatellite loci. A total of 130 alleles were identified from the 13 microsatellite loci in 63 giant pandas, including 35 private alleles in Wanglang, 53 private alleles in Baoxing, and 42 alleles shared between the two populations. The mean observed heterozygosity, average number of alleles, average number of allelic richness, and average polymorphism information content were 0.488, 6.2, 3.302, and 0.612, respectively for the Wanglang population and 0.553, 7.6, 4.050, and 0.747 for the Baoxing population. A moderate degree of genetic differentiation (F st = 0.26) and no gene flow were found between these two populations. W. He and L. Lin contributed equally to this work.  相似文献   

19.
Analyses of Y chromosome haplotypes uniquely provide a paternal picture of evolutionary histories and offer a very useful contrast to studies based on maternally inherited mitochondrial DNA (mtDNA). Here we used a bioinformatic approach based on comparison of male and female sequence coverage to identify 4.7 Mb from the grey wolf (Canis lupis) Y chromosome, probably representing most of the male‐specific, nonampliconic sequence from the euchromatic part of the chromosome. We characterized this sequence and then identified ≈1,500 Y‐linked single nucleotide polymorphisms in a sample of 145 resequenced male wolves, including 75 Finnish wolf genomes newly sequenced in this study, and in 24 dogs and eight other canids. We found 53 Y chromosome haplotypes, of which 26 were seen in grey wolves, that clustered in four major haplogroups. All four haplogroups were represented in samples of Finnish wolves, showing that haplogroup lineages were not partitioned on a continental scale. However, regional population structure was indicated because individual haplotypes were never shared between geographically distant areas, and genetically similar haplotypes were only found within the same geographical region. The deepest split between grey wolf haplogroups was estimated to have occurred 125,000 years ago, which is considerably older than recent estimates of the time of divergence of wolf populations. The distribution of dogs in a phylogenetic tree of Y chromosome haplotypes supports multiple domestication events, or wolf paternal introgression, starting 29,000 years ago. We also addressed the disputed origin of a recently founded population of Scandinavian wolves and observed that founding as well as most recent immigrant haplotypes were present in the neighbouring Finnish population, but not in sequenced wolves from elsewhere in the world, or in dogs.  相似文献   

20.
Muller F  Voccia M  Bâ A  Bouvet JM 《Genetica》2009,135(2):185-198
We analysed the molecular diversity of Pterocarpus officinalis, a tree species distributed in Caribbean islands, South and Central America to quantify the genetic variation within island, to assess the pattern of differentiation and infer levels of gene flow; with the overall goal of defining a strategy of conservation. Two hundred two individuals of 9 populations were analysed using three chloroplast and six nuclear microsatellite markers. The observed heterozygosity varied markedly among the populations for nuclear (H Onuc = 0.20–0.50) and chloroplast microsatellites (H cp = 0.22–0.68). The continental population from French Guyana showed a higher value of H Onuc than island populations, and the differences were significant in some cases. The fixation index F IS ranged from −0.043 to 0.368; a significant heterozygote deficit was detected in 7 populations. The heterozygosity excess method suggested that two populations in Guadeloupe have undergone a recent bottleneck. Global and pairwise F ST were high for both nuclear (F STnuc = 0.29) and chloroplast microsatellites (F STcp = 0.58). The neighbour-joining tree based on both markers, presented a differentiation pattern that can be explained by the seed dispersal by flotation and marine stream. The comparison of Bayesian approach and the method based on allelic frequency demonstrate a very limited number of migrants between populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号