首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
High‐resolution, male‐inherited Y‐chromosomal markers are a useful tool for population genetic analyses of wildlife species, but to date have only been applied in this context to relatively few species besides humans. Using nine Y‐chromosomal STRs and three Y‐chromosomal single nucleotide polymorphism markers (Y‐SNPs), we studied whether male gene flow was important for the recent recovery of the brown bear (Ursus arctos) in Northern Europe, where the species declined dramatically in numbers and geographical distribution during the last centuries but is expanding now. We found 36 haplotypes in 443 male extant brown bears from Sweden, Norway, Finland and northwestern Russia. In 14 individuals from southern Norway from 1780 to 1920, we found two Y chromosome haplotypes present in the extant population as well as four Y chromosome haplotypes not present among the modern samples. Our results suggested major differences in genetic connectivity, diversity and structure between the eastern and the western populations in Northern Europe. In the west, our results indicated that the recovered population originated from only four male lineages, displaying pronounced spatial structuring suggestive of large‐scale population size increase under limited male gene flow within the western subpopulation. In the east, we found a contrasting pattern, with high haplotype diversity and admixture. This first population genetic analysis of male brown bears shows conclusively that male gene flow was not the main force of population recovery.  相似文献   

2.
Noninvasively collected genetic data can be used to analyse large‐scale connectivity patterns among populations of large predators without disturbing them, which may contribute to unravel the species’ roles in natural ecosystems and their requirements for long‐term survival. The demographic history of brown bears (Ursus arctos) in Northern Europe indicates several extinction and recolonization events, but little is known about present gene flow between populations of the east and west. We used 12 validated microsatellite markers to analyse 1580 hair and faecal samples collected during six consecutive years (2005–2010) in the Pasvik Valley at 70°N on the border of Norway, Finland and Russia. Our results showed an overall high correlation between the annual estimates of population size (Nc), density (D), effective size (Ne) and Ne/Nc ratio. Furthermore, we observed a genetic heterogeneity of ~0.8 and high Ne/Nc ratios of ~0.6, which suggests gene flow from the east. Thus, we expanded the population genetic study to include Karelia (Russia, Finland), Västerbotten (Sweden) and Troms (Norway) (477 individuals in total) and detected four distinct genetic clusters with low migration rates among the regions. More specifically, we found that differentiation was relatively low from the Pasvik Valley towards the south and east, whereas, in contrast, moderately high pairwise FST values (0.91–0.12) were detected between the east and the west. Our results indicate ongoing limits to gene flow towards the west, and the existence of barriers to migration between eastern and western brown bear populations in Northern Europe.  相似文献   

3.
Loss of connectivity and habitat destruction may lead to genetic depletion of wild animal populations, especially in species requiring large, connected territories as the brown bear (Ursus arctos). Brown bear populations of North Western Russia, Finland and Northern Norway have been assumed to form one large, continuous population; however this hypothesis has not been tested sufficiently. We have genotyped 1,887 samples from 2005 to 2008 from four distinct areas and used the resulting DNA profiles from 146 different individuals to analyze the genetic diversity, population structure, and the migration rates among groups. In addition, we have tested for traces of previous genetic bottlenecks. Individuals from Eastern Finland and Russian Karelia were grouped in the same cluster (“Karelia”), while distinctive subpopulations of brown bears were detected in the north (“Pasvik”), and the east (“Pinega”). All three subpopulations displayed high genetic variation, with expected heterozygosities (H E) of 0.77–0.81, but differentiation among the clusters was relatively low (average F ST?=?0.051, P?<?0.001). No evidence of genetic bottlenecks in the past was found. We detected a highly significant isolation-by-distance (IBD) pattern. For Pasvik, self-recruitment was found to be very high (96%), pointing to the possibility of genetic isolation. In contrast, between Karelia and Pinega we detected high, bi-directional migration rates (~30%), indicating genetic exchange. Conclusively, despite of a substantial influence of IBD on the genetic structure in the region, we detected considerable variation in connectivity among the identified clusters that could not be explained solely by the distance between them.  相似文献   

4.
We examined the genetic diversity and structure of wolf populations in northwestern Russia. Populations in Republic of Karelia and Arkhangelsk Oblast were sampled during 1995–2000, and 43 individuals were genotyped with 10 microsatellite markers. Moreover, 118 previously genotyped wolves from the neighbouring Finnish population were used as a reference population. A relatively large amount of genetic variation was found in the Russian populations, and the Karelian wolf population tended to be slightly more polymorphic than the Arkhangelsk population. We found significant inbreeding (F = 0.094) in the Karelian, but not in the Arkhangelsk population. The effective size estimates of the Karelian wolf population based on the approximate Bayesian computation and linkage disequilibrium methods were 39.9 and 46.7 individuals, respectively. AMOVA-analysis and exact test of population differentiation suggested clear differentiation between the Karelian, Arkhangelsk and Finnish wolf populations. Indirect estimates of gene flow based on the level of population differentiation (ϕ ST  = 0.152) and frequency of private alleles (0.029) both suggested a low level of gene flow between the populations (Nm = 1.4 and Nm = 3.7, respectively). Assignment analysis of Karelian and Finnish populations suggested an even lower number of recent migrants (less than 0.03) between populations, with a larger amount of migration from Finland to Karelia than vice versa. Our findings emphasise the role of physical obstacles and territorial behaviour in creating barriers to gene flow between populations in relatively limited geographical areas, even in large-bodied mammalian species with long-distance dispersal capabilities and an apparently continuous population structure.  相似文献   

5.
We analyzed mitochondrial DNA polymorphisms to search for evidence of the genetic structure and patterns of admixture in 124 populations (N = 1407 trees) across the distribution of Scots pine in Europe and Asia. The markers revealed only a weak population structure in Central and Eastern Europe and suggested postglacial expansion to middle and northern latitudes from multiple sources. Major mitotype variants include the remnants of Scots pine at the north-western extreme of the distribution in the Scottish Highlands; two main variants (western and central European) that contributed to the contemporary populations in Norway and Sweden; the central-eastern European variant present in the Balkan region, Finland, and Russian Karelia; and a separate one common to most eastern European parts of Russia and western Siberia. We also observe signatures of a distinct refugium located in the northern parts of the Black Sea basin that contributed to the patterns of genetic variation observed in several populations in the Balkans, Ukraine, and western Russia. Some common haplotypes of putative ancient origin were shared among distant populations from Europe and Asia, including the most southern refugial stands that did not participate in postglacial recolonization of northern latitudes. The study indicates different genetic lineages of the species in Europe and provides a set of genetic markers for its finer-scale population history and divergence inference.  相似文献   

6.
In the 1930s, the Scandinavian brown bear was close to extinction due to vigorous extermination programmes in Norway and Sweden. Increased protection of the brown bear in Scandinavia has resulted in the recovery of four subpopulations, which currently contain close to 1000 individuals. Effective conservation and management of the Scandinavian brown bear requires knowledge of the current levels of genetic diversity and gene flow among the four subpopulations. Earlier studies of mitochondrial DNA (mtDNA) diversity revealed extremely low levels of genetic variation, and population structure that grouped the three northern subpopulations in one genetic clade and the southernmost subpopulation in a second highly divergent clade. In this study, we extended the analysis of genetic diversity and gene flow in the Scandinavian brown bear using data from 19 nuclear DNA microsatellite loci. Results from the nuclear loci were strikingly different than the mtDNA results. Genetic diversity levels in the four subpopulations were equivalent to diversity levels in nonbottlenecked populations from North America, and significantly higher than levels in other bottlenecked and isolated brown bear populations. Gene flow levels between subpopulations ranged from low to moderate and were correlated with geographical distance. The substantial difference in results obtained using mtDNA and nuclear DNA markers stresses the importance of collecting data from both types of genetic markers before interpreting data and making recommendations for the conservation and management of natural populations. Based on the results from the mtDNA and nuclear DNA data sets, we propose one evolutionarily significant unit and four management units for the brown bear in Scandinavia.  相似文献   

7.
Recent findings in the greater Helsinki region of Hylochares cruentatus (Coleoptera, Eucnemidae), previously considered locally extinct, have shown ecological and morphological differentiation from H. cruentatus found in Russian Karelia. Despite their identical genetic constitution, differences in adult morphology, male genitalia as well as greatly differing life-history traits between the Finnish and Russian beetles prompted recognizing the Russian Hylochares as a distinct, new species: Hylochares populi n.sp., type locality Russia, Karelia, Kuganavalok. Single old specimens from Estonia and the Altai Mountains belong to the same taxon. Traditional morphological characters and life-history traits separate the two taxa, whereas the four applied genetic markers were identical, suggesting very recent diversification. The Russian H. populi lives in large soft-wooded aspen trees; H. cruentatus prefers tree- and bush-sized willows with harder wood. Conservation actions have to change focus from aspen trees to willow habitats to secure the survival of this rare beetle species in Finland.  相似文献   

8.

Aim

Brown bear populations in Scandinavia show a strong mitochondrial DNA (mtDNA) phylogeographic structure and low diversity relative to other parts of Europe. Identifying the timing and origins of this mtDNA structure is important for conservation programs aimed at restoring populations to a natural state. Therefore, it is essential to identify whether contemporary genetic structure is linked to post‐glacial recolonisation from divergent source populations or an artefact of demographic impacts during recent population bottlenecks. We employed ancient DNA techniques to investigate the timing and potential causes of these patterns.

Location

Scandinavia and Europe.

Methods

Ancient mtDNA sequences from 20 post‐glacial Scandinavian bears were used to investigate phylogeographic structure and genetic diversity over the last 6000 years. MtDNA from 19 Holocene Norwegian bears was compared with 499 sequences from proximate extant populations in Sweden, Finland, Estonia and western Russia. A single mtDNA sequence from a Holocene Denmark sample was compared with 149 ancient and modern bears from Western Europe.

Results

All nineteen Holocene Norwegian samples are identical to or closely related to the most common mtDNA haplotype found in northern Europe today. MtDNA diversity was low and not significantly different from extant populations in northern Europe. In Denmark, we identified a single mtDNA haplotype that is previously unrecorded from Scandinavia.

Main conclusions

The current discrete phylogeographic structure and lack of mtDNA diversity in Scandinavia is attributed to serial founder effects during post‐glacial recolonisation from divergent source populations rather than an artefact of recent anthropogenic impacts. In contrast to previous interpretations, the recolonisation of southern Scandinavia may not have been limited to bears from a single glacial refugium. Results highlight the importance of conserving the long‐term evolutionary separation between northern and southern populations and identify southern Scandinavia as an important reservoir of mtDNA diversity that is under threat in other parts of Europe.
  相似文献   

9.
The European lynx (Lynx lynx) hasexperienced significant decline in populationnumbers over large parts of its formerdistribution area in central and northernEurope. In Scandinavia (Sweden and Norway), thespecies has been subject to intense hunting and inthe early 20th century the population size mayhave been as low as about 100 animals. Duringthe rest of the century there have beenalternating periods of restricted hunting andtotal protection. Future management of theScandinavian lynx population will requireinsight into what effects demographicbottlenecks may have had on genetic variabilityand structure. For this purpose, 276 lynxesfrom Sweden, Norway, Finland, Estonia andLatvia were analysed for polymorphism at 11feline microsatellite loci and at themitochondrial DNA (mtDNA) control region.Scandinavian lynxes were found to be fixed fora single mtDNA haplotype, while this and threeadditional haplotypes were seen in Finland andthe Baltic States (Estonia and Latvia); thehaplotypes were all very similar, onlydiffering at 1–4 sites within a 700 bp regionsequenced. Microsatellite variability wasmoderate (He = 0.51–0.62) with lowerheterozygosity and fewer alleles in Scandinaviathan in Finland and the Baltic States together,though significant so only for the latter.Heterozygosity data in Scandinavia wereconsistent with a recent population bottleneck.Various analyses (e.g. Fst, individual-basedtree, assignment test) revealed distinctgenetic differentiation between Scandinavianlynxes and animals from Finland and the BalticStates. Some structure was evident withinScandinavia as well, suggesting an isolation bydistance. The observed partition of geneticvariability between Scandinavia and the easterncountries thereof indicates that lynxpopulations from the two regions may need to beseparately managed. We discuss what factors canhave contributed to the population geneticstructure seen in northern European lynxpopulations of today.  相似文献   

10.
1. At the end of the Last Glacial Maximum brown bears Ursus arctos recolonized the glacial landscape of Central and Northern Europe faster than all other carnivorous mammal species of the Holocene fauna. Ursus arctos was recorded in Northern Europe from the beginning of the Late-Glacial. The recolonization of northern Central Europe may have taken place directly after the maximum glaciation. The distribution of the brown bear was restricted to glacial refugia only during the Last Glacial Maximum, for probably no more than 10 000 years. 2. Genetic analyses have suggested three glacial refugia for the brown bear: the Iberian Peninsula, the Italian Peninsula and the Balkans. Subfossil records of Ursus arctos from north-western Moldova as well as reconstructed environmental conditions during the Last Glacial Maximum in this area suggest to us a fourth glacial refuge for the brown bear. Because of its connection to the Carpathians, we designate this as the ‘Carpathian refuge’. 3. Due to the low genetic distance between brown bears of northern Norway, Finland, Estonia, north-eastern Russia and the northern Carpathians (the so-called eastern lineage), the Carpathians were considered the geographical origin of the recolonization of these regions. During the recolonization of northern Europe the brown bear probably reached these areas rapidly from the putative Carpathian refuge.  相似文献   

11.
Multiple small populations of American black bears Ursus americanus, including the recently delisted Louisiana black bear subspecies U. a. luteolus, occupy a fragmented landscape in the Lower Mississippi Alluvial Valley, USA (LMAV). Populations include bears native to the LMAV, bears translocated from Minnesota during the 1960s, and recently reintroduced and colonizing populations sourced from within the LMAV. We estimated population structure, gene flow, and genetic parameters important to conservation of small populations using genotypes at 23 microsatellite markers for 265 bears from seven populations. We inferred five genetic clusters corresponding to the following populations: White River and western Mississippi, Tensas River and Three Rivers, Upper Atchafalaya, Lower Atchafalaya, and Minnesota. Upper Atchafalaya was suggested as the product of Minnesota-sourced translocations, but those populations have since diverged, likely because of a founder effect followed by genetic drift and isolation. An admixture zone recently developed in northeastern Louisiana and western Mississippi between migrants from White River and Tensas River, resulting in a Wahlund effect. However, gene flow among most populations has been limited and considerable genetic differentiation accumulated (global FST?=?0.22), particularly among the three Louisiana black bear populations that existed when federal listing occurred. Consistent with previous bottlenecks, founder effects, and persisting isolation, all LMAV bear populations had low genetic diversity (AR?=?2.08–4.81; HE?=?0.36–0.63) or small effective population size (NE?=?3–49). Translocating bears among populations as part of a regional genetic restoration program may help improve genetic diversity and increase effective population sizes.  相似文献   

12.
Variation at 7 isoenzyme loci was studied m 15 populations (6 from Iceland, 4 from W Norway, 4 from central Sweden at the Bothnian Gulf, and 1 from Russian Karelia) Heterozygosity within populations was found to be remarkably high compared with taxa with similar reproductive systems and phytogeographical histories Genetic distances calculated from isoenzyme data showed a close connection between the Norwegian and Swedish populations, indicating a western rather than an eastern immigration route for the isolated Swedish population Leaf shape variation displayed a large scale geographical pattern with strong differences between regions and low variation within populations  相似文献   

13.
Recovery of natural populations occurs often with simultaneous or subsequent range expansions. According to population genetic theory, genetic structuring emerges at the expansion front together with decreasing genetic diversity, owing to multiple founder events. Thereupon, as the expansion proceeds and connectivity among populations is established, homogenization and a resurgence of genetic diversity are to be expected. Few studies have used a fine temporal scale combined with genetic sampling to track range expansions as they proceed in wild animal populations. As a natural experiment, the historical eradication of large terrestrial carnivores followed by their recovery and recolonization may facilitate empirical tests of these ideas. Here, using brown bear (Ursus arctos) as model species, we tested predictions from genetic theory of range expansion. Individuals from all over Finland were genotyped for every year between 1996 and 2010 using 12 validated autosomal microsatellite markers. A latitudinal shift of about 110 km was observed in the distribution and delineation of genetic clusters during this period. As the range expansion proceeded, we found, as theory predicts, that the degree of genetic structure decreased, and that both genetic variation and admixture increased. The genetic consequences of range expansions may first be detected after multiple generations, but we found major changes in genetic composition after just 1.5 generations, accompanied by population growth and increased migration. These rapid genetic changes suggest an ongoing concerted action of geographical and demographic expansion combined with substantial immigration of bears from Russia during the recovery of brown bears within the large ecosystem of northern Europe.  相似文献   

14.
We estimated the phylogenetic relationships of brown bear maternal haplotypes from countries of northeastern Europe (Estonia, Finland and European Russia), using sequences of mitochondrial DNA (mtDNA) control region of 231 bears. Twenty-five mtDNA haplotypes were identified. The brown bear population in northeastern Europe can be divided into three haplogroups: one with bears from all three countries, one with bears from Finland and Russia, and the third composed almost exclusively of bears from European Russia. Four haplotypes from Finland and European Russia matched exactly with haplotypes from Slovakia, suggesting the significance of the current territory of Slovakia in ancient demographic processes of brown bears. Based on the results of this study and those from the recent literature, we hypothesize that the West Carpathian Mountains have served either as one of the northernmost refuge areas or as an important movement corridor for brown bears of the Eastern lineage towards northern Europe during or after the last ice age. Bayesian analyses were performed to investigate the temporal framework of brown bear lineages in Europe. The molecular clock was calibrated using Beringian brown bear sequences derived from radiocarbon-dated ancient samples, and the estimated mutation rate was 29.8% (13.3%-47.6%) per million years. The whole European population and Western and Eastern lineages formed about 175,000, 70,000 and 25,000 years before present, respectively. Our approach to estimating the time frame of brown bear evolution demonstrates the importance of using an appropriate mutation rate, and this has implications for other studies of Pleistocene populations.  相似文献   

15.
The grey wolf (Canis lupus) was numerous on the Scandinavian peninsula in the early 19th century. However, as a result of intense persecution, the population declined dramatically and was virtually extinct from the peninsula by the 1960s. We examined historical patterns of genetic variability throughout the period of decline, from 1829 to 1979. Contemporary Finnish wolves, considered to be representative of a large eastern wolf population, were used for comparison. Mitochondrial DNA (mtDNA) variability among historical Scandinavian wolves was significantly lower than in Finland while Y chromosome variability was comparable between the two populations. This may suggest that long-distance migration from the east has been male-biased. Importantly though, as the historical population was significantly differentiated from contemporary Finnish wolves, the overall immigration rate to the Scandinavian peninsula appears to have been low. Levels of variability at autosomal microsatellite loci were high by the early 1800s but declined considerably towards the mid-20th century. At this time, approximately 40% of the allelic diversity and 30% of the heterozygosity had been lost. After 1940, however, there is evidence of several immigration events, coinciding with episodes of marked population increase in Russian Karelia and subsequent westwards migration.  相似文献   

16.
Genetic variability of yellow potato cyst nematode G. rostochiensis from three Russian populations (Karelia, Vladimir oblast, and Moscow oblast) was investigated using two types of nuclear markers. Using RAPD markers identified with the help of six random primers (P-29, OPA-10, OPT-14, OPA-11, OPB-11, and OPH-20), it was possible to distinguish Karelian population from the group consisting of the populations from two adjacent regions (Moscow oblast and Vladimir oblast). Based on the combined matrix, containing 294 RAPD fragments, dendrogram of genetic differences was constructed, and the indices of genetic divergence and partition (P, H, and G(st)), as well as the gene flow indices N(m) between the nematode samples examined, were calculated. The dendrogram structure, genetic diversity indices, and variations of genetic distances between single individuals in each population from Karelia and Central Russia pointed to genetic isolation and higher genetic diversity of the nematodes from Karelia. Based on polymorphism of rDNA first intergenic spacer ITS1, attribution of all populations examined to the species G. rostochiensis was proved. Small variations of the ITS1 sequence in different geographic populations of nematodes from different regions of the species world range did not allow isolation of separate groups within the species. Possible factors (including interregional transportations of seed potato) affecting nematode population structure in Russia are discussed.  相似文献   

17.
The house sparrow Passer domesticus has been declining in abundance in many localities, including Finland. We studied the genetic diversity and differentiation of the house sparrow populations across Finland in the 1980s, at the onset of the species'' decline in abundance. We genotyped 472 adult males (the less dispersive sex) from 13 locations in Finland (covering a range of 400 × 800 km) and one in Sweden (Stockholm) for 13 polymorphic microsatellite markers. Our analysis of Finnish ringing records showed that natal dispersal distances are limited (90% <16 km), which confirmed earlier finding from other countries. The Finnish populations were panmictic, and genetically very homogeneous and the limited dispersal was sufficiently large to maintain their connectivity. However, all Finnish populations differed significantly from the Stockholm population, even though direct geographical distance to it was often smaller than among Finnish populations. Hence, the open sea between Finland and Sweden appears to form a dispersal barrier for this species, whereas dispersal is much less constrained across the Finnish mainland (which lacks geographical barriers). Our findings provide a benchmark for conservation biologists and emphasize the influence of landscape structure on gene flow.  相似文献   

18.
Genetic variability of yellow potato cyst nematode G. rostochiensis from three Russian populations (Karelia, Vladimir oblast, and Moscow oblast) was investigated using two types of nuclear markers. Using RAPD markers identified with the help of six random primers (P-29, OPA-10, OPT-14, OPA-11, OPB-11, and OPH-20), it was possible to distinguish Karelian population from the group consisting of the populations from two adjacent regions (Moscow oblast and Vladimir oblast). Based on the combined matrix, containing 294 RAPD fragments, dendrogram of genetic differences was constructed, and the indices of genetic divergence and partition (P, H, and G st), as well as the gene flow indices N m between the nematode samples examined, were calculated. The dendrogram structure, genetic diversity indices, and variations of genetic distances between single individuals in each population from Karelia and Central Russia pointed to genetic isolation and higher genetic diversity of the nematodes from Karelia.Based on polymorphism of rDNA first intergenic spacer ITS1, attribution of all populations examined to the species G. rostochiensis was proved. Small variations of the ITS1 sequence in different geographic populations of nematodes from different regions of the species world range did not allow isolation of separate groups within the species. Possible factors (including interregional transportations of seed potato) affecting nematode population structure in Russia are discussed.  相似文献   

19.
Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus) and brown bears (U. arctos) remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus), plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed <1% of the autosomal genome of the ABC Islands brown bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize.  相似文献   

20.
Atlantic salmon is characterized by a high degree of population genetic structure throughout its native range. However, while populations inhabiting rivers in Norway and Russia make up a significant proportion of salmon in the Atlantic, thus far, genetic studies in this region have only encompassed low to modest numbers of populations. Here, we provide the first “in‐depth” investigation of population genetic structuring in the species in this region. Analysis of 18 microsatellites on >9,000 fish from 115 rivers revealed highly significant population genetic structure throughout, following a hierarchical pattern. The highest and clearest level of division separated populations north and south of the Lofoten region in northern Norway. In this region, only a few populations displayed intermediate genetic profiles, strongly indicating a geographically limited transition zone. This was further supported by a dedicated cline analysis. Population genetic structure was also characterized by a pattern of isolation by distance. A decline in overall genetic diversity was observed from the south to the north, and two of the microsatellites showed a clear decrease in number of alleles across the observed transition zone. Together, these analyses support results from previous studies, that salmon in Norway originate from two main genetic lineages, one from the Barents–White Sea refugium that recolonized northern Norwegian and adjacent Russian rivers, and one from the eastern Atlantic that recolonized the rest of Norway. Furthermore, our results indicate that local conditions in the limited geographic transition zone between the two observed lineages, characterized by open coastline with no obvious barriers to gene flow, are strong enough to maintain the genetic differentiation between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号