首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1,2-Diaminocyclohexanedichloroplatinum(II) (DCDP) is an analogue of the clinically efficacious cancer chemotherapeutic drug cis-diamminedichloroplatinum(II) (cis-DDP). DCDP is presently undergoing clinical trials at least in part because a cis-DDP-resistant murine leukemia L1210 cell line is sensitive to its action. The alkaline elution technique was used to measure DNA-protein and DNA-interstrand crosslinks induced by DCDP in sensitive and resistant L1210 cells. This was compared to the action of cis-DDP and its clinically ineffective isomer trans-DDP. The action of DCDP was similar to that for cis-DDP with maximum crosslinking occurring between 6 and 12 h after a 1 h treatment. Both cis-DDP and DCDP exhibited proportionately higher levels of interstrand crosslinking than trans-DDP. Near complete removal of both classes of DCDP-induced crosslinks was seen by 72 h. While the extent of crosslinking was different for each compound, little difference between the two cell lines was noted with respect to crosslinking by either DCDP or trans-DDP. These cell lines exhibit a 2-fold resistance to both DCDP and trans-DDP and at equitoxic doses of both drugs the resistant cells demonstrated twice the interstrand crosslinks that were seen in the sensitive cells. The extent of crosslinking related directly to the concentration of drug. When treated with equitoxic doses of DCDP, cis-DDP or trans-DDP, the resistant cells consistently exhibited more interstrand crosslinks than sensitive cells, suggesting the existence of a more critical cytotoxic lesion which was not detectable by the alkaline elution technique. These lesions could be either intrastrand crosslinks or monofunctional platination. Resistance must be due to a differential sensitivity to the lesions that form, which may be due to an altered capacity to repair the lesions.  相似文献   

2.
The chemotherapeutic drug cisplatin (cis-diamminedichloroplatinum(II) (CDDP)) is widely used in the treatment of human cancers. However, the mechanism underlying intrinsic tumor resistance to CDDP remains elusive. Here, we demonstrate that treatment with CDDP resulted in down-regulation of c-Jun expression via caspase-9-dependent cleavage of c-Jun at Asp-65 and MEKK1-mediated ubiquitylation and degradation of c-Jun in CDDP-sensitive cancer cells. In contrast, activation of JNK2 (but not JNK1) phosphorylated and up-regulated the expression of c-Jun in CDDP-resistant cells. Activated c-Jun bound to the promoter regions of the MDR1 gene and promoted the expression of MDR1. Expression of a cleavage-resistant c-Jun mutant (D65A) suppressed CDDP-induced apoptosis of CDDP-sensitive cells, whereas depletion of JNK2, c-Jun, or MDR1 in CDDP-resistant cancer cells promoted apoptosis upon CDDP treatment. In addition, mammary gland tumors induced by polyomavirus middle T antigen in JNK2−/− mice were more sensitive to CDDP compared with those in JNK2+/+ mice. These findings highlight the instrumental role of c-Jun in the resistance of tumors to treatment with CDDP and indicate that c-Jun is a molecular target for improving cancer therapy.  相似文献   

3.
Direct injection of an anticancer agent into a metastatic lymph node (LN) has not been used as a standard treatment because evidence concerning the efficacy of local administration of a drug into a metastatic LN has not been established. Here we show that the combination of intralymphatic drug delivery with nano/microbubbles (NMBs) and ultrasound has the potential to improve the chemotherapeutic effect. We delivered cis-diamminedichloroplatinum (II) (CDDP) into breast carcinoma cells in vitro and found that apoptotic processes were involved in the antitumor action. Next, we investigated the antitumor effect of intralymphatic chemotherapy with NMBs and ultrasound in an experimental model of LN metastasis using MXH10/Mo-lpr/lpr mice exhibiting lymphadenopathy. The combination of intralymphatic chemotherapy with NMBs and ultrasound has the potential to improve the delivery of CDDP into target LNs without damage to the surrounding normal tissues. The present study indicates that intralymphatic drug delivery with NMBs and ultrasound will potentially be of great benefit in the clinical setting.  相似文献   

4.
The molecular mode of action leading to the anticancer activity of the drug cis-diamminedichloroplatinum(II), cis-DDP or cis-platinum is still the subject of speculation. In the present high field (400 MHz) 1H NMR study the results on coupling constants for cis- and trans-diammine bis(guanosine- 5′-monophosphate) and (d-guanosine-5′-monophosphate)platinum(II) complexes are presented and discussed. The 1H and 13C NMR chemical shifts obtained are consistent with the drug binding to N7 of each guanine. It has been found that the drug induces different conformational changes in the nucleotide from the trans-DDP isomer.  相似文献   

5.
E. coli chromosomal DNA wastreated with various Pt co-ordiantion compounds and then used as donor DNA in E. coli transformation. Genetic analysis of transformants obtained with Pt-treated DNA showed effects of cis-diamminedichloroplatinum(II) (cis-Pt(II)) and cis-dimethyl-1,3-diaminopropane CL4 (cis-Pt(IV) (DMDAP) on the processing of DNA. With trans-diamminedichloroplatinum(II) (trans-Pt(II)) appllied in similar concentrations no effects were found.The effects of cis-Pt(II) and cis-Pt(IV) (DMDAP) on the genetic processing were different. The effects of cis-Pt(II) could be explained by assuming intra-strand crosslinks as an important lesion.  相似文献   

6.
Cisplatin (cis-diamminedichloroplatinum) is a common chemotherapeutic drug that reacts with the N7 atoms of adjacent guanines in DNA to form the Pt-1,2-d(GpG) intrastrand cross-link (Pt-GG), a major product to block DNA replication. Translesion DNA synthesis has been implicated in chemoresistance during cisplatin treatment of cancer due to Pt-GG lesion bypass. Gene knockdown studies in human cells have indicated a role for polκ during translesion synthesis of the Pt-GG lesion. However, the bypass activity of polκ with cisplatin lesions has not been well characterized. In this study, we investigated polκ's ability to bypass Pt-GG lesion in vitro and determined two crystal structures of polκ in complex with Pt-GG DNA. The ternary complex structures represent two consecutive stages of lesion bypass: nucleotide insertion opposite the 5′G (Pt-GG2) and primer extension immediately after the lesion (Pt-GG3). Our biochemical data showed that polκ is very efficient and accurate in extending DNA primers after the first G of the Pt-GG lesion. The structures demonstrate that the efficiency and accuracy is achieved by stably accommodating the bases with the cisplatin adduct in the active site for proper Watson–Crick base pairing with the incoming nucleotide in both the second insertion and post-insertion complexes. Our studies suggest that polκ works as an extender for efficient replication of the Pt-GG lesion in cells. This work holds promise for considering polκ, along with polη, as potential targets for drug design, which together could improve the efficacy of cisplatin treatment for cancer therapy.  相似文献   

7.
8.
Apoptotic cysteine–aspartate proteases (caspases) are essential for the progression and execution of apoptosis, and detection of caspase fragmentation or activity is often used as markers of apoptosis. Cisplatin (cis-diamminedichloroplatinum (II)) is a chemotherapeutic drug that is clinically used for the treatment of solid tumours. We compared a cisplatin-resistant pleural malignant mesothelioma cell line (P31res1.2) with its parental cell line (P31) regarding the consequences of in vitro acquired cisplatin-resistance on basal and cisplatin-induced (equitoxic and equiapoptotic cisplatin concentrations) caspase-3, -8 and -9 fragmentation and proteolytic activity. Acquisition of cisplatin-resistance resulted in basal fragmentation of caspase-8 and -9 without a concomitant increase in proteolytic activity, and there was an increased basal caspase-3/7 activity. Similarly, cisplatin-resistant non-small-cell lung cancer cells, H1299res, had increased caspase-3 and -9 content compared with the parental H1299 cells. In P31 cells, cisplatin exposure resulted in caspase-9-mediated caspase-3/7 activation, but in P31res1.2 cells the cisplatin-induced caspase-3/7 activation occurred before caspase-8 or -9 activation. We therefore concluded that in vitro acquisition of cisplatin-resistance rendered P31res1.2 cells resistant to caspase-8 and caspase-9 fragments and that cisplatin-induced, initiator-caspase independent caspase-3/7 activation was necessary to overcome this resistance. Finally, the results demonstrated that detection of cleaved caspase fragments alone might be insufficient as a marker of caspase activity and ensuing apoptosis induction.  相似文献   

9.
10.
11.
Malignant mesothelioma (MM) is a fatal disease in dire need of therapy. The role of inflammasomes in cancer is not very well studied, however, literature supports both pro-and anti-tumorigenic effects of inflammasomes on cancer depending upon the type of cancer. Asbestos is a causative agent for MM and we have shown before that it causes inflammasome priming and activation in mesothelial cells. MM tumor cells/tissues showed decreased levels of inflammasome components like NLRP3 and caspase-1 as compared to human mesothelial cells or normal tissue counterpart of tumor. Based on our preliminary findings we hypothesized that treatment of MMs with chemotherapeutic drugs may elevate the levels of NLRP3 and caspase-1 resulting in increased cell death by pyroptosis while increasing the levels of IL-1β and other pro-inflammatory molecules. Therefore, a combined strategy of chemotherapeutic drug and IL-1R antagonist may play a beneficial role in MM therapy. To test our hypothesis we used two human MM tumor cell lines (Hmeso, H2373) and two chemotherapeutic drugs (doxorubicin, cisplatin). Through a series of experiments we showed that both chemotherapeutic drugs caused increases in NLRP3 levels, caspase-1 activation, pyroptosis and pro-inflammatory molecules released from MM cells. In vivo studies using SCID mice and Hmeso cells showed that tumors were smaller in combined treatment group of cisplatin and IL-1R antagonist (Anakinra) as compared to cisplatin alone or untreated control groups. Taken together our study suggests that chemotherapeutic drugs in combination with IL-1R antagonist may have a beneficial role in MM treatment.  相似文献   

12.
The effects ofcis-diamminedichloroplatinum(II) [cisplatin], a potential anticancer drug, were studied on pinocytotic functions in the cellular slime mouldDictyostelium discoideumby administering FITC-dextran as a fluid phase marker. Cisplatin treatment at a concentration of 100 and 200 μg/ml for 1 h causes inhibition in pinocytotic uptake in growingDictyosteliumcells in a dose-dependent manner. Cisplatin treatment induced the association of more actin with the cell cortex, thereby presumably restricting the flexibility of the cell membrane and inhibiting the formation of pinosomes. Ultrastructural analysis of cisplatin-treated cells showed a lower number of pinosomes. These results have been discussed in the light of cisplatin's known actions that affect various cellular functions.  相似文献   

13.
Injured endothelium is an important target for drug and/or gene therapy because brain microvascular endothelial cells (BMECs) play critical roles in various pathophysiological conditions. RNA-mediated gene silencing presents a new therapeutic approach for treating such diseases, but major challenge is to ensure minimal toxicity and target delivery of siRNA to injured BMECs. Injured BMECs overexpress tissue factor (TF), which the fusion protein EGFP-EGF1 could be targeted to. In this study, TNF alpha (TNF-α) was chosen as a stimulus for primary BMECs to produce injured endothelium in vitro. The EGFP-EGF1-PLGA nanoparticles (ENPs) with loaded TF-siRNA were used as a new carrier for targeted delivery to the injured BMECs. The nanoparticles then produced intracellular RNA interference against TF. We compared ENP-based transfections with NP-mediated transfections, and our studies show that the ENP-based transfections result in a more efficient downregulation of TF. Our findings also show that the TF siRNA-loaded ENPs had minimal toxicity, with almost 96% of the cells viable 24 h after transfection while Lipofectamine-based transfections resulted in only 75% of the cells. Therefore, ENP-based transfection could be used for efficient siRNA transfection to injured BMECs and for efficient RNA interference (RNAi). This transfection could serve as a potential treatment for diseases, such as stroke, atherosclerosis and cancer.  相似文献   

14.
The cytotoxic effect of the antitumor antibiotic peplomycin (PEP), a new member of bleomycin group antibiotics, toward HeLa cells and mouse FM3A cells is enhanced by some membrane-interacting drugs such as verapamil, persantin, prenylamine, chlorpromazine and anafranil. The enhancing action of verapamil is selective to this group antibiotics, since it does not potentiate the cytotoxic effects of vincristine, adriamycin, mitomycin C, cis-diamminedichloroplatinum(II) and macromomycin. An enhanced PEP cytotoxicity has been also demonstrated by the treatment of cells in the presence of increased CaCl2. This enhancing effect of increased CaCl2 is prevented by the Ca2+ transport inhibitor ruthenium red. Since these membrane-directed drugs have been shown to affect Ca2+ metabolism, we conclude that potentiation of PEP cytotoxicity by these drugs is mediated by an increase in intracellular Ca2+.  相似文献   

15.
Lung cancer is one of the leading causes of death in the world, and non-small cell lung carcinoma accounts for approximately 75–85 % of all lung cancers. In the present work, we studied the antitumor activity of the compound cis-(dichloro)tetramineruthenium(III) chloride {cis-[RuCl2(NH3)4]Cl} against human lung carcinoma tumor cell line A549. The present study aimed to investigate the relationship between the expression of MDR1 and CYP450 genes in human lung carcinoma cell lines A549 treated with cisCarboPt, cisCRu(III) and cisDRu(III). The ruthenium-based coordinated complexes presented low cytotoxic and antiproliferative activities, with high IC50 values, 196 (±15.49), 472 (±20.29) and 175 (±1.41) for cisCarboPt, cisCRu(III) and cisDRu(III), respectively. The tested compounds induced apoptosis in A549 tumor cells as evidenced by caspase 3 activation, but only at high concentrations. Results also revealed that the amplification of P-gp gene is greater in A549 cells exposed to cisCarboPt and cisCRu(III) than cisDRu(III). Taken together all these results strongly demonstrate that MDR-1 over-expression in A549 cells could be associated to a MDR phenotype of these cells and moreover, it is also contributing to the platinum, and structurally-related compound, resistance in these cells. The identification and characterization of novel mechanisms of drug resistance will enable the development of a new generation of anti-cancer drugs that increase cancer sensitivity and/or represent more effective chemotherapeutic agents.  相似文献   

16.
O6‐methylguanine‐DNA methyltransferase (MGMT) is a DNA‐repair protein promoting resistance of tumor cells to alkylating chemotherapeutic agents. Glioma cells are particularly resistant to this class of drugs which include temozolomide (TMZ) and carmustine (BCNU). A previous study using the RNA microarray technique showed that decrease of MGMT mRNA stands out among the alterations in gene expression caused by the cell growth‐depressing transfection of a T98G glioma cell line with liver‐type glutaminase (LGA) [Szeliga et al. (2009) Glia, 57, 1014]. Here, we show that stably LGA‐transfected cells (TLGA) exhibit decreased MGMT protein expression and activity as compared with non‐transfected or mock transfected cells (controls). However, the decrease of expression occurs in the absence of changes in the methylation of the promoter region, indicating that LGA circumvents, by an as yet unknown route, the most common mechanism of MGMT silencing. TLGA turned out to be significantly more sensitive to treatment with 100–1000 μM of TMZ and BCNU in the acute cell growth inhibition assay (MTT). In the clonogenic survival assay, TLGA cells displayed increased sensitivity even to 10 μM TMZ and BCNU. Our results indicate that enrichment with LGA, in addition to inhibiting glioma growth, may facilitate chemotherapeutic intervention.  相似文献   

17.
Previous studies from this laboratory indicated that microRNA-21 (miR-21) contributes to chemoresistance of glioblastoma multiforme (GBM) cells to teniposide, a type II topoisomerase inhibitor. We also showed that LRRFIP1 is a target of miR-21. In this study, we found that higher baseline LRRFIP1 expression in human GBM tissue (n = 60) is associated with better prognosis upon later treatment with teniposide. Experiments in cultured U373MG cells showed enhanced toxicity of teniposide against U373MG cells transfected with a vector that resulted in LRRFIP1 overexpression (vs. cells transfected with control vector). Experiments in nude mice demonstrated better response of LRRFIP1 overexpressing xenografts to teniposide. These findings indicate that high baseline LRRFIP1 expression in GBM is associated with better response to teniposide, and encourage exploring LRRFIP1 as a target for GBM treatment.  相似文献   

18.
Cyclophosphamide (CYC) is a known chemotherapeutic drug used widely for the treatment of leukemias, lymphomas and some solid tumors. Copper is an essential constituent of chromatin and its level is usually elevated in various malignancies. Combined modality chemotherapy involves the use of drug with other components for cancer treatment, such as radiation therapy or surgery. Photosensitizer anticancer drugs can be used in combination with light and may have synergistic effect on cancer. The present study is an attempt to show that CYC acts as prooxidant when used in combination with Cu(II) and white light. We hypothesize that CYC when given as a chemotherapeutic agent possibly interact with endogenous copper associated with chromatin of the cancer cells and generate ROS besides acting as DNA alkylating agent. Thus, during chemotherapy the oxidative stress is possibly generated by the drug through mobilizing endogenous Cu(II) which may attribute to the cytotoxic death of cancer cell.  相似文献   

19.
Treatment regimens for cancer patients using single chemotherapeutic agents often lead to undesirable toxicity, drug resistance, reduced uptake etc. Combination of two or more drugs is therefore becoming an imperative strategy to overcome these limitations. A step forward can be taken through delivery of the drugs used in combination via nanoparticles. Co-administration of chemotherapeutic drugs encapsulated in nanoparticles has been shown to result in synergistic effects and enhanced therapeutic efficacy. In present study, we explored the combination treatment of histone deacetylase inhibitor vorinostat (VOR) and topoisomerase II inhibitor etoposide (ETOP). The concurrent combination treatment of VOR and ETOP resulted in synergistic effect on human cervical HeLa cancer cells. VOR and ETOP were encapsulated into poly(ethylene glycol) monomethacrylate (POEOMA)-based disulfide cross-linked nanogels. The nanogels were synthesized using atom transfer radical polymerization (ATRP) via cyclohexane/water inverse mini-emulsion and were degradable in presence of intracellular glutathione (GSH) concentration. Both the drugs were loaded into the nanogels by physical encapsulation method and characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and differential scanning calorimetry (DSC). Both VOR- and ETOP-loaded nanogels showed sustained release profile. Furthermore, combination treatment drugs encapsulated of POEOMA nanogel demonstrated enhanced synergistic cytotoxic effect compared with combination of free drugs. Enhanced synergistic cell killing efficiency of drug-loaded POEOMA nanogels was due to increased apoptosis via caspase 3/7 activation. Therefore, combination of VOR- and ETOP-loaded PEG-based biodegradable nanogels may provide a promising therapy with enhanced anticancer effect.  相似文献   

20.
The synthesis, chemical characterization and functional evaluation are reported for dichloro(6-aminoethylaminopurine)platinum(II) and dichloro(6-hydroxyethylaminopurine)platinum(II) and dichloro(6-hydroxyethylamethylaminopurine)platinum(II) (i.e. Pt(6-AEAP), Pt(6-HEAP) and Pt(6-MHEAP) new complexes of platinum(II). Certain reaction conditions favored the formation of the tripurine platinum complex, but the monopurine complex could be obtained either by hydrolysis of the tripurine or by reacting at reduced temperature and concentration. Although neither compound was as effective as cis-diamminedichloroplatinum(II) (i.e. DDP) at reducing tumor cell viability or proliferation, both were associated with much less renal toxicity than DDP in the mouse kidney (i.e. Pt(6-AEAP):~20 × less; Pt(6-MHEAP): ~100 × less).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号