首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spartina anglica is an exotic perennial grass that can rapidly colonise the intertidal zone of temperate estuaries and lagoons. Consequently, there is considerable concern about its impact on estuarine flora and fauna. This study provides the first investigation of ecological impacts by S. anglica in Australia. The objective was to investigate the impacts of S. anglica on benthic macroinvertebrate communities inhabiting mudflat and native saltmarsh habitats at Little Swanport estuary, Tasmania. The null hypothesis that species richness and species abundance of benthic macroinvertebrates in exotic S. anglica marsh does not differ from adjacent native saltmarsh and mudflat habitats was tested. Eighteen species and 3716 macroinvertebrates were collected from 60 intertidal core samples in three habitats. Species richness, total abundance of invertebrates, crustacean abundance and mollusc abundance of mudflat communities were significantly (P < 0.05) lower when compared to those inhabiting adjacent S. anglica marsh and native saltmarsh. However, species richness and total abundance of invertebrates of native saltmarsh and S. anglica marsh did not differ significantly. Ordination of macroinvertebrate data clearly separated mudflat sites from vegetated sites but showed remarkable similarity between exotic and native vegetated sites.  相似文献   

2.
3.
Over the past few decades, land-use changes through conversion of global forest cover to exotic plantations is contributing to both habitat and biodiversity loss and species extinctions. To better understand human influences on ecosystem, we use diet composition from introduced Rainbow Trout Oncorhynchus mykiss as indicator of potential changes in the composition of stream-macroinvertebrates due to land use changes from native to exotic vegetation (eucalyptus plantations) in southern Chile. Water quality variables, aquatic macroinvertebrates and Rainbow Trout diet were studied in 12 sites from mountain streams located in two watersheds including one dominated by native riparian vegetation and the other dominated by exotic vegetation. As expected, richness and abundance of macroinvertebrates were clearly higher at sites in native forest than in those with exotic vegetation. Collector-gatherer was the most abundant functional feeding group, but there was no statistical difference in the functional composition between the two watersheds. Differences in in-stream macroinvertebrate availability was more higher correlated with changes in Rainbow Trout diets. Specifically, taxa consumed from the watershed dominated by native forests was higher than from the watershed with exotic vegetation. Additional environmental variables showed statistical differences between watersheds. The exotic vegetation sites had the highest concentrations of dissolved solids, suspended solids, nitrates, chlorides and sulphates. Our findings show that macroinvertebrate assemblage structure and trout diets can be altered by changes in riparian vegetation. The absence of specific macroinvertebrate taxa in streams with exotic vegetation was captured by the composition of trout diets. This suggest that Rainbow Trout diets can be a good biological indicator of land use practices and thus, diet can be used as a rapid and effective tool for evaluate environmental quality. Our findings provide insights about the design of aquatic monitoring programmes to improve detection of anthropogenic impacts in streams in South America and elsewhere.  相似文献   

4.

Macroinvertebrate community structure and assemblages associated with the planted, native submerged aquatic vegetation (SAV) species Heteranthera dubia (Jacq.) MacMillan and Potamogeton nodosus Poiret were examined in a series of constructed urban floodway wetlands, the Dallas Floodway Extension Lower Chain of Wetlands, Dallas, TX, USA. Macroinvertebrate community metrics, including abundance, richness, diversity, and evenness associated with SAV and three different wetlands of varying construction completion dates, water sources (direct or wetland-channeled wastewater effluent), and ecosystem management stage (established/reference or developing) were compared and analyzed. Assemblages at sampling sites were also classified and related to vegetation and wetland physicochemical parameters. Plant species affected only macroinvertebrate abundance, with the less-dissected P. nodosus supporting higher counts than H. dubia. Wetland age and water-effluent type had the most substantial effect on macroinvertebrate communities. The older, longer-managed wetland and wetland-channeled effluent habitat consistently demonstrated higher quality metrics and biodiversity than newly constructed, direct effluent wetland habitat. Increased vegetation cover and wetland age, coupled with moderate water temperature, pH, and DO levels were characteristics of more rich and diverse macroinvertebrate communities, including pollutant-sensitive taxa, such as Ephemeroptera and Trichoptera.

  相似文献   

5.
Human land use causes major changes in species abundance and composition, yet native and exotic species can exhibit different responses to land use change. Native populations generally decline in human‐impacted habitats while exotic species often benefit. In this study, we assessed the effects of human land use on exotic and native reptile diversity, including functional diversity, which relates to the range of habitat use strategies in biotic communities. We surveyed 114 reptile communities from localities that varied in habitat structure and human impact level on two Caribbean islands, and calculated species richness, overall abundance, and evenness for every plot. Functional diversity indices were calculated using published trait data, which enabled us to detect signs of trait filtering associated with impacted habitats. Our results show that environmental variation among sampling plots was explained by two Principal Component Analysis (PCA) ordination axes related to habitat structure (i.e., forest or nonforest) and human impact level (i.e., addition of man‐made constructions such as roads and buildings). Several diversity indices were significantly correlated with the two PCA axes, but exotic and native species showed opposing responses. Native species reached the highest abundance in forests, while exotic species were absent in this habitat. Human impact was associated with an increase in exotic abundance and species richness, while native species showed no significant associations. Functional diversity was highest in nonforested environments on both islands, and further increased on St. Martin with the establishment of functionally unique exotic species in nonforested habitat. Habitat structure, rather than human impact, proved to be an important agent for environmental filtering of traits, causing divergent functional trait values across forested and nonforested environments. Our results illustrate the importance of considering various elements of land use when studying its impact on species diversity and the establishment and spread of exotic species.  相似文献   

6.
Abstract Exotic plant invasions are a significant problem in urban bushland in Sydney, Australia. In low‐nutrient Hawkesbury Sandstone communities, invasive plants are often associated with urban run‐off and subsequent increases in soil nutrients, particularly phosphorus. Fire is an important aspect of community dynamics in Sydney vegetation, and is sometimes used in bush regeneration projects as a tool for weed control. This study addressed the question: ‘Are there differences in post‐fire resprouting and germination of native and exotic species in nutrient‐enriched communities, compared with communities not disturbed by nutrient enrichment?’ We found that in non‐enriched areas, few exotic species emerged, and those that did were unable to achieve the rapid growth that was seen in exotic plants in the nutrient‐enriched areas. Therefore, fire did not promote the invasion of exotic plants into areas that were not nutrient‐enriched. In nutrient‐enriched areas after fire, the diversity of native species was lower than in the non‐enriched areas. Some native species were able to survive and compete with the exotic species in terms of abundance, per cent cover and plant height. However, these successful species were a different suite of natives to those commonly found in the non‐enriched areas. We suggest that although fire can be a useful tool for short‐term removal of exotic plant biomass from nutrient‐enriched areas, it does not promote establishment of native species that were not already present.  相似文献   

7.
8.
Aim In terrestrial plant communities, the relationship between native species diversity and exotic success is typically scale‐dependent. It is often proposed that within local neighbourhoods, high native diversity limits resources, thereby inhibiting exotic success. However, environmental variation that manifests over space or time can create positive correlations between native diversity and exotic success at larger scales. In marine habitats, there have been few multi‐scale surveys of this pattern, so it is unclear how diversity, resource limitation and the environment influence the success of exotic species in these systems. Location Washington, USA. Methods I analysed nested spatial and temporal surveys of fouling communities, which are assemblages of sessile marine invertebrates, to test whether the relationships between native richness, resource availability and exotic cover supported the diversity‐stability and diversity‐resistance theories, to test whether these relationships changed with spatio‐temporal scale, and to explore the temperature preferences of native and exotic fouling species. Results Survey data failed to support diversity‐stability theory: space availability actually increased with native richness at the local neighbourhood scale, and neither space availability nor variability decreased with native richness across larger spatio‐temporal scales. I did find support for diversity‐resistance theory, as richness negatively correlated with exotic cover in local neighbourhoods. Unexpectedly, this negative correlation disappeared at intermediate scales, but emerged again at the regional scale. This scale‐dependent pattern could be partially explained by contrasting water temperature preferences of native and exotic species. Main conclusions Within local neighbourhoods, native diversity may inhibit exotic abundance, but the mechanism is unlikely related to resource limitation. At the largest scale, correlations suggest that native richness is higher in cooler environments, whereas exotic richness is higher in warmer environments. This large‐scale pattern contrasts with the typical plant community pattern, and has important implications for coastal management in the face of global climate change.  相似文献   

9.
Previous work has shown exotic and native plant species richness are negatively correlated at fine spatial scales and positively correlated at broad spatial scales. Grazing and invasive plant species can influence plant species richness, but the effects of these disturbances across spatial scales remain untested. We collected species richness data for both native and exotic plants from five spatial scales (0.5–3000 m2) in a nested, modified Whittaker plot design from severely grazed and ungrazed North American tallgrass prairie. We also recorded the abundance of an abundant invasive grass, tall fescue (Schedonorus phoenix (Scop.) Holub), at the 0.5-m2 scale. We used linear mixed-effect regression to test relationships between plant species richness, tall fescue abundance, and grazing history at five spatial scales. At no scale was exotic and native species richness linearly related, but exotic species richness at all scales was greater in grazed tracts than ungrazed tracts. Native species richness declined with increasing tall fescue abundance at all five spatial scales, but exotic species richness increased with tall fescue abundance at all but the broadest spatial scales. Severe grazing did not reduce native species richness at any spatial scale. We posit that invasion of tall fescue in this working landscape of originally native grassland plants modifies species richness-spatial scale relationships observed in less disturbed systems. Tall fescue invasion constitutes a unique biotic effect on plant species richness at broad spatial scales.  相似文献   

10.
In this study, we aimed to assess the processes controlling compositional change in a Northern Andean páramo highly affected by human‐induced disturbances over the last few decades (La Rusia, Colombia). Along the 3000–3800 m asl altitudinal range, we randomly sampled fifty 10 × 10 m plots. Therein, we measured altitude and variables related to soil conditions (i.e., moisture, nutrient contents, bulk density, and texture), occurrence of human‐induced disturbances (i.e., fire, vegetation clearing, potato cultivation, and cattle grazing), and land‐use history. We also recorded richness and abundance of plant species, identifying them as exotic or native. We differentiated four groups of plots according to their species composition. The groups had significant differences in altitude, soil conditions, land‐use history, and particularly, in richness of exotic species and exotic/native cover ratio. They could be ascribed to shrub‐ and grass‐páramo vegetation types based on their relative dominance of woody and herbaceous species; however, these groups were not arranged according to the hypothetical composition of altitudinal belts, but rather formed a mosaic of patches. This mosaic was determined not only by altitude but also by soil conditions and disturbance history of sites. Our results corroborate recent findings which highlight shrub‐ and grass‐páramo vegetation types as patches of contrasting species composition and structure that depend on local environmental variables, as well as human‐induced disturbances as a major determinant of compositional discontinuities in these ‘high mountain’ tropical ecosystems.  相似文献   

11.
Abstract Invasion of exotic plants into vegetation communities on low‐nutrient soils in Sydney is often attributed to increased phosphorus in the soil. However, the composition of native vegetation in nearby national parks has been found to be more closely correlated to combinations of soil nutrients and other environmental variables than phosphorus alone. This study examined whether phosphorus or a range of variables better matched patterns of native and exotic plants in urban bushland. Sites in urban bushland and national parks were sampled, vegetation frequency recorded and soil samples collected. Soil samples were analysed for a range of chemical and physical attributes. A significantly greater number of exotic species were found at the urban sites, and significantly fewer native species than in the national parks. All measured soil nutrients were found to be of a significantly increased concentration in urban soil. Using regression analysis, an index of all measured soil nutrients was found to explain more of the variation in the percentage of exotic species at a site than phosphorus alone. Multivariate analysis showed a gradient of sites from minimal exotic invasion to heavy invasion. However, this gradient also corresponded to changes in native species. The gradient was found to match that of increasing soil nutrient levels. A combination of soil nutrients was found to correlate better with the multivariate species composition than was phosphorus alone. The results suggest that it is the increase of many soil nutrients, not phosphorus alone, that is contributing to the invasion of urban bushland by exotic plants and the alteration of the suite of native species.  相似文献   

12.
Darwin acknowledged contrasting, plausible arguments for how species invasions are influenced by phylogenetic relatedness to the native community. These contrasting arguments persist today without clear resolution. Using data on the naturalization and abundance of exotic plants in the Auckland region, we show how different expectations can be accommodated through attention to scale, assumptions about niche overlap, and stage of invasion. Probability of naturalization was positively related to the number of native species in a genus but negatively related to native congener abundance, suggesting the importance of both niche availability and biotic resistance. Once naturalized, however, exotic abundance was not related to the number of native congeners, but positively related to native congener abundance. Changing the scale of analysis altered this outcome: within habitats exotic abundance was negatively related to native congener abundance, implying that native and exotic species respond similarly to broad scale environmental variation across habitats, with biotic resistance occurring within habitats.  相似文献   

13.
The vegetation and sediment of urban and non‐urban streams in the northern Sydney region were compared to examine the possible effects of urbanization on within‐stream vegetation. Many sediment characteristics were significantly different in urban streams. At least one exotic plant species was found in each urban stream sampled, but none were found in the non‐urban streams. The presence of exotic species led to the overall number and abundance of plant species being significantly higher in urban streams. Interestingly, the number and abundance of native species at the urban sites were the same as non‐urban sites, but a different suite of species was usually present. This suggests that urban streams favour exotic plants and certain native plants that are adapted to the modified conditions. The differences between the plant communities in the urban and non‐urban streams appeared to be associated with the increased level of nutrients in the urban stream sediment. Several multivariate techniques were used to assess the relative importance of individual nutrients, but no nutrients were directly associated with the observed differences. In particular, total phosphorus levels were less important in explaining the vegetation patterns than a combination of nutrients. It is therefore likely that the general increase of nutrients in stream sediment has enhanced exotic invasion and altered stream plant communities in Sydney streams.  相似文献   

14.
The riverine forests of the northern city of Edmonton, Alberta, Canada display strong resilience to disturbance and are similar in species composition to southern boreal mixedwood forest types. This study addressed questions such as, how easily do exotic species become established in urban boreal forests (species invasiveness) and do urban boreal forest structural characteristics such as, native species richness, abundance, and vertical vegetation layers, confer resistance to exotic species establishment and spread (community invasibility)? Eighty-four forest stands were sampled and species composition and mean percent cover analyzed using ordination methods. Results showed that exotic tree/shrub types were of the most concern for invasion to urban boreal forests and that exotic species type, native habitat and propagule supply may be good indicators of invasive potential. Native forest structure appeared to confer a level of resistance to exotic species and medium to high disturbance intensity was associated with exotic species growth and spread without a corresponding loss in native species richness. Results provided large-scale evidence that diverse communities are less vulnerable to exotic species invasion, and that intermediate disturbance intensity supports species coexistence. From a management perspective, the retention of native species and native forest structure in urban forests is favored to minimize the impact of exotic species introductions, protect natural succession patterns, and minimize the spread of exotic species.  相似文献   

15.
Abstract. Questions: This paper examines the long‐term change in the herbaceous layer of semi‐arid vegetation since grazing ceased. We asked whether (1) there were differences in the temporal trends of abundance among growth forms of plants; (2) season of rainfall affected the growth form response; (3) the presence of an invasive species influenced the abundance and species richness of native plants relative to non‐invaded plots, and (4) abundance of native plants and/or species richness was related to the time it took for an invasive species to invade a plot. Location: Alice Springs, Central Australia. Methods: Long‐term changes in the semi‐arid vegetation of Central Australia were measured over 28 years (1976–2004) to partition the effects of rainfall and an invasive perennial grass. The relative abundance (biomass) of all species was assessed 25 times in each of 24 plots (8 m × 1 m) across two sites that traversed floodplains and adjacent foot slopes. Photo‐points, starting in 1972, were also used to provide a broader overview of a landscape that had been intensively grazed by cattle and rabbits prior to the 1970s. Species’abundance data were amalgamated into growth forms to examine their relationship with environmental variation in space and time. Environmental variables included season and amount of rainfall, fire history, soil variability and the colonization of the plots by the exotic perennial grass Cenchrus ciliaris (Buffel grass). Results: Constrained ordination showed that season of rainfall and landscape variables relating to soil depth strongly influenced vegetation composition when Cenchrus was used as a covariate. When Cenchrus was included in constrained ordination, it was strongly related to the decline of all native growth forms over time. Univariate comparisons of non‐invaded vs impacted plots over time revealed unequivocal evidence that Cenchrus had caused the decline of all native growth form groups and species richness. They also revealed a contrasting response of native plants to season of rainfall, with a strong response of native grasses to summer rainfall and forbs to winter rainfall. In the presence of Cenchrus these responses were strongly attenuated. Discussion: Pronounced changes in the composition of vegetation were interpreted as a response to removal of grazing pressure, fluctuations in rainfall and, most importantly, invasion of an exotic grass. Declines in herbaceous species abundance and richness in the presence of Cenchrus appear to be directly related to competition for resources. Indirect effects may also be causing the declines of some woody species from changed fire regimes as a result of increased fuel loads. We predict that Cenchrus will begin to alter landscape level processes as a result of the direct and indirect effects of Cenchrus on the demography of native plants when there is a switch from resource limited (rainfall) establishment of native plants to seed limited recruitment.  相似文献   

16.
The impacts of differences in watershed land uses, and differences in seasonality on benthic macroinvertebrate communities, were evaluated in 12 stream sites within the Xitiaoxi River watershed, China, from April 2009 to January 2010. The composition of macroinvertebrate community differed significantly among three land use types. Forested sites were characterized by high taxa richness, diversity and the benthic‐index of biotic integrity (B‐IBI), while farmland and urban disturbed stream sites presented contrary patterns. The percentage of urban land use, conductivity, dissolved oxygen, ammonia nitrogen and total phosphorus were the major drivers for the variations. The land use related water quality stress gradients of the four sampling seasons were determined by means of four independent Principal Component Analyses. The responses of macroinvertebrate community metrics, to anthropogenic stressors, were explored using Spearman Rank Correlation analyses. All the selected metrics, including total numbers of taxa, numbers of Ephemeroptera, Plecoptera and Trichoptera taxa, percentage of non‐insect abundance, percentage of scrapers abundance, Pielou’s evenness index, Simpson diversity index, and the Benthic Index of Biotic Integrity were correlated significantly with environmental gradients (PC1) in autumn. In other seasons such correlations were less pronounced. Our results imply that autumn is the optimal time to sample macroinvertebrate communities, and to conduct water quality biomonitoring in this subtropical watershed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Considerable research has been devoted to understanding how plant invasions are influenced by properties of the native community and to the traits of exotic species that contribute to successful invasion. Studies of invasibility are common in successionally stable grasslands, but rare in recently disturbed or seral forests. We used 16 yr of species richness and abundance data from 1 m2 plots in a clearcut and burned forest in the Cascade Range of western Oregon to address the following questions: 1) is invasion success correlated with properties of the native community? Are correlations stronger among pools of functionally similar taxa (i.e. exotic and native annuals)? Do these relationships change over successional time? 2) Does exotic abundance increase with removal of potentially dominant native species? 3) Do the population dynamics of exotic and native species differ, suggesting that exotics are more successful colonists? Exotics were primarily annual and biennial species. Regardless of the measure of success (richness, cover, biomass, or density) or successional stage, most correlations between exotics and natives were non‐significant. Exotic and native annuals showed positive correlations during mid‐succession, but these were attributed to shared associations with bare ground rather than to direct biotic interactions. At peak abundance, neither cover nor density of exotics differed between controls and plots from which native, mid‐successional dominants were removed. Tests comparing nine measures of population performance (representing the pace, magnitude, and duration of population growth) revealed no significant differences between native and exotic species. In this early successional system, local richness and abundance of exotics are not explained by properties of the native community, by the presence of dominant native species, or by superior colonizing ability among exotics species. Instead natives and exotics exhibit individualistic patterns of increase and decline suggesting similar sets of life‐history traits leading to similar successional roles.  相似文献   

18.
Question: How is grazing intensity associated with species and morpho‐functional traits (MFTs) composition, productivity and richness of annual dominated grasslands? Have native and exotic species similar associations to this gradient? Location: Anthropogenic grassland in the Espinal vegetation in the sub‐humid area of the mediterranean type climate region of Chile (35°58’ S, 72°17’ W). Methods: Data were obtained from a long‐term (eight years) experiment with six stocking rates (1 to 3.5 sheep/ha). Detrended Correspondence Analysis (DCA) and regression analysis were used to determinate the relationship between grazing intensity and biomass, richness, abundance and traits of the species. Results: The first DCA axis was related to grazing intensity and explained most of the floristic variation (69.3%); the abundance of some non‐native species, e.g. Vulpia megalura were highly correlated with this axis. In the DCA for MFTs the first axis explained 87% of the variance and was also related to grazing intensity; the abundance of small size plants and shallow roots increased with grazing intensity. The relative abundance of grasses and composites, but not of legumes, changed with stocking rate: as grazing intensity increased composites became the predominant species to the detriment of grasses. The above‐ground biomass measured in exclusion cages declined with increasing grazing pressure. The richness of exotic species was greater compared to native ones at low stocking rates, but they converge to similar values at higher stocking rates. However, the relative abundance of exotic species was greater than 75% in all stocking rates. Conclusions: Grazing intensification has large effects in the structure of grassland in central Chile. With grazing intensities greater than 1 sheep/ha species characteristics change; evolving in a few years (6–8) towards a similar community regardless of the stocking rate. The overgrazed community has more native than exotic species richness, possibly due to greater defence traits against herbivory of this group of species.  相似文献   

19.
Preventing invasion by exotic species is one of the key goals of restoration, and community assembly theory provides testable predictions about native community attributes that will best resist invasion. For instance, resource availability and biotic interactions may represent “filters” that limit the success of potential invaders. Communities are predicted to resist invasion when they contain native species that are functionally similar to potential invaders; where phenology may be a key functional trait. Nutrient reduction is another common strategy for reducing invasion following native species restoration, because soil nitrogen (N) enrichment often facilitates invasion. Here, we focus on restoring the herbaceous community associated with coastal sage scrub vegetation in Southern California; these communities are often highly invaded, especially by exotic annual grasses that are notoriously challenging for restoration. We created experimental plant communities composed of the same 20 native species, but manipulated functional group abundance (according to growth form, phenology, and N‐fixation capacity) and soil N availability. We fertilized to increase N, and added carbon to reduce N via microbial N immobilization. We found that N reduction decreased exotic cover, and the most successful seed mix for reducing exotic abundance varied depending on the invader functional type. For instance, exotic annual grasses were least abundant when the native community was dominated by early active forbs, which matched the phenology of the exotic annual grasses. Our findings show that nutrient availability and the timing of biotic interactions are key filters that can be manipulated in restoration to prevent invasion and maximize native species recovery.  相似文献   

20.
The delivery of environmental flows for biodiversity benefits within regulated river systems can potentially contribute to exotic weed spread. This study explores whether exotic plants of a floodplain forest in Victoria, Australia, are characterised by specific functional groups and associated plant traits linked to altering hydrological conditions over time. Permanently marked 20 × 20 m2 plots from five wetland sites in Eucalyptus camaldulensis floodplain forest were sampled twice, first in the early 1990s (1993–1994) and then 15 years later (2007–2008). Species cover abundance data for understorey vegetation communities were segregated by season and analysed using ordination analysis. Exotic species richness was modelled as a function of site flooding history and native species richness using general linear models. Site ordinations by detrended correspondence analysis showed differential community compositions between survey dates, but native and exotic species were not clearly differentiated in terms of DCA1 scores. Most exotics belonged to functional groups containing annual species that germinate and reproduce under drier conditions. Exotics reproducing under wetter conditions were in the minority, predominantly perennial and capable of both sexual and asexual reproduction. Site flooding history and native species richness significantly predicted exotic species richness. Vegetation changes are partially structured by reduced flood frequency favouring increased abundance of exotic, sexually reproducing annuals at drier sites. Sites of low flood frequency are more sensitive to future exotic weed invasion and will require targeted management effort. Flow restoration is predicted to benefit propagule dispersal of species adopting dual regeneration strategies, which are predominantly natives in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号