首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Grazing by domestic livestock in native woodlands can have major effects on ecosystem functioning by the removal of plant species that form important functional groups. This paper documents the changes in floristics in a large group of remnants of native woodland left after agricultural clearing in southwestern Australia. Species richness and diversity were significantly reduced in remnants and the proportion of exotic species increased. Detrended Correspondence Analysis (DCA) was used to identify floristic and environmental patterns among plots and identified two distinct groups based on grazing intensity. This indicated that the significance of the relationship between grazing effects and DCA floristic axes was greater than edaphic characteristics that normally influence floristic patterns. Floristic characteristics of sites that were influencing the position of plots on the ordination diagram included proportion of exotic species and proportion of native perennial shrubs and herbs. Numbers of species of native shrubs and perennial herbs were significantly reduced in grazed plots and numbers of exotic annual grasses and herbs were significantly higher. Other life form groups such as native perennial grasses and geophytes were not significantly affected by grazing. Reproductive strategies of perennial species showed a significant decrease in numbers of resprouters and a significant increase in numbers of facultative seeder/sprouters. Exclosure plots showed increases in number and cover of perennial shrubs and herbs after three years whereas number and cover of exotic species did not change. Time series DCA showed that the floristic composition of exclosure plots in grazed sites became closer to that of the ungrazed sites.  相似文献   

2.
为了更好地理解放牧对草原生态系统物种多度分布格局的影响, 以及常见种和稀有种对维持群落多样性的作用, 以内蒙古典型草原为研究对象, 基于长期放牧控制实验平台(包括7个载畜率水平(0、1.5、3.0、4.5、6.0、7.5、9.0 sheep·hm-2)和两种地形系统(平地和坡地)), 研究了群落内全部物种、常见种和稀有种的丰富度和多度对放牧强度的响应规律, 并选取对数正态模型、对数级数模型和幂分割模型, 对物种多度数据进行拟合。结果表明: 1)平地系统中, 物种丰富度和多度在低放牧强度下(1.5、3.0 sheep·hm-2)增加, 而在中、高度放牧强度下(4.5-9.0 sheep·hm-2)降低, 全部物种的多度分布在大多数放牧强度下符合幂分割模型, 在高放牧强度下也符合对数正态模型; 坡地系统中, 物种丰富度和多度随着放牧强度增加而显著降低, 全部物种的多度分布在各个放牧强度下, 均符合幂分割模型和对数正态模型。2)随着放牧强度增加, 常见种的多度响应趋势与全部物种的响应趋势一致, 其多度分布均符合幂分割模型和对数正态模型; 稀有种的丰富度响应趋势与全部物种的响应趋势一致, 其多度分布符合幂分割模型, 同时也部分符合对数正态和对数级数模型。总之, 适宜的载畜率有利于生物多样性和初级生产力的提高, 平地系统中物种多度的响应在一定程度上支持放牧优化假说; 而坡地系统中不同物种多度的响应差异说明: 确定最佳载畜率时, 还需要考虑地形因素的影响。此外, 模型的拟合结果表明: 生态位分化机制对内蒙古典型草原物种多度分布起着主要作用, 常见种和稀有种通过不同的响应方式共同维持着草原生态系统的物种多样性。  相似文献   

3.
The interactive effect of grazing and soil resources on plant species richness and coexistence has been predicted to vary across spatial scales. When resources are not limiting, grazing should reduce competitive effects and increase colonisation and richness at fine scales. However, at broad scales richness is predicted to decline due to loss of grazing intolerant species. We examined these hypotheses in grasslands of southern Australia that varied in resources and ungulate grazing intensity since farming commenced 170 years ago. Fine-scale species richness was slightly greater in more intensively grazed upper slope sites with high nutrients but low water supply compared to those that were moderately grazed, largely due to a greater abundance of exotic species. At broader scales, exotic species richness declined with increasing grazing intensity whether nutrients or water supply were low or high. Native species richness declined at all scales in response to increasing grazing intensity and greater resource supply. Grazing also reduced fine-scale heterogeneity in native species richness and although exotics were also characterised by greater heterogeneity at fine scales, grazing effects varied across scales. In these grasslands patterns of plant species richness did not match predictions at all scales and this is likely to be due to differing responses of native and exotic species and their relative abundance in the regional species pool. Over the past 170 years intolerant native species have been eliminated from areas that are continually and heavily grazed, whereas transient, light grazing increases richness of both exotics and natives. The results support the observation that the processes and scales at which they operate differ between coevolved ungulate—grassland systems and those in transition due to recent invasion of herbivores and associated plant species.  相似文献   

4.
We used data from a 15-year experiment in a C4-dominated grassland to address the effects of community structure (i.e., plant species richness, dominance) and disturbance on invasibility, as measured by abundance and richness of exotic species. Our specific objectives were to assess the temporal and spatial patterns of exotic plant species in a native grassland in Kansas (USA) and to determine the factors that control exotic species abundance and richness (i.e., invasibility). Exotic species (90% C3 plants) comprised approximately 10% of the flora, and their turnover was relatively high (30%) over the 15-year period. We found that disturbances significantly affected the abundance and richness of exotic species. In particular, long-term annually burned watersheds had lower cover of exotic species than unburned watersheds, and fire reduced exotic species richness by 80–90%. Exotic and native species richness were positively correlated across sites subjected to different fire (r = 0.72) and grazing (r = 0.67) treatments, and the number of exotic species was lowest on sites with the highest productivity of C4 grasses (i.e., high dominance). These results provide strong evidence for the role of community structure, as affected by disturbance, in determining invasibility of this grassland. Moreover, a significant positive relationship between exotic and native species richness was observed within a disturbance regime (annually burned sites, r = 0.51; unburned sites, r = 0.59). Thus, invasibility of this C4-dominated grassland can also be directly related to community structure independent of disturbance. Received: 9 February 1999 / Accepted: 12 May 1999  相似文献   

5.
Abstract. A regional vegetation survey of the temperate grassy woodlands (temperate savanna) in Australia was designed to assess the effects of clearing and grazing on the composition of vegetation remnants and the adjacent pasture matrix. Vegetation was sampled across a range of habitats using 77 0.1024‐ha quadrats; the relative abundance of species was recorded. Classification analysis clustered the sites into three main groups that corresponded to intensity of grazing/clearing followed by groups based on underlying lithology (basalt, metasediment, granites). Using Canonical Correspondence Analysis, exogenous disturbance and environmental variables were related to the relative abundance of species; grazing intensity had the highest eigenvalue (0.27) followed by tree canopy cover (0.25), lithology (0.18), altitude (0.17) and slope (0.10). Based on two‐dimensional ordination scores, six species response groups were defined relating to intensity of pastoralism and nutrient status of the landscape. Abundance and dominance of native shrubs, sub‐shrubs, twiners and geophytes were strongly associated with areas of less‐intense pastoralism on low‐nutrient soils. The strongest effects on species richness were grazing followed by canopy cover. Continuously grazed sites had lower native species richness across all growth forms except native grasses. There was no indication that intermediate grazing intensities enhanced forb richness as a result of competitive release. Species richness for all native plants was lowest where trees were absent especially under grazed conditions. Canopy cover in ungrazed sites appeared to promote the co‐existence of shrubs with the herbaceous layer. Predicted declines in forb richness in treeless, ungrazed, sites were not detected. The lack of a disturbance‐mediated enhancement of the herbaceous layer was attributed to habitat heterogeneity at 0.1 ha sampling scale.  相似文献   

6.
Degraded communities often contain a subset of the species that comprised the predisturbance community. These represent an important legacy of the predisturbance state, yet restoration treatments may be detrimental to them. This study examined the potential of leaf traits and life form to predict whether restoration treatments can maintain legacy swards of Austrostipa bigeniculata (hereafter Austrostipa) while controlling exotic annuals in temperate eucalypt woodlands. Treatments included carbon addition to reduce soil nitrate, both with and without burning or pulse grazing to deplete exotic seed pools. We compared leaf traits of Austrostipa with a native grass (Themeda triandra) known to be advantaged, and 8 exotic annual species known to be disadvantaged by these treatments. Leaf traits indicated potentially greater negative impacts of carbon addition on exotic annuals compared to Austrostipa, and on Austrostipa compared to Themeda, suggesting a net restoration benefit. Similarly, burning or pulse grazing is expected to have little negative impact on perennial resprouting grasses (hemicryptophytes; Austrostipa and Themeda) compared with annual exotics (therophytes) with short‐lived seed banks. Treatment responses were largely consistent with predictions: treatments that significantly reduced exotic annuals had no net disadvantage to Austrostipa swards despite significant reductions in Austrostipa seedling growth with carbon addition. Indeed by Year 3, Austrostipa mortality in untreated plots led to 46% lower Austrostipa abundance than in treated plots at one site, potentially due to litter build‐up or other mechanisms. We conclude that plant traits provide a useful framework for designing restoration transitions that retain native legacy species while controlling exotics.  相似文献   

7.
Abstract. Questions: This paper examines the long‐term change in the herbaceous layer of semi‐arid vegetation since grazing ceased. We asked whether (1) there were differences in the temporal trends of abundance among growth forms of plants; (2) season of rainfall affected the growth form response; (3) the presence of an invasive species influenced the abundance and species richness of native plants relative to non‐invaded plots, and (4) abundance of native plants and/or species richness was related to the time it took for an invasive species to invade a plot. Location: Alice Springs, Central Australia. Methods: Long‐term changes in the semi‐arid vegetation of Central Australia were measured over 28 years (1976–2004) to partition the effects of rainfall and an invasive perennial grass. The relative abundance (biomass) of all species was assessed 25 times in each of 24 plots (8 m × 1 m) across two sites that traversed floodplains and adjacent foot slopes. Photo‐points, starting in 1972, were also used to provide a broader overview of a landscape that had been intensively grazed by cattle and rabbits prior to the 1970s. Species’abundance data were amalgamated into growth forms to examine their relationship with environmental variation in space and time. Environmental variables included season and amount of rainfall, fire history, soil variability and the colonization of the plots by the exotic perennial grass Cenchrus ciliaris (Buffel grass). Results: Constrained ordination showed that season of rainfall and landscape variables relating to soil depth strongly influenced vegetation composition when Cenchrus was used as a covariate. When Cenchrus was included in constrained ordination, it was strongly related to the decline of all native growth forms over time. Univariate comparisons of non‐invaded vs impacted plots over time revealed unequivocal evidence that Cenchrus had caused the decline of all native growth form groups and species richness. They also revealed a contrasting response of native plants to season of rainfall, with a strong response of native grasses to summer rainfall and forbs to winter rainfall. In the presence of Cenchrus these responses were strongly attenuated. Discussion: Pronounced changes in the composition of vegetation were interpreted as a response to removal of grazing pressure, fluctuations in rainfall and, most importantly, invasion of an exotic grass. Declines in herbaceous species abundance and richness in the presence of Cenchrus appear to be directly related to competition for resources. Indirect effects may also be causing the declines of some woody species from changed fire regimes as a result of increased fuel loads. We predict that Cenchrus will begin to alter landscape level processes as a result of the direct and indirect effects of Cenchrus on the demography of native plants when there is a switch from resource limited (rainfall) establishment of native plants to seed limited recruitment.  相似文献   

8.
Previous research has found that plant diversity declines more quickly in exotic than native grassland plots, which offers a model system for testing whether diversity decline is associated with specific plant traits. In a common garden experiment in the Southern Great Plains in central Texas, USA, we studied monocultures and 9-species mixtures of either all exotic or all native grassland species. A total of 36 native and exotic species were paired by phylogeny and functional group. We used community-level measures (relative abundance in mixture) and whole-plant (height, aboveground biomass, and light capture) and leaf-level traits (area, specific leaf area, and C:N ratio) to determine whether trait differences explained native-exotic differences in functional group diversity. Increases in species’ relative abundance in mixture were correlated with high biomass, height, and light capture in both native and exotic communities. However, increasing exotic species were all C4 grasses, whereas, increasing native species included forb, C3 grass and C4 grass species. Exotic C4 grasses had traits associated with relatively high resource capture: greater leaf area, specific leaf area, height, biomass, and light capture, but similar leaf C:N ratios compared to native C4 grasses. Leaf C:N was consistently higher for native than exotic C3 species, implying that resource use efficiency was greater in natives than exotics. Our results suggest that functional diversity will differ between grasslands restored to native assemblages and those dominated by novel collections of exotic species, and that simple plant traits can help to explain diversity decline.  相似文献   

9.
Question: Can managing disturbance regimes alone or in combination with seeding native species serve to shift the balance from exotic towards native species? Location: Central coast of California, USA. Methods: We measured vegetation composition for 10 yr in a manipulative experiment replicated at three sites. Treatments included no disturbance, grazing and clipping at three frequencies with and without litter removal. We seeded eight native species into clipped plots and compared cover in comparable plots with no seeding. Results: Regardless of frequency, clipping generally shifted community dominance from exotic annual grasses to exotic annual forbs, rather than consistently favoring native species. At one site, perennial grass cover decreased in no‐disturbance plots, but only after 4 yr. Litter removal had minimal impact on litter depth and plant community composition. Grazing had a highly variable effect on the abundance of different plant guilds across sites and years. Seeding increased abundance of only two of eight native species. Conclusions: Managing disturbance regimes alone is insufficient to restore native species guilds in highly‐invaded grasslands and seeding native species has highly variable success.  相似文献   

10.
Floristic differences between cattle-grazed and macropod-grazed sites (protected from domestic stock by enclosure within a Holocene lava flow) were examined in Eucalyptus savanna in north Queensland, Australia. While macropod-grazed sites have had a lower incidence of fire than the cattle-grazed sites, it seems probable that grazing impacts per se are the major differences between these treatments. One dominant (Capillipedium parviflorum) and another common (Sehima nervosa) native perennial grass in the macropod-grazed treatment were not recorded within the cattle-grazed treatment. There was generally a lower species richness and Shannon-Weaver diversity of perennial forbs in the cattle-grazed treatment compared to the macropod-grazed treatment. There was higher richness, diversity, and abundance of annual grasses in the cattle-grazed treatment compared to the macropod-grazed treatment. The relative richness of native and exotic species was not significantly affected by cattle grazing.  相似文献   

11.
Question: How does grazing intensity affect plant density, cover and species richness in an Patagonian arid ecosystem? Location: Monte steppe ecoregion, SW Argentina. Methods: I analysed the effect of grazing on plant density, cover and species richness using a stocking rate gradient within the same habitat. Six paddocks were used with stocking rates ranging between 0.002 – 0.038 livestock/ha. Plant density, species richness, plant cover and percentage of grazed branches were determined by sampling plots within each paddock. The percentage of grazed branches was used as an independent measurement of grazing intensity. Results: Higher stocking rates were related to lower plant density, species richness and plant cover. The paddock with the lowest grazing intensity had 86% more plants per unit area, 63% more plant cover and 48% higher species richness. The percentage of grazed branches and the quantity of dung increased with stocking rate. Conclusions: Introduced livestock seriously affect native vegetation in the Patagonian Monte. The damage observed in this xerophytic plant community suggests that plant adaptations to aridity do not provide an advantage to tolerate or avoid grazing by vertebrate herbivores in this region. Plant degradation in this arid environment is comparable to the degradation found in more humid ecosystems.  相似文献   

12.
Different management regimes imposed on similar habitat types provide opportunities to investigate mechanisms driving community assembly and changes in species composition. We investigated the effect of pasture management on vegetation composition in wetlands with varying spatial isolation on a Florida cattle ranch. We hypothesized that increased pasture management intensity would dampen the expected negative effect of wetland isolation on native species richness due to a change from dispersal‐driven community assembly to niche‐driven assembly by accentuated environmental tolerance. We used native plant richness, exotic plant richness and mean coefficient of conservatism (CC) to assess wetland plant assemblage composition. Sixty wetlands were sampled, stratified by three levels of isolation across two pasture management intensities; semi‐native (less intensely managed; mostly native grasses, never fertilized) and agronomically improved (intensely managed, planted with exotic grasses, and fertilized). Improved pasture wetlands had lower native richness and CC scores, and greater total soil phosphorus and exotic species coverage compared to semi‐native pasture wetlands. Increased wetland isolation was significantly associated with decreases in native species richness in semi‐native pasture wetlands but not in improved pasture wetlands. Additionally, the species–area relationship was stronger in wetlands in improved pastures than semi‐native pastures. Our results indicate that a) native species switch from dispersal‐based community assembly in semi‐native pastures to a species‐sorting process in improved pastures, and b) recently‐introduced exotic species already sorted for more intensive management conditions are primarily undergoing dispersal‐based community assembly. That land‐use may alter the relative importance of assembly processes and that different processes drive native and exotic richness has implications for both ecosystem management and restoration planning.  相似文献   

13.
《新西兰生态学杂志》2011,24(2):123-137
Changes in the vegetation of Flat Top Hill, a highly modified conservation area in semi;arid Central Otago, New Zealand, are described four years after the cessation of sheep and rabbit grazing. Unusually moist weather conditions coincide with the four-year period of change in response to the cessation of grazing. Between 1993 and 1997, the average richness and diversity (H') of species increased, and the average proportion of native species decreased significantly. The vegetation was significantly richer in exotic annual and perennial grass species, exotic perennial forbs, exotic woody species and native tussock grasses in 1997 than in 1993. Eight response guilds of species are identified. Most "remnant" native shrubs and forbs were stable, in that they remained restricted to local refugia and showed little change in local frequency. However, taller native grass species increased, some locally, and others over wide environmental ranges. Rare native annual forbs and several native perennial species from "induced" xeric communities decreased, and this may be a consequence of competition from exotic perennial grasses in the absence of grazing. The invasive exotic herb Sedum acre decreased in abundance between 1993 and 1997, but several other prominent exotic species increased substantially in range and local frequency over a wide range of sites. Exotic woody species, and dense, sward-forming grasses are identified as potential threats to native vegetation recovery.  相似文献   

14.
Previous work has shown exotic and native plant species richness are negatively correlated at fine spatial scales and positively correlated at broad spatial scales. Grazing and invasive plant species can influence plant species richness, but the effects of these disturbances across spatial scales remain untested. We collected species richness data for both native and exotic plants from five spatial scales (0.5–3000 m2) in a nested, modified Whittaker plot design from severely grazed and ungrazed North American tallgrass prairie. We also recorded the abundance of an abundant invasive grass, tall fescue (Schedonorus phoenix (Scop.) Holub), at the 0.5-m2 scale. We used linear mixed-effect regression to test relationships between plant species richness, tall fescue abundance, and grazing history at five spatial scales. At no scale was exotic and native species richness linearly related, but exotic species richness at all scales was greater in grazed tracts than ungrazed tracts. Native species richness declined with increasing tall fescue abundance at all five spatial scales, but exotic species richness increased with tall fescue abundance at all but the broadest spatial scales. Severe grazing did not reduce native species richness at any spatial scale. We posit that invasion of tall fescue in this working landscape of originally native grassland plants modifies species richness-spatial scale relationships observed in less disturbed systems. Tall fescue invasion constitutes a unique biotic effect on plant species richness at broad spatial scales.  相似文献   

15.
杭州西溪湿地植物组成及其与水位光照的关系   总被引:7,自引:0,他引:7       下载免费PDF全文
 杭州西溪湿地是在自然湿地基础上,并在一千多年农渔耕作用下形成的城市边缘次生湿地。随着工业化和城市化,它的面积急剧萎缩,植被受 干扰,生态脆弱,不久前成立的西溪国家湿地公园已经将保护提上日程。该文在报道这类特殊湿地植被结构和物种多样性的基础上试图回答下 列问题:何种小生境利于保护本地和湿地植物多样性?入侵种在各种小生境中的影响如何?怎样防控?根据调查,将西溪湿地草本层的小生境 分成5种类型:强光高基、弱光(有树遮光)高基、强光低基、强光高渚和强光低渚。采用分层和随机取样相结合的方法调查这5种小生境下的植 物群落组成,以重要值作为变量来计算物种多样性指数并排序。共26个地点,约234 m2的样方。结果显示在农渔耕的背景下,水位高低及光照 等自然因子对植物组成具有一定的选择作用。强光高基生境物种丰富度最高,其中本土、木本和豆科植物数量最多,而入侵种、湿生物种数量 最低;强光低渚生境的情况正好相反。强光高基生境有利于保持本土植物多样性,降低入侵种的竞争能力,但不利于湿地植物的存在;强光低 基有中度本土植物多样性及抵御入侵种的能力,有较大的草本比例和湿地植物比例,是一个保持良好的湿地环境。有利于湿地植物的低湿生境 目前在西溪比例较低,湿地植物偏少,这主要与西溪先前人类从事农业和渔业活动有关。在去除影响景观、影响本土物种多样性的入侵种的同 时,可考虑增加低湿的生境,并补种湿地物种。  相似文献   

16.
A wide road verge on the Bogong High Plains near Falls Creek (north‐eastern Victoria), stabilised with exotic species in the late 1950s, was monitored for species composition and cover between 1989 and 2010. Following the removal of cattle grazing in 1991, the cover and species richness of native shrubs, forbs and grasses increased on the verge. Changes were initially slow, but by 1999, they were profound. The cover of exotic species decreased over the same period, but the species richness of exotic species remained unchanged. A wildfire in 2003 did not alter the trajectories of change. Although native species are proving to be competitive, the exotic rhizomic grass Brown‐top Bent (Agrostis capillaris) has been very persistent and is still locally dominant. Feral horses and rabbits are future threats to the continued colonisation by native species.  相似文献   

17.
Best RJ  Arcese P 《Oecologia》2009,159(1):139-150
The ability of an exotic species to establish in a system may depend not only on the invasibility of the native community, but also on its interactions with other exotic species. Though examples of mutually beneficial interactions between exotic species are known, few studies have quantified these effects or identified specific mechanisms. We used the co-invasion of an endangered island ecosystem by exotic Canada geese (Branta canadensis) and nine exotic annual grasses to study the effects of an invading herbivore on the success of invading grasses. On our study islands in southwestern Canada, we found that geese fed selectively on the exotic grasses and avoided native forbs. Counter to current theory suggesting that the grasses should be limited by a selective enemy, however, the grasses increased in proportional abundance under grazing whereas forbs showed declining abundance. Testing potential mechanisms for the effects of grazing on grasses, we found that the grasses produced more stems per area when grazing reduced vegetation height and prevented litter accumulation. Forming dense mats of short stems appeared to be an efficient reproductive and competitive strategy that the Eurasian grasses have evolved in the presence of grazers, conferring a competitive advantage in a system where the native species pool has very few annual grasses and no grazers. Germination trials further demonstrated that selective herbivory by geese enables their dispersal of exotic grass seed between heavily invaded feeding areas and the small islands used for nesting. In summary, the exotic geese facilitated both the local increase and the spatial spread of exotic grasses, which in turn provided the majority of their diet. This unexpected case of positive feedback between exotic species suggests that invasion success may depend on the overall differences between the evolutionary histories of the invaders and the evolutionary history of the native community they enter. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Livestock grazing is a common management practise in semi-natural grasslands in Central Europe. Different types of livestock (horses, cattle, sheep) and grazing intensity are known to affect the richness and composition of plant species. However, knowledge of grazing-dependent effects on invertebrates is limited. We examined the influence of horse, cattle and sheep grazing on the richness, abundance and composition of land snail species in 21 calcareous nutrient-poor grassland areas in the northwestern Jura Mountains, Switzerland. Grazing by different livestock species did not affect the species richness, abundance and species composition of land snails. Furthermore, the number of open-land species and the ratio of large- to small-sized snail species or individuals did not differ among the three pasture types. However, independent of livestock species, grazing intensity negatively influenced the snail fauna. Snail species richness, abundance and number of Red list species decreased with increasing grazing intensity. Grazing intensity also affected the occurrence of individual snail species (Truncatellina cylindrica, Cecilioides acicula, Candidula unifasciata and Trichia plebeia). To preserve the snail fauna in nutrient-poor grasslands, pastures can be stocked with horses, cattle or sheep. However, both maximum stocking rate (number of livestock units per hectare) and grazing duration (number of grazing days per year) must be carefully defined for the proper management of the pastures.  相似文献   

19.
El Niño Southern Oscillation (ENSO) events have profound consequences for the dynamics of terrestrial ecosystems. Since increased climate variability is expected to favour the invasive success of exotic species, we conducted a field experiment to study the effects that simulated rainy ENSO events in combination with herbivores and shade have on the composition of a semiarid herbaceous community in north-central Chile. We hypothesized that water pulses, such as those associated with rainy ENSO events could trigger significant changes in the relative abundance of exotic and native herbaceous species. Specifically, we predicted an increase in native grasses and a reduction in the abundance of exotic species, especially prostrate forbs, if water pulses were combined with reduced herbivory. We found that herbivory by small mammals, especially introduced European rabbits (Oryctolagus cuniculus) and hares (Lepus europaeus), have an overwhelming effect on species abundance and composition in this semiarid herbaceous community. Herbivore exclusion produced an overall increase in herb density and biomass mostly due to the extraordinary growth of tall native grasses (especially Bromus berterianus) that outcompeted small prostrate forbs (both native and exotic ones), and small exotic grasses (Koeleria pleoides, Schismus arabicus). Our results suggest that it might be possible to enhance the recovery of native grasses by applying efficient herbivore control during rainy years such as those associated with ENSO events although a negative consequence would be the loss of small native forbs, which greatly contribute to the richness of herbaceous communities in semiarid ecosystems.  相似文献   

20.
Most of our knowledge of the effect of grazing on grassland structure is based on grazed–ungrazed contrasts. The effects of grazing in the most common scenario, where grazing intensity varies from low to high grazing intensity, are less known. The objectives of this paper were to 1) quantify the effect of stocking rates on species richness and diversity of grasslands world‐wide, and 2) evaluate the response under different environmental and experimental conditions. We conducted a meta‐analysis of experiments with at least two levels of controlled stocking rates and evaluated their effect on species richness and diversity. The results showed that the response of richness and diversity to either reducing or increasing stocking rate from a moderate level mostly fell within the range  25% or  5 species. Mean response of species richness and diversity to increasing stocking rate from moderate to high levels was negative. Mean response to lowering stocking rate from moderate levels was not different from zero. However, overall, species richness significantly decreased as stocking rate increased. The response of richness and diversity to stocking rate was not related to mean precipitation, productivity or aridity. However, the most negative responses of richness to stocking rate were larger in arid, low productivity systems than in subhumid and humid systems. The effects of grazing on richness and diversity found in this review were smaller than the effects on species composition shown by the literature. Thus, grazing drastically changes species composition, but the net change of species and diversity is much smaller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号