首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the pattern of bird species richness in native and exotic forest patches in Hungary. We hypothesized that species-area relationship will depend on forest naturalness, and on the habitat specialization of bird species. Therefore, we expected strong species-area relationship in native forest patches and forest bird species, and weaker relationship in exotic forest patches containing generalist species. We censused breeding passerine bird communities three times in 13 forest patches with only native tree species, and 14 with only exotic trees in Eastern Hungary in 2003. Although most bird species (92%) of the total of 41 species occurred in both exotic and native forests, the species-area relationship was significant for forest specialist, but not for generalist species in the native forests. No relationship between bird species and area was found for either species group in the forest with exotic tree species. The comparison of native versus exotic forest patches of similar sizes revealed that only large (>100 ha) native forests harbor higher bird species richness than exotic forests for the forest specialist bird species. There is no difference between small and medium forest patches and in richness of generalist species. Thus, the species-area relationship may diminish in archipelago of exotic habitat patches and/or for habitat generalist species; this result supports the warning that the extension of exotic habitats have been significantly contributing to the decline of natural community patterns.  相似文献   

2.
The invasion of exotic species into natural habitats is considered to be a major threat to biodiversity, and many studies have examined how exotic plants directly affect native plant species through competitive interactions for abiotic resources. However, although exotics can have potentially great ecological and evolutionary consequences, very few researchers have studied the effect of exotics on the interactions between plants and their mutualistic partners, such as pollinators, and none have reported on such impacts in logged and undisturbed boreal forest ecosystems. Here we show how experimental introductions of an exotic plant species (Phacelia tanacetifolia Bentham) affect pollinator visitation and female reproductive success of a native plant (Melampyrum pratense L.) in recently disturbed (i.e., logged) and in undisturbed boreal forest habitats. The presence of Phacelia significantly increased the number of bumble bees entering plots in both habitat types. However, the exotic species had a strong negative impact on the visitation rate to the native species in both habitat types. Despite this negative impact on pollinator visitation, the exotic had no effect on female reproductive success of the native species in any habitat. Our results show that seed production may be more robust than pollinator visitation to exotic invasion, irrespective of habitat disturbance history.  相似文献   

3.
The study investigated the effects of human-induced landscape patterns on species richness in forests. For 80 plots of fixed size, we measured human disturbance (categorized as urban/industrial and agricultural land areas), at ‘local’ and ‘landscape’ scale (500 m and 2500 m radius from each plot, respectively), the distance from the forest edge, and the size and shape of the woody patch. By using GLM, we analyzed the effects of disturbance and patch-based measures on both total species richness and the richness of a group of specialist species (i.e. the ‘ancient forest species’), representing more specific forest features. Patterns of local species richness were sensitive to the structure and composition of the surrounding landscape. Among the landscape components taken into account, urban/industrial land areas turned out as the most threatening factor for both total species richness and the richness of the ancient forest species. However, the best models evidenced a different intensity of the response to the same disturbance category as well as a different pool of significant variables for the two groups of species. The use of groups of species, such as the ancient forest species pool, that are functionally related and have similar ecological requirements, may represent an effective solution for monitoring forest dynamics under the effects of external factors. The approach of relating local assessment of species richness, and in particular of the ancient forest species pool, to land-use patterns may play an important role for the science-policy interface by supporting and strengthening conservation and regional planning decision making.  相似文献   

4.
The once extensive native forests of New Zealand’s central North Island are heavily fragmented, and the scattered remnants are now surrounded by a matrix of exotic pastoral grasslands and Pinus radiata plantation forests. The importance of these exotic habitats for native biodiversity is poorly understood. This study examines the utilisation of exotic plantation forests by native beetles in a heavily modified landscape. The diversity of selected beetle taxa was compared at multiple distances across edge gradients between each of the six possible combinations of adjacent pastoral, plantation, clearfell and native forest land-use types. Estimated species richness (Michaelis–Menten) was greater in production habitats than native forest; however this was largely due to the absence of exotic species in native forest. Beetle relative abundance was highest in clearfell-harvested areas, mainly due to colonisation by open-habitat, disturbance-adapted species. More importantly, though, of all the non-native habitats sampled, beetle species composition in mature P. radiata was most similar to native forest. Understanding the influence of key environmental factors and stand level management is important for enhancing biodiversity values within the landscape. Native habitat proximity was the most significant environmental correlate of beetle community composition, highlighting the importance of retaining native remnants within plantation landscapes. The proportion of exotic beetles was consistently low in mature plantation stands, however it increased in pasture sites at increasing distances from native forest. These results suggest that exotic plantation forests may provide important alternative habitat for native forest beetles in landscapes with a low proportion of native forest cover.  相似文献   

5.
In Canada it is generally accepted that most indigenous earthworms did not survive glaciation, and that the majority of the earthworms now inhabiting Canadian soils are relatively recent introductions of European origin. Although these exotic earthworms are generally considered to be beneficial in agricultural soils, their effects can be less benign in forested ecosystems. Studies have shown that invading earthworms can significantly alter the forest floor, affecting the distribution of carbon, nitrogen and other chemicals, roots, microbes and other elements of the soil fauna, and even understory vegetation. This paper summarizes the current distribution of exotic and native earthworm species in Canadian forests and draws on the results of studies of invasion patterns and environmental impacts in northern forests in North America and Europe to discuss potential outcomes for forests in Canada. The potential for variables such as temperature, pH, litter palatability and dispersal, to limit or promote the invasion of exotic earthworms in Canadian forests is discussed, and areas for future research are proposed. The same earthworm species that are invading forests in northern Europe and the US are also invading Canadian forests. Several species of exotic earthworms are already established in a wide range of deciduous and coniferous forest types, including the boreal. Evidence is presented to suggest that further expansion into Canadian forests is likely.  相似文献   

6.
Abstract Aim In general, the plant communities of oceanic islands suffer more from exotic plant invasions than their continental equivalents. At least part of this difference may be contributed by differences in non‐biological factors, such as the antiquity and intensity of human impacts and the absence of internal barriers to dispersal, rather than differences in inherent invasibility. We tested the resistance of species‐rich continental rain forests to plant invasion on a small, continental island that has been subject to prolonged and intensive human impact. Location Singapore is a 683‐km2 equatorial island <1 km from the Asian mainland and with a population of 4 million people. It has a continental biota but has been subject to human impacts as intense as on any oceanic island. Methods We sampled twenty‐nine sites in seven vegetation types, ranging from urban wasteland to fragments of primary lowland rain forest. In each sample plot, all plant species were identified, exotic cover was estimated, and a range of environmental variables measured. Additional qualitative surveys for exotic invasion were made in other forest areas in Singapore. The data were analysed by Spearman's rank correlation coefficient. Results The number of exotic species recorded at a site was unrelated to the number of native species. Across all sites, percentage canopy opening had the highest correlation with the number of exotic species, while soil pH (which largely reflects the incorporation of calcareous construction wastes) had the highest correlation if the mangrove sites were excluded. There were no exotics in mangrove forest and only a tropical American, bird‐dispersed shrub, Clidemia hirta (L.) D. Don (Melastomataceae: Koster's Curse), in primary and tall secondary forest patches. The species‐poor early stages of woody plant succession on highly degraded soils were also very resistant to exotic plant invasion. Main conclusions Long‐isolated rain forest fragments in an exotic‐dominated continental island landscape resist invasion by exotic plants, suggesting that the problems on oceanic islands may reflect an inherently greater invasibility. This study also adds to the increasing evidence that the floras of tropical rain forest fragments in South‐east Asia are remarkably resilient on a time‐scale of decades to a century or more.  相似文献   

7.
Amazonian forests function as biomass and biodiversity reservoirs, contributing to climate change mitigation. While they continuously experience disturbance, the effect that disturbances have on biomass and biodiversity over time has not yet been assessed at a large scale. Here, we evaluate the degree of recent forest disturbance in Peruvian Amazonia and the effects that disturbance, environmental conditions and human use have on biomass and biodiversity in disturbed forests. We integrate tree-level data on aboveground biomass (AGB) and species richness from 1840 forest plots from Peru's National Forest Inventory with remotely sensed monitoring of forest change dynamics, based on disturbances detected from Landsat-derived Normalized Difference Moisture Index time series. Our results show a clear negative effect of disturbance intensity tree species richness. This effect was also observed on AGB and species richness recovery values towards undisturbed levels, as well as on the recovery of species composition towards undisturbed levels. Time since disturbance had a larger effect on AGB than on species richness. While time since disturbance has a positive effect on AGB, unexpectedly we found a small negative effect of time since disturbance on species richness. We estimate that roughly 15% of Peruvian Amazonian forests have experienced disturbance at least once since 1984, and that, following disturbance, have been increasing in AGB at a rate of 4.7 Mg ha−1 year−1 during the first 20 years. Furthermore, the positive effect of surrounding forest cover was evident for both AGB and its recovery towards undisturbed levels, as well as for species richness. There was a negative effect of forest accessibility on the recovery of species composition towards undisturbed levels. Moving forward, we recommend that forest-based climate change mitigation endeavours consider forest disturbance through the integration of forest inventory data with remote sensing methods.  相似文献   

8.
Plantation forests are of increasing importance worldwide for wood and fibre production, and in some areas they are the only forest cover. Here we investigate the potential role of exotic plantations in supporting native forest-dwelling carabid beetles in regions that have experienced extensive deforestation. On the Canterbury Plains of New Zealand, more than 99% of the previous native forest cover has been lost, and today exotic pine (Pinus radiata) plantations are the only forest habitat of substantial area. Carabids were caught with pitfall traps in native kanuka (Kunzea ericoides) forest remnants and in a neighbouring pine plantation, grassland and gorse (Ulex europaeus) shrubland. A total of 2,700 individuals were caught, with significantly greater abundance in traps in young pine, grassland and gorse habitats than in kanuka and older pine. Rarefied species richness was greatest in kanuka, a habitat that supported two forest specialist species not present in other habitat types. A critically endangered species was found only in the exotic plantation forest, which also acts as a surrogate habitat for most carabids associated with kanuka forest. The few remaining native forest patches are of critical importance to conservation on the Canterbury Plains, but in the absence of larger native forest areas plantation forests are more valuable for carabid conservation than the exotic grassland that dominates the region.  相似文献   

9.
Understanding species diversity and disturbance relationships is important for biodiversity conservation in disturbance‐driven boreal forests. Species richness and evenness may respond differently with stand development following fire. Furthermore, few studies have simultaneously accounted for the influences of climate and local site conditions on species diversity. Using forest inventory data, we examined the relationships between species richness, Shannon''s index, evenness, and time since last stand‐replacing fire (TSF) in a large landscape of disturbance‐driven boreal forest. TSF has negative effect on species richness and Shannon''s index, and a positive effect on species evenness. Path analysis revealed that the environmental variables affect richness and Shannon''s index only through their effects on TSF while affecting evenness directly as well as through their effects on TSF. Synthesis and applications. Our results demonstrate that species richness and Shannon''s index decrease while species evenness increases with TSF in a boreal forest landscape. Furthermore, we show that disturbance frequency, local site conditions, and climate simultaneously influence tree species diversity through complex direct and indirect effects in the studied boreal forest.  相似文献   

10.
Human disturbance threatens and modifies forest ecosystems worldwide. Previous studies have investigated the effects of human impact on local bird communities in disturbed forests, but we still lack information on how bird species richness and ecological processes respond to different forest modifications present at a landscape scale. In a heterogeneous South African landscape, we chose six types of indigenous scarp forest, differing in the intensity of human disturbance: continuous natural forests and natural forest fragments in nature reserves, forest fragments in eucalyptus plantations, fragments in the agricultural matrix, forest gardens and secondary forests in game reserves. In 36 study sites, we investigated the bird community using point counts and observed the seed removal of birds at the native tree species Celtis africana. Species richness did not differ among the forest types, but abundance varied significantly with most birds observed in fragments in the agricultural matrix, forest gardens, and secondary forests. The higher bird abundance in these forests was mainly due to forest generalists, shrubland and open country species whereas forest specialists were rarely present. Changes in species composition were also confirmed by multivariate analysis which clearly separated bird communities by forest type. Frugivore abundance in C. africana was highest in natural forest fragments, fragments in the agricultural matrix, forest gardens and secondary forests. The same trend was found for the estimated total number of fruits removed per C. africana tree, though the differences among forest types were not significant. Consequently, modified forests seem to maintain important ecological functions as they provide food sources for generalist species which may, due to their mobility, enhance natural plant regeneration. However, we could show that protected forest habitats are important refugees for specialist species sensitive to human disturbance.  相似文献   

11.
Mechanistic insights from invasion biology indicate that propagule pressure of exotic species and native community structure can independently influence establishment success. The role of native community connectivity via species dispersal and its potential interaction with propagule pressure on invasion success in metacommunities, however, remains unknown. Native community connectivity may increase biotic resistance to invasion by enhancing species richness and evenness, but the effects could depend upon the level of propagule pressure. In this study, a mesocosm experiment was used to evaluate the independent and combined effects of exotic propagule pressure and native community connectivity on invasion success. The effects of three levels of exotic Daphnia lumholtzi propagule pressure on establishment success, community structure and ecosystem attributes were evaluated in native zooplankton communities connected by species dispersal versus unconnected communities, and relative to a control without native species. Establishment of the exotic species exhibited a propagule dose‐dependent relationship with high levels of propagule pressure resulting in the greatest establishment success. Native community connectivity, however, effectively reduced establishment at the low level of propagule pressure and further augmented native species richness across propagule pressure treatments. Propagule pressure largely determined the negative impacts of the exotic species on native species richness, native biomass and edible producer biomass. The results highlight that native community connectivity can reduce invasion success at a low propagule dose and decrease extinction risk of native competitors, but high propagule pressure can overcome connectivity‐mediated biotic resistance to influence establishment and impact of the exotic species. Together, the results emphasize the importance of the interaction of propagule pressure and community connectivity as a regulator of invasion success, and argue for the maintenance of metacommunity connectivity to confer invasion resistance.  相似文献   

12.
Temperate humid grasslands are known to be particularly vulnerable to invasion by alien plant species when grazed by domestic livestock. The Flooding Pampa grasslands in eastern Argentina represent a well-documented case of a regional flora that has been extensively modified by anthropogenic disturbances and massive invasions over recent centuries. Here, we synthesise evidence from region-wide vegetation surveys and long-term exclosure experiments in the Flooding Pampa to examine the response of exotic and native plant richness to environmental heterogeneity, and to evaluate grazing effects on species composition and diversity at landscape and local community scales. Total plant richness showed a unimodal distribution along a composite stress/fertility gradient ranging several plant community types. On average, more exotic species occurred in intermediate fertility habitats that also contained the highest richness of resident native plants. Exotic plant richness was thus positively correlated with native species richness across a broad range of flood-prone grasslands. The notion that native plant diversity decreases invasibility was supported only for a limited range of species-rich communities in habitats where soil salinity stress and flooding were unimportant. We found that grazing promoted exotic plant invasions and generally enhanced community richness, whereas it reduced the compositional and functional heterogeneity of vegetation at the landscape scale. Hence, grazing effects on plant heterogeneity were scale-dependent. In addition, our results show that environmental fluctuations and physical disturbances such as large floods in the pampas may constrain, rather than encourage, exotic species in grazed grasslands.  相似文献   

13.
The macrofungal communities of Irish native tree species (ash and oak) and exotic tree species (Scots pine and Sitka spruce) forests were examined through the collection of sporocarps over 3 yr. Sampling of 27 plots revealed 186 species of macrofungi, including 10 species new to Ireland. The species richness of non-native Sitka spruce and Scots pine forests was similar to that of native oak forests. However, specific communities of macrofungi existed in each of the forest types as confirmed by non-metric multidimensional scaling and multi-response permutation procedure. Indicator species analysis was used to identify macrofungi which are indicative of the four forest types. The oak community lacked certain species/genera known to be distinctive of oak woods in Britain, possibly due to low inoculum availability as a result of historic removal of Ireland’s oak forests. Our results indicate that, while being similar to native forests in species richness, non-native forests of Sitka spruce and Scots pine in Ireland harbour many fungal species which are not typical of native forests, particularly members of the genus Cortinarius.  相似文献   

14.
High species richness, resource availability and disturbance are community characteristics associated with forest invasibility. We categorized commonly measured community variables, including species composition, topography, and landscape features, within both mature and 15-year-old clearcuts in West Virginia, USA. We evaluated the importance of each variable for predicting the degree of forest invasion by early-establishing exotic invasive plants. Biotic variables, including overall richness (excluding exotic invasive species) and mutually exclusive native and exotic non-invasive species richness, were the strongest indicators of invasibility. Sites that were located on northeast-facing slopes, more mesic conditions, or in clearcuts were more likely to be invaded by exotic invasive plants. Invasion of clearcut sites was more dependent on available microsites (e.g., lower solar radiation, northeast-facing slopes, and lower elevations) within each site than on the condition of the surrounding landscape, whereas invasion into the mature forests was dependent more on the surrounding landscape (e.g., proximity to paved roads). Our results indicate that exotic invasive plant species in our study area respond similarly as other plant species to resource availability and that competitive interactions are relatively unimportant. Current invasion into this landscape is more likely to be a passive reaction to site conditions instead of a driver of change.  相似文献   

15.
Most habitats in the Azores have undergone substantial land-use changes and anthropogenic disturbance during the last six centuries. In this study we assessed how the richness, abundance and composition of arthropod communities change with: (1) habitat type and (2) the surrounding land-use at different spatial scales. The research was conducted in Terceira Island, Azores. In eighty-one sites of four different habitat types (natural and exotic forests, semi-natural and intensively managed pastures), epigaeic arthropods were captured with pitfall traps and classified as endemic, native or introduced. The land-use surrounding each site was characterized within a radius ranging from 100 to 5000 m. Non-parametric tests were used to identify differences in species richness, abundance and composition between habitat types at different spatial scales. Endemic and native species were more abundant in natural forests, while introduced species were more abundant in intensively managed pastures. Natural forests and intensively managed pastures influenced arthropod species richness and composition at all spatial scales. Exotic forests and semi-natural pastures, however, influenced the composition of arthropod communities at larger scales, promoting the connectivity of endemic and native species populations. Local species richness, abundance and composition of arthropod communities are mostly determined by the presence of nearby natural forests and/or intensively managed pastures. However, semi-natural pastures and exotic forests seem to play an important role as corridors between natural forests for both endemic and native species. Furthermore, exotic forests may serve as a refuge for some native species.  相似文献   

16.
There have been few reports of invasions in continental rain forests, especially for exotic animals. This study provides original data concerning the potential of exotic drosophilid species to colonize the Amazonian tropical rain forest. To investigate if the structure of drosophilid assemblages differed in response to anthropogenic disturbance, we performed a taxonomic survey at six sites within the Yasuni National Park in Ecuadorian Amazonia along a disturbance gradient from pristine to clearcut artificial forest. A total of 7425 individuals from 34 species were collected of which seven species were exotic. There was significant variation in the assemblage composition along this disturbance gradient; 31 percent of which was explained by the presence of exotic species, particularly at the most disturbed sites, through nonmetric multidimensional scaling and SIMPER analyses. These results confirm the susceptibility of continental rain forests to invasion by exotic species. There is an urgent need to develop and implement monitoring systems, for example, based on drosophilid assemblage surveys, to detect exotic invasions in continental tropical forests.  相似文献   

17.
Moffatt  S.F.  McLachlan  S.M.  Kenkel  N.C. 《Plant Ecology》2004,174(1):119-135
Extensive landscape modification by humans has led to the fragmentation of riparian forests across North America. We compared the vegetation of extant riparian forest along an urban-rural disturbance gradient. In 1999, twenty-five sites along Assiniboine River in Manitoba, Canada were categorized according to land use: urban, suburban, high intensity rural, low intensity rural, and relatively high quality reference forest. Differences in herbaceous, shrub, and tree species composition and diversity were related to the proportion of surrounding land use, forest patch size, connectivity, and area:perimeter ratio. Urban riparian forests were more disturbed and isolated. They were smaller and characterized by drier, more alkaline soils. Moreover, they had significantly lower native and overall understorey species diversity, and had a higher proportion of exotics including Solanum dulcamara and Hesperis matronalis. Suburban forests were less disturbed, faced greater development pressure, and had sandier soils. Although suburban understorey diversity was similar to that of rural forests, suburban sites had a higher proportion of exotic species, especially escaped horticultural and invasive species including Caragana arborescens and Rhamnus cathartica. Reference sites were relatively large and exhibited greater connectivity, but there was little difference in species composition and diversity among high intensity rural, low intensity rural, and reference sites. These site types were less disturbed than either urban or suburban forests, and reference sites were characterized by hydrophilic species including Scirpus fluviatilis and Carex aquatilis. Our results suggest that landscape measures of disturbance, and related changes in environment, may be confidently used to assess impacts of land use on vegetation along urban-rural gradients. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
We study how endemic, native and introduced arthropod species richness, abundance, diversity and community composition vary between four different habitat types (native forest, exotic forest of Cryptomeria japonica, semi-natural pasture and intensive pasture) and how arthropod richness and abundance change with increasing distance from the native forest in adjacent habitat types in Santa Maria Island, the Azores. Arthropods were sampled in four 150 m long transects in each habitat type. Arthropods were identified to species level and classified as Azorean endemic, single-island endemic (SIE), native, or introduced. The native forest had the highest values for species richness of Azorean endemics, SIEs and natives; and also had highest values of Azorean endemic diversity (Fisher’s alpha). In contrast, the intensive pasture had the lowest values for endemic and native species richness and diversity, but the highest values of total arthropod abundance and introduced species richness and diversity. Arthropod community composition was significantly different between the four habitat types. In the semi-natural pasture, the number of SIE species decreased with increasing distance from the native forest, and in the exotic forest the abundance of both Azorean endemics and SIEs decreased with increasing distance from the native forest. There is a gradient of decreasing arthropod richness and abundance from the native forest to the intensive pasture. Although this study demonstrates the important role of the native forest in arthropod conservation in the Azores, it also shows that unmanaged exotic forests have provided alternative habitat suitable for some native species of forest specialist arthropods, particularly saproxylic beetles.  相似文献   

19.
20.
Montane regions worldwide have experienced relatively low plant invasion rates, a trend attributed to increased climatic severity, low rates of disturbance, and reduced propagule pressure relative to lowlands. Manipulative experiments at elevations above the invasive range of non‐native species can clarify the relative contributions of these mechanisms to montane invasion resistance, yet such experiments are rare. Furthermore, global climate change and land use changes are expected to cause decreases in snowpack and increases in disturbance by fire and forest thinning in montane forests. We examined the importance of these factors in limiting montane invasions using a field transplant experiment above the invasive range of two non‐native lowland shrubs, Scotch broom (Cytisus scoparius) and Spanish broom (Spartium junceum), in the rain–snow transition zone of the Sierra Nevada of California. We tested the effects of canopy closure, prescribed fire, and winter snow depth on demographic transitions of each species. Establishment of both species was most likely at intermediate levels of canopy disturbance, but at this intermediate canopy level, snow depth had negative effects on winter survival of seedlings. We used matrix population models to show that an 86% reduction in winter snowfall would cause a 2.8‐fold increase in population growth rates in Scotch broom and a 3.5‐fold increase in Spanish broom. Fall prescribed fire increased germination rates, but decreased overall population growth rates by reducing plant survival. However, at longer fire return intervals, population recovery between fires is likely to keep growth rates high, especially under low snowpack conditions. Many treatment combinations had positive growth rates despite being above the current invasive range, indicating that propagule pressure, disturbance, and climate can all strongly affect plant invasions in montane regions. We conclude that projected reductions in winter snowpack and increases in forest disturbance are likely to increase the risk of invasion from lower elevations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号