首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a species complex that is one of the most devastating agricultural pests worldwide and affects a broad range of food, fiber and ornamental crops. Unfortunately, using parsimony and neighbor joining methods, global phylogenetic relationships of the major races/biotypes of B. tabaci remain unresolved. Aside from the limitations of these methods, phylogenetic analyses have been limited to only small subsets of the global collection of B. tabaci, and thus limited taxon sampling has confounded the analyses. To improve our understanding of global B. tabaci phylogenetic relationships, a Bayesian phylogenetic technique was utilized to elucidate the relationships among all COI DNA sequence data available in GenBank for B. tabaci worldwide (366 specimens). As a result, the first well-resolved phylogeny for the B. tabaci species complex was produced showing 12 major well-resolved (0.70 posterior probability or above) genetic groups: B. tabaci (Mediterranean/Asia Minor/Africa), B. tabaci (Mediterranean), B. tabaci (Indian Ocean), B. tabaci (sub-Saharan Africa silverleafing), B. tabaci (Asia I), B. tabaci (Australia), B. tabaci (China), B. tabaci (Asia II), B. tabaci (Italy), B. tabaci (New World), B. tabaci (sub-Saharan Africa non-silverleafing) and B. tabaci (Uganda sweet potato). Further analysis of this phylogeny shows a close relationship of the New World B. tabaci with Asian biotypes, and characteristics of the major sub-Saharan Africa non-silverleafing clade strongly supports an African origin of B. tabaci due to its position at the base of the global phylogeny, and the diversity of well-resolved sub-clades within this group. Bayesian re-analyses of B. tabaci ITS, COI, and a combined dataset from a previous study resulted in seven major well-resolved races with high posterior probabilities, also showing the utility of the Bayesian method. Relationships of the 12 major B. tabaci genetic groups are discussed herein.  相似文献   

2.
The whitefly Bemisia tabaci is vector of plant infecting viruses and it is considered as one of the most important agricultural pests around the Mediterranean basin. At present, five biotypes of B. tabaci have been reported in the Mediterranean Basin: B, Q, S, T and M. To establish the phylogeographic relationship of these Mediterranean biotypes with others, 54 samples collected in Europe and Africa were analysed by sequencing the mitochondrial cytochrome oxidase I gene (mtCOI). The phylogeny showed that Spanish samples corresponding to the biotype S were related to the haplotype Uganda 2 of the African clade, associated with recent epidemic upsurges of cassava mosaic virus (CMD) in that country. This phylogeographic relationship gave support to a distinct subgroup revealed within the African clade. Bemisia tabaci collected from Euphorbia plants in Italy (biotype T) formed one of the three distinct subgroups existing within the Southeast/Far East Asian clade, while samples from Turkey (biotype M) clustered together with reference mitochondrial sequences from whiteflies from Pakistan and Thailand. Recent reports indicate that Bemisia populations corresponding to the biotypes S and T are distributed in areas larger than those initially delimited. Other results indicated that samples collected in Sudan grouped within the Mediterranean–North Africa clade together with reference sequences of the biotype Q corresponding to insects collected in Spain and Morocco. Mitochondrial haplotypes of B. tabaci samples collected on sweet potato in Ghana clustered with reference sequences of samples from Cameroon corresponding to one of the five Sub-Saharan subgroups already described in the African clade. These data extends the phylogenetic information of the B. tabaci species complex and present new questions to be investigated.  相似文献   

3.
Bemisia tabaci is one of the most important global agricultural insect pests, being a vector of emerging plant viruses such as begomoviruses and criniviruses that cause serious problems in many countries. Although knowledge of the genetic diversity of B. tabaci populations is important for controlling this pest and understanding viral epidemics, limited information is available on this pest in Brazil. A survey was conducted in different locations of São Paulo and Mato Grosso states, and the phylogenetic relationships of B. tabaci individuals from 43 populations sampled from different hosts were analysed based on partial mitochondrial cytochrome oxidase 1 gene (mtCOI) sequences. According to the recently proposed classification of the B. tabaci complex, which employs the 3.5% mtCOI sequence divergence threshold for species demarcation, most of the specimens collected were found to belong to the Middle East‐Asia Minor 1 species, which includes the invasive populations of the commonly known B biotype, within the Africa/Middle East/Asia Minor high‐level group. Three specimens collected from Solanun gilo and Ipomoea sp. were grouped together and could be classified in the New World species that includes the commonly known A biotype. However, six specimens collected from Euphorbia heterophylla, Xanthium cavanillesii and Glycine maxima could not be classified into any of the 28 previously proposed species, although according to the 11% mtCOI sequence divergence threshold, they belong to the New World high‐level group. These specimens were classified into a new recently proposed species named New World 2 that includes populations from Argentina. Middle East‐Asia Minor 1, New World and New World 2 were differentiated by RFLP analysis of the mtCOI gene using TaqI enzyme. Taq I analysis in silico also differentiates these from Mediterranean species, thus making this method a convenient tool to determine population dynamics, especially critical for monitoring the presence of this exotic pest in Brazil.  相似文献   

4.
A phylogeny of Bemisia tabaci is presented based on the ITS1 region of ribosomal DNA. The monophyly of each biotype of Bemisia is supported, and a strong biogeographic pattern is evident in the data. Populations from the Americas (including the A biotype) form a clade sister to a clade comprising the silverleafing or B biotype and a nonsilverleafing biotype from the North Africa/Mediterranean region. Polymorphisms in rDNA suggest that silverleafing is a recent phenomenon, while the nonsilverleafing form is the ancestral or plesiomorphic state. Based on this phylogeny, if B. argentifolii is accepted as a separate species then one would have to review the taxonomic status of all biotypes of B. tabaci. In particular, a new name clearly would be needed for an Egypt/Spain/Sudan/Nigeria clade, and the monophyly of the haplotypes remaining in B. tabaci would be open to serious doubt. To make new species assignments in these circumstances seems premature. The phylogenetic relationships of the different populations of B. tabaci and the origins of effective natural enemies of the B biotype suggest that knowing the origin of the B biotype is not essential to finding effective agents and supports the notion that crop management is the key aspect to control.  相似文献   

5.
Bemisia tabaci populations belonging to Middle East-Asia Minor one (MEAM1) and Mediterranean (MED) groups (formerly biotype B and Q, respectively) have spread throughout the world. Although the introduction of MEAM1 is documented from several Caribbean islands, it is generally not known whether MED has also been introduced; whether indigenous populations have survived; and if in the affirmative, to which group(s) they belonged. Whiteflies were collected from seven islands on various plant species. The prevalence of MEAM1 and non-MEAM1 individuals was assessed using a microsatellite approach validated with sequences of the mitochondrial cytochrome oxidase I (mtCOI) gene. Of the 262 samples tested, 247 exhibited the MEAM1 pattern, whereas none showed the MED pattern. The mtCOI gene was partially sequenced from a sample of individuals exhibiting MEAM1 (n = 15) and non-MEAM1 patterns (n = 8) and compared with type sequences. The 15 individuals exhibiting the MEAM1 pattern were confirmed to belong to MEAM1. Of the eight individuals representative of the six non-MEAM1 patterns, two belonged to the indigenous New World (NW) group of B. tabaci (NW), one belonged to a distinct species of Bemisia, and five belonged to MEAM1. One individual belonging to NW exhibited 99.9% nucleotide identity with a NW individual from Puerto Rico. The other was identified as the most divergent individual of the North and Central American genetic cluster. We conclude that a highly homogenous MEAM1 population has extensively settled in the Caribbean and that heterogeneous NW populations were still detectable although severely displaced.  相似文献   

6.
Mitochondrial 16S ( approximately 550 bp) and cytochrome oxidase I (COI) ( approximately 700 bp) sequences were utilized as markers to reconstruct a phylogeography for representative populations or biotypes of Bemisia tabaci. 16S sequences exhibited less divergence than COI sequences. Of the 429 characters examined for COI sequences, 185 sites were invariant, 244 were variable and 108 were informative. COI sequence identities yielded distances ranging from less than 1% to greater than 17%. Whitefly 16S sequences of 456 characters were analysed which consisted of 298 invariant sites, 158 variable sites and 53 informative sites. Phylogenetic analyses conducted by maximum parsimony, maximum-likelihood and neighbour-joining methods yielded almost identical phylogenetic reconstructions of trees that separated whiteflies based on geographical origin. The 16S and COI sequence data indicate that the B-biotype originated in the Old World (Europe, Asia and Africa) and is most closely related to B-like variants from Israel and Yemen, with the next closest relative being a biotype from Sudan. These data confirm the biochemical, genetic and behavioural polymorphisms described previously for B. tabaci. The consideration of all global variants of B. tabaci as a highly cryptic group of sibling species is argued.  相似文献   

7.
Bemisia tabaci (Hemiptera: Aleyrodidae) is a haplo‐diploid species with a global distribution demonstrating strong geographical structure with eight recognizable genetic groups. Fifteen microsatellite loci (335 alleles, 6–44 alleles per locus) were derived from four of the eight groups and were then screened across 33 populations. These loci clearly differentiate the populations. The microsatellites amplified best in individuals from genetic groups rep‐resenting the Mediterranean, Middle East, Asia (three groups) and Australasia/Oceania and amplified less well with populations from sub‐Saharan Africa and the New World. This differential amplification pattern is a direct result of the relatedness to the microsatellite source material.  相似文献   

8.
Wolbachia, a bacterial symbiont, is maternally transmitted in arthropods and nematodes. We report a systematic survey of Wolbachia taxonomy in the sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), and in some of its natural enemies. For the first time, Wolbachia infections in B. tabaci are correlated with various whitefly genetic groups, host plants, and natural enemies as well as with geographical regions. Polymerase chain reaction using 16S rDNA and fisZ genes revealed two Wolbachia supergroups, A and B, exist as single or double infections in B. tabaci as well as in some of its aphelinid parasitoids and predatory beetles. Approximately 89% of B. tabaci sampled were infected by Wolbachia, among which 34% were infected by A, 51% were infected by B, and 5% were infected by both A and B supergroups. These infection frequencies differed among B. tabaci genetic groups and locations. The invasive B. tabaci genetic group from the Middle East Asia Minor 1 (also referred as B biotype) and Mediterranean (also referred as Q biotype) was more likely to harbor A than B, whereas native genetic groups in AsiaI and AsiaII were more likely to harbor B than A. Although 60% of aphelinid parasitoids and 72% of coccinellid beetles also were infected by Wolbachia, they were more likely to host B than A. Furthermore, for the first time we report Wolbachia in B biotype from specimens collected outside of China. Construction of a phylogenetic tree clearly indicated that the Wolbachia sequences from different genetic groups of B. tabaci were not only similar to each other but also to sequences from beetles and parasitoids, which may provide evidence of coevolution and horizontal transmission of Wolbachia populations.  相似文献   

9.
Genetic similarities between 13 samples belonging to nine reference biotypes and two field populations of Bemisia tabaci (Gennadius), one field population of B. medinae Gómez-Menor and another of B. afer Priesner & Hosny, were evaluated using amplified fragment length polymorphism (AFLP) markers. The results indicate that B. tabaci biotypes can be grouped together with a minimum similarity coefficient of 0.32 and separated from the two other species with a similarity coefficient of 0.07. Bemisia tabaci biotypes were grouped in four clusters which comprised: (i) Near East and Indian subcontinent biotypes; (ii) B and Q biotypes plus a Nigerian population from cowpea; (iii) New World A biotype; and (iv) S biotype and a Nigerian population from cassava. These results were consistent with a previous grouping of biotypes based on RAPD-PCR analysis. The AFLP assay allowed the scoring of a total of 354 polymorphic bands in two reaction events with the use of two primer combinations.  相似文献   

10.
MEAM1和MED是烟粉虱Bemisia tabaci两种重要的外来入侵隐种, 在我国部分地区常混合发生, 对我国农业生产造成了不同程度的危害和损失。尤其是MED隐种危害寄主范围更广, 对多种杀虫剂具有较高抗性, 防治上更为困难。因此, 如何快速鉴定烟粉虱MEAM1和MED隐种, 对于烟粉虱防治策略的选择具有十分重要的意义。本研究选择线粒体细胞色素氧化酶I(mitochondrial cytochrome oxidase I, mtDNA COI)基因保守区域内的单核苷酸多态性(SNP)为靶标, 应用等位基因聚合酶链式反应技术, 借助TaqMan-MGB荧光染色标记探针, 建立了一种鉴定烟粉虱MEAM1和MED隐种的等位基因选择性PCR方法, 并对北京11个区县的14个烟粉虱种群进行了隐种鉴定。结果表明, 北京地区14个烟粉虱种群样本与已知烟粉虱MED隐种种群在荧光值分布上聚为一簇, 为MED隐种。该鉴定方法具备SNP基因分型的优点, 可快速、 可靠、 高通量地鉴定烟粉虱MEAM1和MED, 为烟粉虱隐种鉴定及遗传分化研究提供了新的可选途径。  相似文献   

11.
烟粉虱的分类地位及在中国的分布   总被引:9,自引:0,他引:9       下载免费PDF全文
烟粉虱广泛分布于全球热带和亚热带地区。近20多年,烟粉虱的一些遗传群入侵世界各地,严重危害作物生产。烟粉虱遗传结构的多样性和复杂性早已被关注,但其分类地位,尤其是烟粉虱到底是一个包含多个生物型的种还是一个包含许多隐种的物种复合体,一直颇受争议。近几年,有关烟粉虱种系发生和系统学的研究取得长足进展,有证据推论其是一个包含至少31个隐种的物种复合体,但生殖隔离证据仍显不足,种系发生分析结果也因仅依据COI一个基因而受到质疑。因此,在大多数从事烟粉虱研究的同行接受其为一个物种复合体的概念的同时,仍有同行沿用生物型的概念。在我国境内已先后报道了包括13个本地种和2个全球入侵种在内的15个烟粉虱隐种。本地种主要分布在我国南部及包括海南岛和台湾岛的东南沿海地区,隐种的多样性由南向北逐渐降低。入侵种“中东一小亚细亚1”隐种(MEAMl)(即“B型”)和“地中海”隐种(MED)(即“Q型”)分别于20世纪90年代中后期和2003年前后入侵我国,并在许多地区迅速取代了本地种而占据优势地位。全国范围内的调查数据显示,这2个入侵种可在大部分区域共同存在,但自2005年以来,MED在许多地区陆续取代MEAMl,这很可能与MED对大量使用的新烟碱类杀虫剂有较强抗性有关。本文还讨论了烟粉虱隐种复合体分类所面临的命名等难题以及大范围抽样调查的数据偏差问题。  相似文献   

12.
The silverleaf whitefly Bemisia tabaci (Genn.) biotype B has become a serious problem for soybean cultivation because it can significantly reduce soybean productivity. The use of soybean cultivars resistant to whitefly attack is an important strategy in an integrated pest management (IPM) program. This study evaluated the preference for oviposition and colonization by B. tabaci biotype B on different soybean genotypes. In the free-choice test, the genotypes studied were 'IAC 17' and 'IAC 19' as the standards for resistance and 'IAC Holambra Stwart' as the standard for susceptibility, as well as BABR01-0492, BABR01-0173, BABR01-1259, BABR01-1576, BABR99-4021HC, BABR99-4021HP, 'Barreiras', 'Conquista', 'Corisco', 'BRS Gralha', PI274454, PI227687, and PI171451. In the no-choice test, the four best genotypes selected in the free-choice test, in addition to the susceptible and resistant standards were evaluated. Our data indicated 'Barreiras' as the most resistant genotype against B. tabaci biotype B. 'BRS Gralha', which was the least attractive to whitefly adults in the free-choice test, did not show resistance to insect attack when they were confined in cages in the no-choice test. Despite the high number of eggs observed, BABR01-1576 and BABR99-4021HC showed a reduced number of nymphs, indicating antibiosis. The genotypes with a high level of resistance can be used as a tool against B. tabaci in IPM or as a source of resistance in plant-breeding programs.  相似文献   

13.
The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex that contains some of the most damaging pests in tropical and subtropical regions. Recent studies suggested that this complex is composed of at least 24 distinct species. We use the approach from these studies to consider the identity of B. tabaci in Argentina. Previous studies have suggested the presence of a B. tabaci presumably indigenous to the Americas and referred to as the BR biotype in Argentina. We placed the entity referred to as the BR biotype within the B. tabaci cryptic species complex using whiteflies collected in soybean and bean crops in northern and central Argentina. The whiteflies were assigned using the mitochondrial cytochrome oxidase (mtCOI) gene. Four unknown haplotypes plus two Argentina sequences from GenBank formed a cluster that was basal to the rest of the New World sequences. These sequences diverged from the consensus sequence across the range of 3.6 to 4.3%. Applying the species assignment rules of recent studies suggests that the individuals from Argentina form a separate species. A fifth unknown haplotype fell within the New World putative species and formed a distinct cluster with haplotypes from Panama. These results suggest that Argentina has two indigenous species belonging to the B. tabaci cryptic species complex. Rather than using mtCOI sequencing for all B. tabaci collected, a simple random amplified polymorphic DNA-polymerase chain reaction diagnostic was used and tested along with previously published primers designed to work specifically with the BR biotype from Brazil. These primers were either unable to distinguish between the two indigenous members of the complex in Argentina or indicated a difference when none was evident on the basis of mtCOI sequence comparison.  相似文献   

14.
In this study, species complex of Turkish Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) populations was determined by PCR‐based DNA analysis. According to phylogenetic analyses, the B. tabaci samples have been identified within three generic groups. A major part of the samples belonged to two invasive species, either Middle East–Asia Minor 1 (MEAM1) or Mediterranean (MED). In addition to these two invasive species, several samples collected from greenhouses and cotton fields have been found to be related to Middle East–Asia Minor 2 (MEAM2), which is the first record of Turkish B. tabaci species complex.  相似文献   

15.
褚栋  李显春  张友军 《昆虫学报》2012,55(12):1376-1385
2003年首次在云南昆明发现Q型烟粉虱Bemisia tabaci (Gennadius)传入中国。随后几年时间内, 它在许多省份逐年取代了B型烟粉虱种群。2008年后,Q型烟粉虱基本上成为了中国多数省份农区的优势生物型。为了进一步揭示Q型烟粉虱在中国快速扩散以及取代B型烟粉虱的遗传学基础, 本研究利用11个微卫星位点分析并比较了2003年中国云南昆明Q型烟粉虱入侵种群及其他地点的11个B型入侵种群, 西班牙2个Q型土著种群, 以色列1个Q型入侵种群, 以色列1个B型土著种群, 以及西班牙、 美国与澳大利亚的5个B型入侵种群的遗传结构。结果表明, 中国Q型烟粉虱早期种群(云南昆明种群)可能来自于西部地中海地区。中国B型烟粉虱种群遗传多样性高于西班牙、 澳大利亚、 美国B型种群, 中国B型可能存在多次传入或某个混合种群的再次传入。相对于原产地种群, 中国Q型烟粉虱早期入侵种群与B型烟粉虱种群遗传多样性并没有明显降低, 表明Q型与B型烟粉虱种群可能经历了较小的瓶颈效应或奠基者效应。中国Q型烟粉虱早期入侵种群遗传多样性高于B型烟粉虱种群, Q型烟粉虱这种较高的遗传多样性可能为其较强的生态适应性提供了遗传基础, 有利于Q型烟粉虱在新的环境下快速扩散并取代B型烟粉虱。  相似文献   

16.
"Candidatus Hamiltonella defensa" is a facultative endosymbiont of the whitefly Bemisia tabaci. Herein, we report the first draft genome sequence of "Candidatus Hamiltonella defensa" from the invasive Mediterranean cryptic species of the B. tabaci complex. The 1.84-Mbp genome sequence comprises 404 contigs and contains 1,806 predicted protein-coding genes.  相似文献   

17.
Parasitoids of the Bemisia tabaci (Gennadius) species complex collected in Spain and Thailand were evaluated as biological control agents of B. tabaci biotype B in cole crops in Texas, USA. Parasitoids were identified by morphological and RAPD-PCR analyses. The most abundant parasitoid from Spain was Eretmocerus mundus Mercet with apparent field parasitism of 39-44%. In Thailand, Encarsia formosa Gahan, E. transvena Timberlake, E. adrianae Lopez-Avila, Eretmocerus sp. 1 and sp. 2 emerged, with apparent field parasitism of 1-65%. Identification and molecular classification of B. tabaci associated with parasitoid collections and in the release site in Texas were accomplished using morphological traits and nucleotide sequence comparison of the mitochondrial cytochrome oxidase I gene (COI) (700-720 bp). Collections of B. tabaci from Thailand grouped separately from B types from Arizona and Florida and the target B type from Texas, USA, a cluster from India, and other New World B. tabaci. The Spanish B. tabaci host of E. mundus which was laboratory and field-tested to achieve biological control of the B type was most closely related to non-B type B. tabaci populations from Spain and Sudan, the latter which formed a second group within the larger clade that also contained the B type cluster. Laboratory tests indicated that E. mundus from Spain parasitized more B. tabaci type B than did Eretmocerus spp. native to Texas and other exotic parasitoids evaluated. Eretmocerus mundus from Spain also successfully parasitized B. tabaci type B when field-released in a 0.94 million ha test area in Texas, and has significantly enhanced control of B. tabaci type B in California, USA. In contrast, parasitoids from Thailand failed to establish in the field in Texas, collectively suggesting a positive correlation between the centres of diversity of compatible parasitoid-host complexes.  相似文献   

18.
Bemisia tabaci (Gennadius) is considered to be the most economically important pest insect worldwide. The invasive variant, the Q biotype of B. tabaci was first identified in 2004, and has caused significant crop yield losses in Japan. The distribution and molecular characterization of the different biotypes of B. tabaci in Japan have been little investigated. In this study, B. tabaci populations were sampled from the Japanese Archipelago, the Amami Archipelago and the Ryukyu Islands between 2004 and 2008, and the nucleotide sequences of their mitochondrial cytochrome oxidase I genes were determined. Bayesian phylogenetic relationship analysis provided the first molecular evidence that the indigenous Japanese populations could be separated into four distinct genetic groups. One major native population from the Japanese Archipelago, given the genetic group name Lonicera japonica, was separated into an independent group, distinct from the other genetic groups. The second major population, the Nauru biotype in the Asia II genetic group, was identified in the Amami Archipelago and the Ryukyu Islands. Two distinct minor genetic groups, the Asia I and the China, were also identified. One invasive B‐related population belonging to the Mediterranean/Asia Minor/Africa genetic group has been identified in Honshu. All lineages generated by the phylogenetic analyses were supported by high posterior probabilities. These distinct indigenous B. tabaci populations developed in Japan under geographical and/or biological isolation, prior to recent invasions of the B and Q biotypes.  相似文献   

19.
Bemisia tabaciis a complex of closely related genetic types of whiteflies, few of which are invasive. One of these, B biotype, has proven to be particularly adapted to invading new areas, but the underlying reasons as to why it has a well-developed capacity to invade is not known. To develop an understanding of factors that may be contributing to B’s invasive capacity, inter-biotype mating interactions and host plant suitability for the exotic B (B. tabaci Mediterranean/Asia Minor/Africa) and the indigenous Australian (AN) biotype (B. tabaci Australia) were examined. The results suggest that when confined to a mutually acceptable host, B cannot establish when the ratio of AN : B exceeds 20 : 1. However, when simultaneously provided with a host that only it prefers, B is able to establish even at 50 : 1 (AN : B). Further, when both biotypes occur together the number of progeny per female increases (relative to the number produced when only one biotype is present). The response is observed for both biotypes, but is considerably greater in the case of B. In addition, B performs better in the presence of the AN biotype B. tabaci Australia while AN perform worse in coexistence with B, but only if the demographics allow B to mate without significant interference. This leads to the prediction that B will invade in circumstances where its unique hosts are of sufficient number to escape the full negative impact of inter-biotype mating interactions and reduced competitiveness in terms of reproductive rate, while exposing the indigenous biotype to the full effects of the interaction.  相似文献   

20.
De Barro PJ 《Molecular ecology》2005,14(12):3695-3718
Bemisia tabaci (Hemiptera: Aleyrodidae) is a haplo-diploid species of sap-feeding insect belonging to the group of insects commonly known as whiteflies. From earlier analyses of mitochondrial and ribosomal markers it has been concluded that in the Asia-Pacific region there were three major indigenous races as well as a large collection of genotypes with no clear association with any race. This new study uses 15 microsatellite loci and demonstrates that the indigenous Asia-Pacific genotypes can be split into six genetic populations with little or no gene flow between them. These bare only superficial similarity to the mitochondrial and ribosomal defined races. Moreover, four of the six can be further split into two subpopulations that again show little evidence gene flow between them. While the patterns reflect a strong geographical structure, physical barriers alone cannot explain all the observed structure. Differential host-plant utilization explained some of the substructure, but could not explain the overall structure. The roles of mating interference and Wolbachia in developing the genetic structure are considered. The lack of gene flow between genetic populations and some subpopulations further suggests that the barriers were either sufficiently impermeable to immigration or that reproductive isolation and competitive interactions were sufficiently strong to prevent gene flow. If the latter is the case, it suggests that there may be as many as 10 morphologically indistinguishable species indigenous to the Asia-Pacific region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号