首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
栝楼不定根尖分化不定芽过程中的细胞组织学研究   总被引:8,自引:0,他引:8  
陈惠 《云南植物研究》2001,23(4):T001-T002
将栝楼(Trichosanthes kirilowii)长约0.5-1cm不定根尖(连同原外植体茎段或根段一起,或不连)培养在MS附加6-BA5mg/L的培养基上光照培养15d,可在根尖分化出大量不定芽。不定根尖培养过程中每隔2-3d取材,用FAA固定液固定1次,通过石蜡切片观察,将栝楼的不定根尖端分化不定芽的细胞组织学变化分为4个时期。1.启动期(0-3d),根尖分生组织细胞、中柱鞘细胞起动分裂。2“根茎转变区”原形成层形成期(4-6d0。起动细胞分裂后形成2-3层体积小、核大、质浓、近似扁平形的细胞层,组成“杯形”的“根茎转变区”原形成层。3.“根茎转变区”形成期(7-10d)。原形成层不同部位加速分裂使根尖膨大成半球形、球形或梭形,并在膨大区进行维管组织的转变。4.芽分化形成期(11-15d)。原形成层在不同部位向外形成“突起”即分生细胞团,每个“突起”发育为1个芽原基。作者还讨论了栝楼与其它植物根芽产生的异同。  相似文献   

2.
红皮云杉茎的解剖结构与插条不定根形成的研究   总被引:8,自引:0,他引:8  
姜静  翁玉辉 《植物研究》1994,14(4):448-452
1992年7-8月定时固定红皮云杉插条基部材料于FAA液中,石蜡制片法室内解剖研究不定根的发生。结果表明:红皮云杉插条诱发根原基的来源有两种途径。一种是愈伤组织生根型,在愈伤组织的再生形成层处,或茎的维管形成层诱发根原基;另一种是非愈伤组织生根型,在插条切口处的维管形成层、皮层或初生木质部与次生木质部间的薄壁组织较深的部位,直接产生纵向不定根原始体,有的在距离切口0.1-0.5cm以上茎的维管形成层,维管形成层与木射线的交界处及叶隙等薄壁组织产生径向不定根。不同个体间产生的不定根数量及发育的早晚差异较大。  相似文献   

3.
大蒜花序轴离体培养器官发生途径的解剖学研究   总被引:1,自引:0,他引:1  
以大蒜品种‘三月黄’(Allium sativum L.cv. Sanyuehuang)花序轴为外植体进行离体培养,对其器官发生过程进行了形态学和解剖学观察。结果显示:大蒜花序轴离体培养不经过愈伤组织,通过器官直接发生途径形成不定芽,其不定芽起源于大蒜花序轴维管组织韧皮部一侧周围的皮层薄壁细胞,属于外起源;皮层薄壁细胞经脱分化后,由最先形成的拟分生组织发育为茎尖分生组织,然后环绕其形成叶原基,茎尖和叶共同构成一个完整的不定芽;大蒜花序轴离体培养发生的不定芽与花苞中自然形成的营养芽发生部位一致。不定芽通过壮苗、生根培养可正常生根形成植株,如果继代培养周期超过21 d,鳞茎形成率可达90.56%。  相似文献   

4.
* BACKGROUND AND AIMS: The Podostemaceae are a family of unusual aquatic angiosperms that live in rapids and waterfalls. To adapt to such extreme habitats, the family shows unusual morphologies. This study investigated the developmental anatomy of the shoot of Zeylanidium subulatum borne on the prostrate root attached to submerged rock surfaces. * METHODS: Shoots of Z. subulatum were observed under the microscope using resin-sections. * KEY RESULTS: The shoot has no shoot apical meristem (SAM) and, without it, forms leaves distichously dorsiventrally facing the immediately older leaf. A new leaf forms on the adaxial side of a pre-existing leaf and also on the abaxial side of a leaf on flowering shoots. In both cases, the young leaf is endogenous below the older leaf and maintains histological continuity with it. Shortly after internal initiation, the leaf primordia become separate from each other due to cleavage between adjacent leaves of opposite ranks. The cleavage is caused by intercellular separation as well as by degeneration of vacuolated cells. Loss of the SAM is probably linked with the speculated shift of the site of leaf formation to the root. * CONCLUSIONS: The 'shoot' of Z. subulatum is characterized by the absence of a SAM, endogenous leaf formation in the absence of a SAM, cleavage between leaf primordia, and adventitious leaf formations. These innovations occur in some Podostemaceae that have become increasingly adapted to extreme aquatic habitats.  相似文献   

5.
Adventitious buds were formed on the hypocotyls of decapitated flax seedlings. Scanning electron and light microscopic examinations of hypocotyls showed that epidermal cells divided to produce meristematic spots from which several leaf primordia were formed. Between leaf primordia and the original vascular tissues of hypocotyls, new xylem cells were formed which connected them. About 10, 30 and 60% of adventitious buds were formed on upper, middle and basal parts of hypocotyls of decapitated seedlings, respectively. Removal of apical meristem together with longer hypocotyl zero to four cm long below the apical meristem) induced higher percentage of adventitious bud formation in the remaining hypocotyl. When the entire hypocotyl was cut into 16 segments (0.25 cm each) and these segments were cultured on MS medium containing 3% sucrose and 0.8% agar, adventitious buds were mainly formed in the lowest five segments. These results suggested that there was a gradient of inhibitory factor(s) from apical to basal part of hypocotyl with respect to adventitious bud formation. Auxin transport inhibitors, morphactin and TIBA induced adventitious bud formation on intact seedlings by suppressing the basipetal movement of auxin.  相似文献   

6.
The shoot apex of Dennstaedtia cicutaria consists of three zones—a zone of surface initials, a zone of subsurface initials, and a cup-shaped zone that is subdivided into a peripheral region and central region. A diffuse primary thickening meristem, which is continuous with the peripheral region of the cup-shaped zone, gives rise to a broad cortex. The roots occurring on the rhizomes are initiated very near the shoot apex in the outer derivatives of the primary thickening meristem. The roots that occur on the leaf bases also differentiate from cortical cells. Eventually, those cortical cells situated between the newly formed root apical cell and the rhizome procambium (or leaf trace) differentiate into the procambium of the root trace, thus establishing procambial continuity with that of the rhizome or leaf trace. Parenchymatous root gaps are formed in the rhizome stele and leaf traces when a few of their procambial cells located directly above the juncture of the root trace procambium differentiate into parenchyma. As the rhizome procambium or leaf trace continues to elongate, the parenchyma cells of the gap randomly divide and enlarge, thus extending the gap.  相似文献   

7.
Adventitious shoot primordia were formed on horseradish hairy root cultured in dark. Plantlet formation frequency from the primordia was higher than that from root fragments. Culture for 26 days provided the adventitious shoot primordia, which had the highest potential for plantlet formation (53% explants at 40 days). Benzyladenine supplementation in the dark caused primordium enlargement, but did not increase the number of primordia formed. After adventitious shoot primordia were encapsulated with calcium alginate, kinetin supplementation (2.0–4.0 M) increased the shoot formation frequency (65–80% explants at 20 days) in the light, but also promoted the undesirable formattion of multiple shoots. Supplementation with naphthaleneacetic acid (0.27–5.4 M) in the calcium alginate beads in light enhanced the root emergence from primordia without inhibition of plantlet formation when the encapsulated beads were put on the agar-medium without naphthaleneacetic acid.  相似文献   

8.
Levels of endogenous indole-3-acetic acid (IAA) and indole-3-acetylaspartic acid (IAAsp) were monitored in various parts of leafy cuttings of pea ( Pisum sativum L. cv. Marma) during the course of adventitious root formation. IAA and IAAsp were identified by combined gas chromatography—mass spectrometry, and the quantitations were performed by means of high performance liquid chromatography with spectrofluorometric detection. IAA levels in the root forming tissue of the stem base, the upper part of the stem base (where no roots were formed), and the shoot apex remained constant during the period studied and were similar to levels occurring in the intact seedling. A reduction of the IAA level in the root regenerating zone, achieved by removing the shoot apex, resulted in almost complete inhibition of root formation. The IAAsp level in the shoot apex also remained constant, whereas in the stem base it increased 6-fold during the first 3 days. These results show that root initiation may occur without increased IAA levels in the root regenerating zone. It is concluded that the steady-state concentration is maintained by basipetal IAA transport from the shoot apex and by conjugation of excessive IAA with aspartic acid, thereby preventing accumulation of IAA in the tissue.  相似文献   

9.
Adventitious shoot formation was studied with leaf, stem and axillary bud explants of carnation (Dianthus caryophyllus L.). The shoot regeneration procedures were applicable for a wide range of cultivars and shoot regeneration percentages were high for all explant types. Using axillary bud explants, shoot regeneration efficiency was independent of the size of the bud and of its original position in the plant. In contrast, shoot regeneration from stem and leaf explants was strongly dependent on their original position on the plant. The most distal explants (just below the apex) showed the highest level of shoot regeneration. The adventitious shoot primordia developed at the periphery of the stem segment and at the base of leaf explants. In axillary bud, stem and leaf explants, shoot regeneration originated from node cells, located at the transition area between leaf and stem tissue. Moreover, a gradient in shoot regeneration response was observed, increasing towards the apical meristem.Abbreviations BA benzyladenine - NAA naphthaleneacetic acid  相似文献   

10.
欧美杂种山杨微扦插不定根发生过程的解剖学研究   总被引:1,自引:0,他引:1  
采用石蜡切片技术,以欧美杂种山杨插穗基部茎段为实验材料,连续解剖观察插穗不定根发生发育过程,分析根原基发生部位与扦插生根的关系。结果显示:欧美杂种山杨插穗不定根的发生过程分为4个时期,为根原基诱导期,不定根起始期、表达期和伸长生长期。根原基诱导期维管形成层产生具有分生组织特点的薄壁细胞;不定根起始期,维管形成层及附近的薄壁细胞脱分化,形成不定根原基发端细胞;不定根表达期,根原基发端细胞不断分裂成具有方向性的根原基,根原基穿过韧皮射线和皮层,向皮孔方向发展;不定根伸长生长期,根原基从皮孔伸出,其内部的维管系统开始发育,形成不定根。研究认为,欧美杂种山杨为皮部诱导生根类型,不定根原基起源于维管形成层区,起源部位单一,扦插难生根。  相似文献   

11.
Cell division and root initiation of excised juvenile, mature and half-expanded mature (My) leaf petioles of Hedera helix L. cultured in vitro were studied to determine whether these processes were correlated with localized expression of a proline-rich protein (PRP) gene. Petioles of all three types showed cell divisions at day 5 of culture in auxin-treated petioles but not in non-auxin-treated petioles. No cell division occurred in non-auxin-treated petioles even after day 9 of culture. Juvenile and one population of My auxin-treated petioles formed root primordia after 9 days of culture. Mature petioles and another population of My petioles formed only callus in response to auxin. The spatial and temporal expression pattern of a gene encoding a PRP was analyzed by in situ hybridization. The PRP mRNA was not detectable in petioles of any developmental phase immediately after excision. In both juvenile and mature petioles the PRP mRNA preferentially accumulated in the phloem parenchyma, the inner cortex adjacent to the phloem, and in cells surrounding ducts. Cell division was not required for PRP gene expression since both auxin-treated and non-treated juvenile and mature petioles had expression. Steady state levels of PRP mRNA were much lower in juvenile relative to mature petioles cultured in vitro. Auxin treatment reduced the steady state levels of PRP mRNA in My petioles but not in mature or juvenile petioles. These data are consistent with an inverse relationship between competence to form adventitious roots and PRP mRNA levels in the specific cell types from which root primordia form. Alternatively, the PRP mRNA level may serve as a molecular marker for developmental plasticity for root initiation.  相似文献   

12.
Numerous studies have shown that auxin induces adventitious root initiation in stem explants from a variety of species, including tobacco. A dominant, monogenic mutation previously identified in tobacco ( Nicotiana tabacum cv. Xanthii), rac , confers tenfold auxin resistance to mesophyll-derived cell suspensions and an impaired primary root development phenotype to seedlings. Results presented here demonstrate that adventitious root formation does not occur when heterozygous and homozygous rac stem cuttings are treated in vitro with indole-3-butyric acid (IBA) concentrations ranging from 0.5 μ M to 500 μ M . Histological analysis showed that some phloem parenchyma or inner cortical parenchyma cells in wild-type stem cuttings undergo adventitious root morphogenesis when they are treated with 5 μ M IBA. The same cell types in heterozygous and homozygous rac stem cuttings undergo mitoses in response to auxin, but never form adventitious root meristems. The lack of adventitious root initiation in rac stem cuttings is phenotypically distinct from the aberrant primary root development in rac seedlings. The rac mutation appears to block an essential process for auxin induction of adventitious root initiation but not cell division in phloem parenchyma or inner cortical parenchyma cells. Comparisons of rac heterozygous and homozygous seedling primary root length and callus formation in response to auxin in stem cuttings indicate that rac copy number is correlated to the degree of expression of these two phenotypes.  相似文献   

13.
淹水对玉米不定根形态结构和ATP酶活性的影响   总被引:28,自引:2,他引:26       下载免费PDF全文
淹水2天后,玉米苗基节内即有不定根原基一进于正常植株。淹水16天后,从基节部长出的不定根数多于正常植株,但淹水导致根系生长和干物质积累大幅度下降。淹水幼苗不定根伸长区内有发达的通气组织形成,使根内部组织孔隙度大幅提高。电镜细胞化学研究表明,经15天淹一,不定根根尖细胞内ATP酶的分布与正常功苗基本相同,酶活性尽管有一定的下降,但仍保持较高水平。根据实验结果,本文重点讨论了不定根的发生及其内部通气组  相似文献   

14.
15.
Root explants of Brassica napus cultured in vitro form adventitiousshoots. The root buds originated at the base of the newly initiatedlateral root. Cells in association with the differentiatingphloem of the developing lateral roots were the sites for rootbud formation. A nodular mass of cytoplasmic cells developedby day 7 at the base of the lateral root. This group of cellscontinued to divide an enlarge. The cells in the peripheralregion of the nodular cell mass differentiated further intoa meristematic zone. The meristematic cells grew towards theperiphery of the cortex by crushing the outer layer of corticalcells. Further development of the meristematic layer resultedin the formation of shoot primordia with organized shoot apicalmeristems and leaf primordia.Copyright 1993, 1999 Academic Press Brassica napus, canola, cultured root segments, root buds  相似文献   

16.
不定根发生机理的研究进展   总被引:10,自引:0,他引:10  
综述了近年来试管苗不定根发生机理的研究进展,在不定根发生过程中,专一基因的表达,内源激素水平的动态变化,酶活性的变化,多胺和钙水平以及碳水化合物水平的变化与不定根诱导,根原基形成和根发育生长有密切关系。自发性生根和诱导生根系统的植物或组织在不定根发生过程中存在较大的生理生化差异。通过了解不定根发生机理的研究动态,有助于更好地研究试管苗生根和试管苗商品化生产。  相似文献   

17.
Summary Internode stem expiants ofNicotiana tabacum cv. Samsun, consisting of eight cell layers: epidermis, subepidermal chlorenchyma, collenchyma and cortical parenchyma (i.e., thin cell layers), were cultured under conditions inducing rhizogenesis. The aim was to investigate the histological sequence of adventitious root formation in this system. The earliest cytological events in culture (12 h) were nucleolar extrusions and amitotic nuclear divisions. Though not restricted to a specific cell layer, the two phenomena were more frequent in the subepidermal chlorenchyma, and characterized the first phases (12-96 h) of cell proliferation mainly occurring in this layer. Amitoses were followed by the formation of thin walls within the original cells, resulting in the formation of intracellular clusters. These subepidermal clusters were separated by enlarged cells of the parent tissue, whose nuclei showed nucleolar extrusion. At day 3 the first mitoses were observed in cells having abundant starch inclusions. Amitotic divisions also continued, but less frequently. The increasing frequency of mitoses in the subepidermal chlorenchyma (day 4), as well as in the two underlying collenchymatous layers, contributed to the growth of the superficial clusters, in which small clumps of meristematic cells were formed; these, later (day 9), gave rise to root domes. The 5th cell layer remained undivided for a relatively long time (two weeks). The 6th and 7th layers proliferated mitotically later (from day 8 onwards) than the superficial layers and formed root domes following the same histological sequence. Wound callus, generated by the innermost layer, increased markedly in the last two weeks of culture and concomitantly formed vascular clumps surrounded by meristematic layers; these produced root primordia which were frequently anomalous (day 26–27). Regardless of its origin (i.e., superficial or deep layers of the expiant, or wound callus cells), root tip formation was always preceded by the differentiation of a sheath of starch-containing cells, from which the root cap developed.Abbreviations LS longitudinal section - S.E. standard error - TVS transverse section  相似文献   

18.
A developmental study of the normal shoot apex of Matteucciastruthiopteris suggested that patterned stelar differentiationis initiated immediately beneath the single layer of promeristemand occurs prior to the initiation of the youngest leaf primordium.A developmental study in which all leaf primordia were suppressed,with or without lateral isolation of the terminal meristem byvertical incisions, has confirmed this interpretation of stelardifferentiation. Experimentally-induced changes in the tissueimmediately below the promeristem were reflected in the resultingmature structure of the stele. Failure of leaf gap initialsto differentiate, if all leaf primordia were suppressed at theincipient stage, resulted in a mature stele without leaf gaps.Similarly the disappearance of pith mother cells after severalweeks of leaf removal was associated with the formation of astele without pith. Leaf influence was further assessed by allowingone primordium to develop while all others were suppressed.The developing leaf had a small promoting effect on caulinevascular tissue differentiation but its major impact on theexpansion of the parenchymatous tissues of the stele. Characteristicprotoxylem and protophloem failed to differentiate when allleaves were suppressed and, when leaf was allowed to develop,formed only in relation to the leaf.Copyright 1995, 1999 AcademicPress Leaf influence, vascular pattern formation, experimental surgery, shoot apex development, protoxylem, protophloem, Matteuccia struthiopteris  相似文献   

19.
Adventitious root formation (ARF) was studied in woody leaf bud cuttings of Ficus pumila L., creeping fig. Juvenile cuttings rooted easily, whereas only mature cuttings treated with indole-3-butyric acid (IBA) attained any rooting success. In the rooting process, both juvenile and mature material exhibited dedifferentiation of phloem ray parenchyma, root initial formation, primordia differentiation, and root elongation. The early stages of adventitious rooting were most critical since few primordia were observed in mature controls. The stages leading up to root primordia differentiation and elongation occurred more rapidly in IBA-treated juvenile vs. mature cuttings; however, time differences in both types between first observable roots and maximum rooting were comparable. Root primordia differentiated from basal callus of some cuttings, but neither these nor the few primordia in mature controls elongated into well-developed roots. Anatomical differences between the juvenile and mature material did not account for rooting disparity, nor did presence of perivascular fibers, sclereids, and laticifers retard rooting.  相似文献   

20.
The anatomy of direct shoot organogenesis from leaf petioles of Vitis vinifera cv. French Colombard cultured in vitro was studied by light microscopy. Regenerating petiole stubs were fixed at 2- or 3-day intervals and sectioned longitudinally. By day 3 on regeneration medium, new cell divisions were observed. After 6 days, three distinct regions of meristematic activity were apparent within the expanding petiole stub: the wound-response, organogenic, and vascularization regions. In the organogenic region, rapid periclinal divisions of vacuolate outer cortical cells formed nodular bumps, many of which developed vascular strands and marginal meristems and formed adventitious leaves. Promeristems with small, densely staining cells and a distinct tunica layer also originated in the organogenic region, by cell division in the epidermal and subepidermal cell layers. With vascularization and the formation of leaf primordia, many promeristems became adventitious shoot meristems. Adventitious leaves and promeristems were initiated continuously from day 10 until day 33. Promeristems were often initiated near or upon adventitious leaves but could form either before or after the adventitious leaf developed. Adventitious leaves and shoot meristems developed vascular connections with the vascular bundles of the original expiant. The implication of this pattern of regeneration for Agrobacterium-mediated transformation of Vitis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号