首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.  1. Dispersal plays an integral role in determining spatial population structure and, consequently, the long-term survival of many species. Theoretical studies indicate that dispersal increases with population density and decreasing habitat stability. In the case of monophagous insect herbivores, the stability of host-plant populations may influence their spatial population structure.
2. The tallgrass prairie in Iowa, U.S.A. is highly fragmented and most prairie insects face a landscape with fewer habitat patches and smaller host-plant populations than 150 years ago, potentially making dispersal between patches difficult. Some herbivores, however, use native plant species with weedy characteristics that have increased in abundance because of disturbances.
3. Mark–recapture data and presence–absence surveys were used to examine dispersal and spatial population structure of two monophagous beetles with host plants that exhibit different population stability and have responded differently to fragmentation of tallgrass prairie.
4. Chrysochus auratus Fabricius exhibits a patchy population structure and has relatively large dispersal distances and frequencies. Its host plant is variable locally in time and space, but is more abundant than 150 years ago. The other species, Anomoea laticlavia Forster, exhibits a metapopulation or non-equilibrium population structure and has relatively small dispersal distances and frequencies. Its host-plant populations are stable in time and space.
5. The results indicate that dispersal ability of monophagous beetles reflects the life-history dynamics of their host plants, but the spatial population structure exhibited today is strongly influenced by how the host plants have responded to the fragmentation process over both time and space.  相似文献   

2.
In natural as well as in cultural landscapes, disturbance and succession are responsible for the emergence and subsequent disappearance of suitable habitat patches. The dynamics of habitat patches has important consequences for the spatial structure and dynamics of regional populations. However, there are only few studies quantifying both patch dynamics and incidence of insect species in a dynamic landscape over several years. I studied the incidence and population dynamics of the leaf beetle Gonioctena olivacea in a system of dynamic patches of the host plant Scotch broom Cytisus scoparius . The incidence of the beetle was most strongly affected by patch area, whereas connectivity, patch quality, patch age, and landscape context had no or only a minor effect when analysed with logistic regression. The size of local beetle populations was highly fluctuating between the years; however, the population dynamics of the local populations was not synchronous. Adjacent patches did not show higher degrees of synchrony than patches separated by large distances. In the three years of study, local populations became extinct through demographic or environmental stochasticity and patch destruction. Each year >10% of the patches disappeared. The extinction rate of beetles in persistent patches was decreasing with increasing patch area. On the other hand, patches newly emerged and were rapidly colonized by the beetle. The colonization rate depended on patch connectivity. Obviously, Gonioctena olivacea was capable of persisting in this system with high turnover of patches owing to its high dispersal power.  相似文献   

3.
1. Dispersal and host detection are behaviours promoting the spread of invading populations in a landscape matrix. In fragmented landscapes, the spatial arrangement of habitat structure affects the dispersal success of organisms. 2. The aim of the present study was to determine the long distance dispersal capabilities of two non‐native pine bark beetles (Hylurgus ligniperda and Hylastes ater) in a modified and fragmented landscape with non‐native pine trees. The role of pine density in relation to the abundance of dispersing beetles was also investigated. 3. This study took place in the Southern Alps, New Zealand. A network of insect panel traps was installed in remote valleys at known distances from pine resources (plantations or windbreaks). Beetle abundance was compared with spatially weighted estimates of nearby pine plantations and pine windbreaks. 4. Both beetles were found ≥25 km from the nearest host patch, indicating strong dispersal and host detection capabilities. Small pine patches appear to serve as stepping stones, promoting spread through the landscape. Hylurgus ligniperda (F.) abundance had a strong inverse association with pine plantations and windbreaks, whereas H. ater abundance was not correlated with distance to pine plantations but positively correlated with distance to pine windbreaks, probably reflecting differences in biology and niche preferences. Host availability and dispersed beetle abundance are the proposed limiting factors impeding the spread of these beetles. 5. These mechanistic insights into the spread and persistence of H. ater and H. ligniperda in a fragmented landscape provide ecologists and land managers with a better understanding of factors leading to successful invasion events, particularly in relation to the importance of long‐distance dispersal ability and the distribution and size of host patches.  相似文献   

4.
Abstract.  1. Herbivory can induce resistance in a plant and the induced phenotype may be disfavoured by subsequent herbivores. Yet, as the distance between plants in a population increases, limited mobility may make a herbivore more likely to feed and oviposit on host plants in its immediate surroundings.
2. The present study tested whether a herbivore's preference and distribution across plants with different induced phenotypes was influenced by the spatial distribution of plants. A fragmented population of Solanum dulcamara plants was created. This consisted of discrete, spatially separated patches with different histories of damage, either herbivory from adult flea beetles ( Psylliodes affinis ), tortoise beetles ( Plagiometriona clavata ), or mechanical damage. Each patch was separated by 7 m and consisted of 12 plants that were spaced 30 cm apart. Then a fixed number of adult tortoise beetles were introduced to each patch, and movement and oviposition within and between spatially separate homogeneous patches (receiving one type of damage) were compared with movement and oviposition within heterogeneous patches (containing all three types of damage) over the growing season.
3. Flea beetle and tortoise beetle herbivory consistently induced different phytochemical responses in S. dulcamara (polyphenol oxidase and peroxidase), and adult tortoise beetles avoided oviposition on the flea beetle induced plants within heterogeneous patches. However, between homogeneous patches, plant phenotype did not influence oviposition. Colonisation by naturally occurring flea beetle adults followed a similar pattern.
4. These results suggest that the heterogeneity of plant phenotypes can influence herbivore choice and distribution at small but not large spatial scales.  相似文献   

5.
Abstract.  1. Metapopulation dynamics should be more important at the borders of species distributions due to two main factors: (1) populations are less abundant and fluctuate more at the borders than in the centre of their distributions, and (2) resources in the range margins of species distributions are often more scarce and fragmented.
2. Most metapopulation studies have been performed in a fraction of the entire distribution of species. The main goal here is to study the population dynamics of a narrowly distributed species including both the borders and the centre of the distribution, and to test the predictions described above.
3. The density and extinction events in a patchily distributed species, Timarcha lugens , was quantified for 5 years along an altitudinal gradient including the upper and lower limits of the species distribution. The dispersal ability of Timarcha was also studied using a mark–release–recapture study.
4. Extinction events and empty patches were only found at the borders of Timarcha distribution. The fluctuation in beetle density was greater in patches suffering extinction events. Resource abundance was negatively related to beetle density and positively related to extinction events. In addition, the dispersal rate among patches was very low and beetles moved distances of no further than 25 m.
5. Population density governs the extinction events in this system, and its fluctuation was more evident near the border of the distribution. Both factors together with the relative population stability in patches at medium and high altitudes, and the low dispersal rate of the individuals support the idea of a source–sink metapopulation structure in T. lugens .  相似文献   

6.
Population structure of a monophagous moth in a patchy landscape   总被引:4,自引:0,他引:4  
1. The population structure of a monophagous noctuid moth, Abrostola asclepiadis , living on a patchily distributed perennial herb, Vincetoxicum hirundinaria is described. The study took place over 5 years at a landscape scale (about 12 km2).
2. Patch occupancy rates and population densities were studied in relation to patch size, degree of patch isolation, level of sun exposure and distance from the coast. In addition, flight tests in the laboratory were performed to estimate the potential dispersal capacity of the moth.
3. Occupancy rates were high and the likelihood of extinction depended on patch size. Small patches were less likely to be occupied than were large patches (> 10 m2). Sun-exposed patches were occupied for a lower proportion of years than were shaded patches. No distance effects could be discerned at the spatial scale of study, presumably because the insect is a strong flier.
4. Population densities in occupied patches decreased with increasing patch size. Furthermore, insect densities tended to increase with distance from the coast. Density changes in patches were synchronized.
5. The studied insect population can be described as a 'patchy population' sensu Harrison (1991) with spatially correlated population dynamics. These dynamics are superimposed on a landscape gradient.  相似文献   

7.
Abstract.  1. Bark and ambrosia beetles are crucial for woody biomass decomposition in tropical forests worldwide. Despite that, quantitative data on their host specificity are scarce.
2. Bark and ambrosia beetles (Scolytinae and Platypodinae) were reared from 13 species of tropical trees representing 11 families from all major lineages of dicotyledonous plants. Standardised samples of beetle-infested twigs, branches, trunks, and roots were taken from three individuals of each tree species growing in a lowland tropical rainforest in Papua New Guinea.
3. A total of 81 742 beetles from 74 species were reared, 67 of them identified. Local species richness of bark and ambrosia beetles was estimated at 80–92 species.
4. Ambrosia beetles were broad generalists as 95% of species did not show any preference for a particular host species or clade. Similarity of ambrosia beetle communities from different tree species was not correlated with phylogenetic distances between tree species. Similarity of ambrosia beetle communities from individual conspecific trees was not higher than that from heterospecific trees and different parts of the trees hosted similar ambrosia beetle communities, as only a few species preferred particular tree parts.
5. In contrast, phloeophagous bark beetles showed strict specificity to host plant genus or family. However, this guild was poor in species (12 species) and restricted to only three plant families (Moraceae, Myristicaceae, Sapindaceae).
6. Local diversity of both bark and ambrosia beetles is not driven by the local diversity of trees in tropical forests, since ambrosia beetles display no host specificity and bark beetles are species poor and restricted to a few plant families.  相似文献   

8.
W. S. Lawrence 《Oecologia》1982,53(2):245-250
Summary Movements of milkweed beetles (Tetraopes tetraophthalmus and Tetraopes femoratus) were monitored using mark-release-recapture techniques to compare the within- and between-patch movement patterns of individuals in a naturally occurring population. Within-patch and between-patch movement patterns differ in both frequency and distance traveled for males and females of both study species. Males move farther than females and are more likely to move between patches. Individuals recognize and alter movement upon encountering patch edges. Results suggest that laboratory estimates of Tetraopes vagility give a misleading indication of actual dispersal.  相似文献   

9.
Abstract 1. Migration into local populations may increase the likelihood of persistence but emigration may decrease the persistence of small and isolated populations. The dispersal behaviour of a day-flying moth Zygaena filipendulae was examined to determine whether emigration is correlated positively or negatively with population size and host plant density.
2. A mark–release–recapture study showed that most moths moved small distances (< 40 m on average) and only 6% of movements were > 100 m.
3. Twenty-five individuals moved between populations, a measured exchange rate of 8%. Moths were more likely to move between patches that were close together and they moved to relatively large patches.
4. The fraction of residents increased with increasing population size in the patch and increasing host plant cover. Relatively high proportions of individuals left small patches with small moth populations.
5. Moths released in grassland lacking Lotus corniculatus (the host plant) tended to leave the area and biased their movement towards host plant areas, whereas those released within an area containing L. corniculatus tended to stay in that area.
6. Biased movement away from small populations and areas of low host plant density (normally with low population density) was found. This migration-mediated Allee effect is likely to decrease patch occupancy in metapopulations, the opposite of the rescue effect. The effects on metapopulation persistence are not known.  相似文献   

10.
The taste of nectar – a neglected area of pollination ecology   总被引:10,自引:0,他引:10  
We investigated the impact of landscape structure on landscape connectivity using a combination of simulation and empirical experiments. In a previous study we documented the movement behaviour of a specialized goldenrod beetle ( Trirhabda borealis Blake) in three kinds of patches: habitat (goldenrod) patches and two types of matrix patch (cut vegetation and cut vegetation containing camouflage netting as an impediment to movement). In the current study, we used this information to construct simulation and experimental landscapes consisting of mosaics of these three patch types, to study the effect of landscape structure on landscape connectivity, using the T. borealis beetle as a model system. In the simulation studies, landscape connectivity was based on movements of individual beetles, and was measured in six different ways. The simulations revealed that the six measures of landscape connectivity were influenced by different aspects of landscape structure, suggesting that: (1) landscape connectivity is a poorly defined concept, and (2) the same landscape may have different landscape connectivity values when different measures of landscape connectivity are used. There were two general predictions that held over all measures of landscape connectivity: (1) increasing interpatch distance significantly decreased landscape connectivity and (2) the influence of matrix elements on landscape connectivity was small in comparison to the influence of habitat elements. Empirical mark-release-resight experiments using Trirhabda beetles in experimental landscapes supported the simulation results.  相似文献   

11.
The ability of an insect to disperse to new habitat patches is difficult to quantify, but key to the establishment and persistence of populations. In this study, we examined dispersal of the phytophagous chrysomelid beetle, Galerucella calmariensis, which is currently being introduced into North America for the biological control of purple loosestrife (Lythrum salicaria), an aggressive wetland weed. We used a mark, release, and recapture approach to determine how rates of colonization of host patches by this beetle are influenced by the distance of the patch from the source of dispersers, and by the presence of conspecifics at the patch. We released color-coded beetles at six distances from a long, linear patch of purple loosestrife that was divided into segments with and without conspecifics. We observed initial flight directions as beetles left the release points and collected all beetles that settled at the target patch. We found a bias in initial flight toward the target for distances up to 50 m. Over the 7 days of the experiment, beetles arrived at the target from all release points, including the farthest release point, 847 m away. G. calmariensis was strongly attracted to conspecifics when settling after dispersal; 86% of the 582 recovered beetles came from the segments inhabited by conspecifics. The probability of an individual arriving at the patch declined steeply with release distance. This relationship fits a model in which beetles move in a random direction and stop if they intercept the target patch, and where beetles are lost at a constant rate with distance travelled. The dispersal and patch-colonizing behavior of G. calmariensis is likely to have important consequences for the biological control program against purple loosestrife. Received: 23 January 1996 / Accepted:30 September 1996  相似文献   

12.
1. The arrival of the chrysomelid beetle Trirhabda virgata on isolated patches of its host Solidago altissima was closely monitored to determine how conspecific density and host condition influence colonization.
2. Experimental host patches, which were set on the roof of a four-storey building located 0.7 km from the nearest naturally occurring hosts, were frequently colonized by beetles over a 2-week dispersal period.
3. Females preferred lush host patches that were free from simulated Trirhabda chewing damage. Females colonized lush patches more often than defoliated patches at two spatial scales, when patches were 2 m and 25 m apart. Males did not show a strong preference for lush plants.
4. Males aggregated on plants that already contained adult conspecifics, apparently increasing their reproductive success. Females did not respond to the presence of adults on the patch.
5. Ninety-five per cent of the females arriving on the isolated plants had mated before flying, indicating that lone females are able to colonize empty stands.
6. By avoiding heavily defoliated plants, females should dissipate local outbreaks and spread their offspring away from over-exploited areas.  相似文献   

13.
Stephen F. Matter 《Oecologia》1997,110(4):533-538
The relationship between population density and the size of host plant patches was investigated for the red milkweed beetle Tetraopestetraophthalmus inhabiting unmanipulated patches of Asclepias syriaca. The resource concentration hypothesis proposes that density-area patterns, specifically that of increasing herbivore density with patch size, are primarily a function of movement between host plant patches. This research investigated the degree to which movement accounted for density-area patterns. Poisson regression analysis of beetle abundance versus milkweed patch size revealed that beetle density tended to increase with patch size. The pattern of density and patch size resulted from local reproduction and residence time. The density of emerging beetles tended to increase with patch size while emigration rates were unrelated to patch size. Immigration rates were constant with patch size for male beetles, and decreased with patch size for female beetles. Net flux of beetles (immigration – emigration) did not vary with patch size for male beetles and decreased with patch size for female beetles. Comparisons are made between this system and previously studied systems where movement plays a significant role in forming density area patterns. Additionally, several hypotheses are presented which may account for greater in situ recruitment and residence time in large patches. Received: 23 February 1996 / Accepted: 8 January 1997  相似文献   

14.
Stephen F. Matter 《Oecologia》1996,105(4):447-453
Individual movement patterns and the effects of host plant patch size and isolation on patch occupancy were examined for red milkweed beetles, Tetraopes tetraophthalmus, residing in a heterogeneous landscape. Male beetles were found to move both more often and farther between host plant patches than female beetles, and this difference affected the patterns of patch occupancy observed. Overall, unoccupied milkweed patches were smaller and more isolated than patches occupied by beetles. Patches uninhabited by females tended to be more isolated, but not necessarily smaller, than patches with female beetles, indicating that females may be affected more by patch isolation than patch size. Presence of male beetles on patches showed a stronger response to patch size than to patch isolation. Differences in movement between males and females illustrate the need for demographically based dispersal data. Comparisons of Tetraopes interpatch movement patterns between landscapes composed of patches of different size revealed that landscapes with overall smaller patches may have greater rates of interpatch movement.  相似文献   

15.
Matter SF 《Oecologia》2006,150(1):8-16
I examined the dispersal of the red milkweed beetle, Tetraopes tetraophthalmus, among patches of its host plant, common milkweed, Asclepias syriaca. Over a 5-year period, the number of patches in a landscape and their mean size increased, while the distance between patches decreased. Over the same period the proportion of beetles dispersing between patches increased from 0.48 to 0.62. Estimates from the virtual migration model showed that mean migration distance decreased from 158 to 72 m for male beetles and from 129 to 72 m for female beetles. Estimated mortality per migration event decreased as the landscape changed, but was low in all years. The estimated mean migration mortality per patch decreased from 1.45 × 10−2 to 3.70 × 10−7 for male beetles. Female migration mortality decreased from 5.48 × 10−3 to 3.88 × 10−6. Increasing the size and number of patches and decreasing interpatch distance decreases migration mortality and may play an important role in the conservation of species, particularly where mortality during dispersal is high.  相似文献   

16.
Abstract.  1. The small hive beetle, Aethina tumida , is a parasite of honeybee ( Apis mellifera ) colonies native to sub-Saharan Africa and has become an invasive species. In North America the beetle is now sympatric with bumblebees, Bombus , not occurring in its native range. Laboratory studies have shown that small hive beetles can reproduce in bumblebee colonies but it was not known whether infestations occur in the field.
2. For the first time, infestation of bumblebee colonies by small hive beetles was investigated in the field. Commercial Bombus impatiens colonies ( n = 10) were installed in proximity to infested apiaries. Within 8 weeks, all colonies that were alive in the 5-week observation period ( n = 9) became naturally infested with adult small hive beetles and successful small hive beetle reproduction occurred in five colonies.
3. In four-square choice tests, the beetles were attracted to both adult bumblebee workers and pollen from bumblebee nests, suggesting that these odours may serve as cues for host finding.
4. The data indicate that bumblebee colonies may serve as alternative hosts for small hive beetles in the field. To foster the conservation of these essential native pollinators, investigations on the actual impact of small hive beetles on wild bumblebee populations are suggested.  相似文献   

17.
Demographic parameters of the polygynous Rock Sparrow Petronia petronia were investigated in a small patchy population in the Italian Alps. The population included two distinct breeding patches that differed in altitude and breeding success. Survival parameters were estimated by capture–recapture analysis of 170 individually marked animals. At the whole population level (Cormack–Jolly Seber model), no sex difference in local survival probability was detected. We then used a multisite capture–recapture approach (Arnason–Schwarz model) to investigate patch-specific survival probability and between-patch dispersal rate conditional on survival. Female local survival in the higher-altitude patch (mean ± se: 0.54 ± 0.04) was significantly greater than in the other patch (0.37 ± 0.04), probably because permanent emigration from the study area was greater. In the higher-altitude patch, breeding dispersal was constrained by the altitude limit and breeding movements were directed toward the patch at lower altitude. The probability of changing patch in the next breeding season was significantly higher for females (range 0.16–0.21) than for males (0.01–0.03). Breeding success varied between years and patches, being lower in the patch where frequency of polygamy and female local mortality were higher.  相似文献   

18.
First released in Canada in 1997 to control the invasive rangeland weed, houndstongue (Cynoglossum officinale), the European root weevil, Mogulones cruciger, is showing early potential as a successful biocontrol agent. Out of 22 experimental releases in southeastern British Columbia, Canada, 100% established, regardless of initial release size (range 100-400). These founding populations persisted beyond 2 years, and quickly dispersed through a treed and variable landscape to colonise new houndstongue patches surrounding the original release patches. Within 3 years, the weevil had moved 1.42 km. Both initial, within-patch and later, between-patch dispersal followed a similar pattern, with M. cruciger adults and/or their feeding/oviposition damage being more concentrated nearest the original points of release and declining with distance. Within-patch, this pattern of distribution and also the rate of spread of weevils were similar regardless of initial release size; suggesting density-independence in dispersal behaviour at this scale. Closer investigation of the sequence of invasion at a larger spatial scale suggested that the weevil arrived at, colonized and increased in number on the closest host patches first. Three years post release, both distance from release patch and the number of M. cruciger released, were significant predictors of the amount of feeding/oviposition damage, and presumably weevil population size, within newly colonized houndstongue patches surrounding the original releases. These data, and the finding that more weevils were retrieved from patches where higher numbers of weevils were released in the previous year (i.e., 300 or 400 vs 100 or 200), suggest that release number and placement of releases within a landscape can be manipulated for effective houndstongue control.  相似文献   

19.
Abstract.  1. Host plant finding in walking herbivorous beetles is still poorly understood. Analysis of small-scale movement patterns under semi-natural conditions can be a useful tool to detect behavioural responses towards host plant cues.
2. In this study, the small-scale movement behaviour of the monophagous leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) was studied in a semi-natural arena ( r = 1 m). In three different settings, a host ( Salvia pratensis L., Lamiales: Lamiaceae), a non-host ( Rumex conglomeratus Murr., Caryophyllales: Polygonaceae), or no plant was presented in the centre of the arena.
3. The beetles showed no differences in the absolute movement variables, straightness and mean walking speed, between the three settings. However, the relative movement variables, mean distance to the centre and mean angular deviation from walking straight to the centre, were significantly smaller when a host plant was offered. Likewise, the angular deviation from walking straight to the centre tended to decline with decreasing distance from the centre. Finally, significantly more beetles were found on the host than on the non-host at the end of all the trials.
4. It is concluded that C. canaliculata is able to recognise its host plant from a distance. Whether olfactory or visual cues (or a combination of both) are used to find the host plant remains to be elucidated by further studies.  相似文献   

20.
Tagged Colorado potato beetles (CPB), Leptinotarsa decemlineata (Say), were released on potato plants, Solanum tuberosum L., and tracked using a portable harmonic radar system to determine the impact of host plant spatial distribution on the tendency of the pest to remain on the colonized host plant or patch. Results confirmed the long residency time on the host plant and showed that close connection of the plant to neighboring plants hastened dispersal between plants. Tracking walking CPB for over 6 h in small potato plots revealed that all types of mixed borders tested (potato/bare ground, potato/timothy and potato/woodland) acted as a strong barrier and retained beetles within the patch. In another experiment in potato patches surrounded by bare ground borders, tracked walking CPB displayed similar behaviour for up to four days. The distribution of turning angles in the CPB walking paths was not uniform and corresponded to beetles following the edge rows of potato patches in response to the crop border barrier or reversing their direction as they reached the end of a row and therefore a border. Patch size had no or little effect on beetle retention in the patch. The relative distribution of counts of tagged beetles detected among small (16 m2), medium (64 m2) and large size (256 m2) patches of potato four days after initial release remained similar to that of numbers released. Even though mixed crop borders were a strong barrier to walking CPB emigrating from potato patches, the departure rate of beetles over time was high. Results suggest that the effect of mixed borders is largely limited to dispersal by walking and does not apply to beetles leaving host patches by flight. The manipulation of crop borders and patch size seem to have limited potential for the management of CPB emigrating from potato fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号