首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   0篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   5篇
  2009年   5篇
  2008年   1篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   5篇
  1973年   1篇
  1972年   1篇
  1970年   2篇
  1967年   1篇
  1965年   1篇
  1962年   1篇
  1960年   1篇
  1956年   1篇
  1955年   2篇
  1953年   1篇
  1952年   1篇
  1951年   1篇
  1950年   2篇
  1949年   1篇
排序方式: 共有98条查询结果,搜索用时 669 毫秒
1.
Abstract: Staging areas and migratory stopovers of wetland birds have the potential to function as geographic bottlenecks; entire populations within a flyway may be affected by the quality and quantity of available wetland habitat at stopover sites. Although approximately 90% of playa wetlands in the Rainwater Basin (RWB) region of south-central Nebraska, USA, have been destroyed, the area still provides essential stopover habitat for >10 million waterfowl each spring. We evaluated community patterns and species associations to assess importance of assembly rules in structuring wetland bird communities during migration and to better facilitate multispecies conservation and management strategies. We surveyed 36–40 playas twice weekly in the RWB and observed approximately 2.6 million individual migratory wetland birds representing 72 species during 3 spring migrations 2002–2004. We evaluated spatial and temporal species co-occurrence patterns of geese, dabbling ducks, diving ducks, and shorebirds using null model analysis. Goose species co-occurrence scores did not differ from random in any year of the study, suggesting that goose species frequently use the same habitats during migration. Co-occurrence patterns among dabbling ducks were not different than expected by chance in any year; however, when we evaluated co-occurrence at a weekly scale, dabbling ducks co-occurred less often than expected during weeks of peak migration (high abundance), indicating that dabbling duck species spatially segregated at high densities. Diving duck co-occurrence patterns did not differ from random in any year, suggesting that diving duck species used the same habitats during migration. Shorebird species co-occurred less often than expected in 2002 and 2004, and during weeks of high shorebird abundance, indicating that shorebird communities were distinctly structured during those times. Most association values among lesser snow geese (Chen caerulescens) and dabbling duck species were positive, indicating dabbling ducks did not avoid wetlands with snow geese, a concern for waterfowl managers. However, we frequently observed snow geese and dabbling ducks using different microhabitats within a wetland, which indicate species associations and co-occurrence patterns may have occurred at a finer spatial scale than we measured. This approach of co-occurrence analysis will allow wildlife managers charged with multispecies management at migration stopover sites to make informed conservation and management decisions based on community structure rather than historic single-species approaches.  相似文献   
2.
3.
4.
STUDIES IN THE MORPHOGENESIS OF LEAVES   总被引:3,自引:3,他引:0  
  相似文献   
5.
Tubulin-containing structures of the male germ cells of Drosophila hydei crossreact in indirect immu-nofluorescence microscopy with antibody directed against homogeneous porcine brain tubulin. There is no detectable difference in reactivity between germ cells of wildtype flies and the mutant l(3)pl (lethal-polyploid) which is characterized by microtubular abnormalities. However, the technique of indirect immunofluorescence microscopy allows the direct visualization of several abnormalities in the arrangement of the microtubular system of the mutant, particularly in the axonemal complex.  相似文献   
6.
The mechanism of host invasion by Aggregata has been experimentally investigated both in vivo (in the crab), and in vitro (in mollusc cell cultures) and followed by electron microscopy. A few hours after the infesting meal, sporozoites escaped from sporocysts in the crab stomach: then they reached the small intestine. There, they pussed through the epithelium, making their way between the cells. Perforation of the thick basal lamina was induced by means of the elaboration of a dense product, probably an enzyme. Sporozoites stretched themselves passing through the basal lamina and entered the connective tissue surrounding the digestive tract. Damages inflicted on the host were minimal. In vitro, merozoites were able to enter cells from several molluscs by penetrating the cell's plasmalemma. A nucleolus appeared in the nuclei of intracellular merozoites.  相似文献   
7.
8.
We studied Grey Partridge Perdix perdix mortality during breeding to identify the environmental causes of a long‐term decline in adult survival. We radiotagged and monitored daily from mid‐March to mid‐September 1009 females on ten contrasting study sites in 1995‐97. Simultaneously, we recorded habitat features and estimated the abundance of Hen and Marsh Harriers Circus cyaneus and C. aeruginosus Red Fox Vulpes vulpes and mustelids. We experimentally tested whether scavenging could have biased predation rates. We also examined, through the necropsy of 80 carcasses of Grey Partridge, whether disease, parasites or poisoning could have been ultimate causes of high predation rates. The survival rate of radiotagged females during spring and summer ranged from 0.25 to 0.65 across study areas. Mortality peaked in May, June and July when females were laying and incubating. The direct negative impact of farming practices was low (6%). Predation was the main proximate cause of female mortality during breeding (73%) and determined the survival rate, suggesting no compensation by other causes of mortality. Ground carnivores were responsible for 64% of predation cases, and raptors for 29%, but this proportion varied across study sites. Disease and poisoning did not appear to favour predation, and scavenging was not likely to have substantially overestimated predation rates. The predation rate on breeding females was positively correlated with the abundance of Hen and Marsh Harriers, suggesting an additional mortality in areas where harriers were abundant. The proportion of raptor predation was linearly related to harrier abundance. The predation rate was not correlated with the abundance of the Red Fox and mustelids. A potential density‐dependent effect on the predation rate was confounded by the abundance of harriers. We found no convincing relationship between the predation rate and habitat features, but we observed a positive relationship between the abundance of Hen and Marsh Harriers and the mean field size. This suggested that habitat characteristics may contribute to high predation rates through predator abundance or habitat‐dependent predation.  相似文献   
9.
Tundra ecosystems are widely recognized as precious areas and globally important carbon (C) sinks, yet our understanding of potential threats to these habitats and their large soil C store is limited. Land‐use changes and conservation measures in temperate regions have led to a dramatic expansion of arctic‐breeding geese, making them important herbivores of high‐latitude systems. In field experiments conducted in high‐Arctic Spitsbergen, Svalbard, we demonstrate that a brief period of early season belowground foraging by pink‐footed geese is sufficient to strongly reduce C sink strength and soil C stocks of arctic tundra. Mechanisms are suggested whereby vegetation disruption due to repeated use of grubbed areas opens the soil organic layer to erosion and will thus lead to progressive C loss. Our study shows, for the first time, that increases in goose abundance through land‐use change and conservation measures in temperate climes can dramatically affect the C balance of arctic tundra.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号