首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   30篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2017年   6篇
  2015年   11篇
  2014年   7篇
  2013年   19篇
  2012年   7篇
  2011年   12篇
  2010年   11篇
  2009年   6篇
  2008年   8篇
  2007年   8篇
  2006年   3篇
  2005年   10篇
  2004年   8篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   6篇
  1997年   2篇
  1994年   2篇
  1992年   3篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1965年   1篇
  1962年   1篇
  1958年   2篇
  1957年   4篇
  1956年   1篇
  1953年   2篇
  1936年   1篇
排序方式: 共有210条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Land‐use change modifies the spatial structure of terrestrial landscapes, potentially shaping the distribution, abundance and diversity of remaining species assemblages. Non‐human primates can be particularly vulnerable to landscape disturbances, but our understanding of this topic is far from complete. Here we reviewed all available studies on primates' responses to landscape structure. We found 34 studies of 71 primate species (24 genera and 10 families) that used a landscape approach. Most studies (82%) were from Neotropical forests, with howler monkeys being the most frequently studied taxon (56% of studies). All studies but one used a site‐landscape or a patch‐landscape study design, and frequently (34% of studies) measured landscape variables within a given radius from the edge of focal patches. Altogether, the 34 studies reported 188 responses to 17 landscape‐scale metrics. However, the majority of the studies (62%) quantified landscape predictors within a single spatial scale, potentially missing significant primate–landscape responses. To assess such responses accurately, landscape metrics need to be measured at the optimal scale, i.e. the spatial extent at which the primate–landscape relationship is strongest (so‐called ‘scale of effect’). Only 21% of studies calculated the scale of effect through multiscale approaches. Interestingly, the vast majority of studies that do not assess the scale of effect mainly reported null effects of landscape structure on primates, while most of the studies based on optimal scales found significant responses. These significant responses were primarily to landscape composition variables rather than landscape configuration variables. In particular, primates generally show positive responses to increasing forest cover, landscape quality indices and matrix permeability. By contrast, primates show weak responses to landscape configuration. In addition, half of the studies showing significant responses to landscape configuration metrics did not control for the effect of forest cover. As configuration metrics are often correlated with forest cover, this means that documented configuration effects may simply be driven by landscape‐scale forest loss. Our findings suggest that forest loss (not fragmentation) is a major threat to primates, and thus, preventing deforestation (e.g. through creation of reserves) and increasing forest cover through restoration is critically needed to mitigate the impact of land‐use change on our closest relatives. Increasing matrix functionality can also be critical, for instance by promoting anthropogenic land covers that are similar to primates' habitat.  相似文献   
7.

Objective

To identify early changes in brain structure and function that are associated with cardiovascular risk factors (CVRF).

Design

Cross-sectional brain Magnetic Resonance I (MRI) study.

Setting

Community based cohort in three U.S. sites.

Participants

A Caucasian and African-American sub-sample (n= 680; mean age 50.3 yrs) attending the 25 year follow-up exam of the Coronary Artery Risk Development in Young Adults Study.

Primary and Secondary Outcomes

3T brain MR images processed for quantitative estimates of: total brain (TBV) and abnormal white matter (AWM) volume; white matter fractional anisotropy (WM-FA); and gray matter cerebral blood flow (GM-CBF). Total intracranial volume is TBV plus cerebral spinal fluid (TICV). A Global Cognitive Function (GCF) score was derived from tests of speed, memory and executive function.

Results

Adjusting for TICV and demographic factors, current smoking was significantly associated with lower GM-CBF and TBV, and more AWM (all <0.05); SA with lower GM-CBF, WM-FA and TBV (p=0.01); increasing BMI with decreasing GM-CBF (p<0003); hypertension with lower GM-CBF, WM-FA, and TBV and higher AWM (all <0.05); and diabetes with lower TBV (p=0.007). The GCS was lower as TBV decreased, AWM increased, and WM-FA (all p<0.01).

Conclusion

In middle age adults, CVRF are associated with brain health, reflected in MRI measures of structure and perfusion, and cognitive functioning. These findings suggest markers of mid-life cardiovascular and brain health should be considered as indication for early intervention and future risk of late-life cerebrovascular disease and dementia.  相似文献   
8.

Background

African Americans (AAs) have lower circulating 25-hydroxyvitamin D3 [25(OH)D3] concentrations and higher prostate cancer (CaP) aggressiveness than other racial/ethnic groups. The purpose of the current study was to examine the relationship between plasma 25(OH)D3, African ancestry and CaP aggressiveness among AAs and European Americans (EAs).

Methods

Plasma 25(OH)D3 was measured using LC-MS/MS (Liquid Chromatography Tandem Mass Spectrometry) in 537 AA and 663 EA newly-diagnosed CaP patients from the North Carolina-Louisiana Prostate Cancer Project (PCaP) classified as having either ‘high’ or ‘low’ aggressive disease based on clinical stage, Gleason grade and prostate specific antigen at diagnosis. Mean plasma 25(OH)D3 concentrations were compared by proportion of African ancestry. Logistic regression was used to calculate multivariable adjusted odds ratios (OR) and 95% confidence intervals (95%CI) for high aggressive CaP by tertile of plasma 25(OH)D3.

Results

AAs with highest percent African ancestry (>95%) had the lowest mean plasma 25(OH)D3 concentrations. Overall, plasma 25(OH)D3 was associated positively with aggressiveness among AA men, an association that was modified by calcium intake (ORT3vs.T1: 2.23, 95%CI: 1.26–3.95 among men with low calcium intake, and ORT3vs.T1: 0.19, 95%CI: 0.05–0.70 among men with high calcium intake). Among EAs, the point estimates of the ORs were <1.0 for the upper tertiles with CIs that included the null.

Conclusions

Among AAs, plasma 25(OH)D3 was associated positively with CaP aggressiveness among men with low calcium intake and inversely among men with high calcium intake. The clinical significance of circulating concentrations of 25(OH)D3 and interactions with calcium intake in the AA population warrants further study.  相似文献   
9.
Previous theoretical studies suggest that a species' landscape should influence the evolution of its dispersal characteristics, because landscape structure affects the costs and benefits of dispersal. However, these studies have not considered the evolution of boundary crossing, that is, the tendency of animals to cross from habitat to nonhabitat (“matrix”). It is important to understand this dispersal behavior, because of its effects on the probability of population persistence. Boundary‐crossing behavior drives the rate of interaction with matrix, and thus, it influences the rate of movement among populations and the risk of dispersal mortality. We used an individual‐based, spatially explicit model to simulate the evolution of boundary crossing in response to landscape structure. Our simulations predict higher evolved probabilities of boundary crossing in landscapes with more habitat, less fragmented habitat, higher‐quality matrix, and more frequent disturbances (i.e., fewer generations between local population extinction events). Unexpectedly, our simulations also suggest that matrix quality and disturbance frequency have much stronger effects on the evolution of boundary crossing than either habitat amount or habitat fragmentation. Our results suggest that boundary‐crossing responses are most affected by the costs of dispersal through matrix and the benefits of escaping local extinction events. Evolution of optimal behavior at habitat boundaries in response to the landscape may have implications for species in human‐altered landscapes, because this behavior may become suboptimal if the landscape changes faster than the species' evolutionary response to that change. Understanding how matrix quality and habitat disturbance drive evolution of behavior at boundaries, and how this in turn influences the extinction risk of species in human‐altered landscapes should help us identify species of conservation concern and target them for management.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号